hyper-py-photometry 0.1.5__tar.gz → 0.1.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {hyper_py_photometry-0.1.5/src/hyper_py_photometry.egg-info → hyper_py_photometry-0.1.6}/PKG-INFO +1 -1
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/paper/paper.md +7 -6
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6/src/hyper_py_photometry.egg-info}/PKG-INFO +1 -1
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/.github/workflows/Hyper-py_paper.yml +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/.github/workflows/pypi-publish.yml +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/.gitignore +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/.vscode/launch.json +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/Gaussian_comparison_Hyper_py_IDL_ALL.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/ellipses_map_500_Gaussians_1_centroids.reg +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/ellipses_map_500_Gaussians_1_ellipses.reg +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/ellipses_map_500_Gaussians_2_centroids.reg +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/ellipses_map_500_Gaussians_2_ellipses.reg +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/hyper_output_map_500_Gaussians_1.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/hyper_output_map_500_Gaussians_2.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/map_500_Gaussians_1.fits +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/map_500_Gaussians_2.fits +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/matched_flux_comparison_table.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_IDL_Int_1.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_IDL_Int_2.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_IDL_Peak_1.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_IDL_Peak_2.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_IDL_vs_py_Int_1.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_IDL_vs_py_Int_2.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_IDL_vs_py_Peak_1.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_IDL_vs_py_Peak_2.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_py_Int_1.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_py_Int_2.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_py_Peak_1.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Comparison_Hyper_py_Peak_2.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Diff_Histogram_Int.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/Flux_Diff_Histogram_Peak.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/combined_source_counts_comparison.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/output/matched_flux_comparison_table.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/photometry_sources_1300_ellipses_1300_polynomial_background_4sigma_ipac_1.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/photometry_sources_1300_ellipses_1300_polynomial_background_4sigma_ipac_2.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/table_500_Gaussians_1.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/table_500_Gaussians_2.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/LICENSE +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/README.md +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/environment.yml +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/paper/Figures/Flux_Diff_Histogram_Int.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/paper/Figures/Flux_Diff_Histogram_Peak.png +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/paper/paper.bib +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/pyproject.toml +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/requirements.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/setup.cfg +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/__init__.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/__main__.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/assets/default_config.yaml +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/bkg_multigauss.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/bkg_single.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/config.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/create_background_slices.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/data_output.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/detection.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/extract_cubes.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/fitting.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/gaussfit.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/groups.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/hyper.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/logger.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/map_io.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/paths_io.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/photometry.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/run_hyper.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/single_map.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/survey.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/visualization.py +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py_photometry.egg-info/SOURCES.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py_photometry.egg-info/dependency_links.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py_photometry.egg-info/entry_points.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py_photometry.egg-info/requires.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py_photometry.egg-info/top_level.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/test/maps/test_2d_map_1.fits +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/test/maps/test_2d_map_2.fits +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/test/maps/test_2dmap.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/test/maps/test_datacube.fits +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/test/maps/test_datacube.txt +0 -0
- {hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/test/test_hyper.py +0 -0
{hyper_py_photometry-0.1.5/src/hyper_py_photometry.egg-info → hyper_py_photometry-0.1.6}/PKG-INFO
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: hyper-py-photometry
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.6
|
|
4
4
|
Summary: HYPER: Hybrid Photometry Photometry and Extraction Routine
|
|
5
5
|
Author-email: Alessio Traficante <alessio.traficante@inaf.it>
|
|
6
6
|
Project-URL: Homepage, https://github.com/alessio-traficante/hyper-py
|
|
@@ -29,9 +29,9 @@ bibliography: paper.bib
|
|
|
29
29
|
# Summary
|
|
30
30
|
|
|
31
31
|
Source extraction and photometry of compact objects are fundamental tasks in observational astronomy. Over the years, various tools have been developed to address the inherent complexity of astronomical data—particularly for accurate background estimation and removal, and for deblending nearby sources to ensure reliable flux measurements across multiple wavelengths (e.g. Cutex: @Molinari11; getsources: @Menshinkov12; Fellwalker: @Berry15; [Astrodendro](http://www.dendrograms.org/)). These challenges are especially pronounced in star-forming regions, which are best observed in the far-infrared (FIR), sub-millimeter, and millimeter regimes, where the cold, dense envelopes of compact sources emit most strongly.
|
|
32
|
-
To address these needs, several software packages have been designed to handle the structured backgrounds and blended source populations typical of observations with instruments such as Herschel (70–500 μm) and ALMA (1–3 mm). These packages differ significantly in their detection strategies and flux estimation methods.
|
|
32
|
+
To address these needs, several software packages have been designed to handle the structured backgrounds and blended source populations typical of observations with instruments such as Herschel (70–500 μm) and ALMA (1–3 mm). These packages differ significantly in their detection strategies and flux estimation methods. In this framework, we developed **HYPER** (HYbrid Photometry and Extraction Routine, @Traficante15), originally implemented in Interactive Data Language (IDL), with the goal of providing robust and reproducible photometry of compact sources in FIR/sub-mm/mm maps. **HYPER** combines: (1) source detection via high-pass filtering; (2) background estimation and removal through local polynomial fitting; and (3) source modeling using 2D elliptical Gaussians. For blended regions, HYPER fits multiple Gaussians simultaneously to deblend overlapping sources, subtracting companions before performing photometry.
|
|
33
33
|
Aperture photometry in **HYPER** is then carried out on the background-subtracted, companion-subtracted images, using the footprint defined by each source’s 2D Gaussian model. This ensures a consistent and robust integrated flux measurement, even in crowded or strongly structured environments @Traficante15; @Traficante23.
|
|
34
|
-
The hybrid nature of **HYPER** lies in
|
|
34
|
+
The hybrid nature of **HYPER** lies in its combined approach: using 2D Gaussian modeling, while retaining classical aperture photometry techniques.
|
|
35
35
|
In this work, we present **Hyper-Py**, a fully restructured and extended version of **HYPER** developed entirely in Python. *Hyper-Py* not only replicates the core logic of the original IDL implementation, but introduces multiple improvements in performance, configurability, and background modeling capabilities—making it a modern and flexible tool for source extraction and photometric analysis across a wide range of datasets. Notably, *Hyper-Py* also introduces the ability to estimate and subtract the background emission across individual slices of 3D datacubes, enabling consistent background modeling along the spectral axis for line or continuum studies in spectrally resolved observations.
|
|
36
36
|
|
|
37
37
|
|
|
@@ -39,13 +39,14 @@ In this work, we present **Hyper-Py**, a fully restructured and extended version
|
|
|
39
39
|
# Statement of need
|
|
40
40
|
*Hyper-Py* is a Python package freely accessible to the community. This new Python implementation is a conversion of the IDL version **HYPER** which includes several
|
|
41
41
|
improvements to the original package:
|
|
42
|
+
|
|
42
43
|
**Parallel execution for multi-map analysis**. *Hyper-Py* introduces built-in parallelization for the analysis of multiple input maps. On multi-core systems, each map is independently assigned to a dedicated core, allowing concurrent execution of the full photometric pipeline—source detection, background fitting, Gaussian modeling, and aperture photometry—for each map. This parallel framework substantially improves computational efficiency without altering the scientific output for individual maps.
|
|
43
44
|
|
|
44
|
-
**Native support for the analysis of FITS datacubes**. The code enables users to treat each slice along the third axis as an independent 2D map. This functionality is fully compatible with the existing parallelization framework, allowing multiple slices to be processed simultaneously across different cores. The primary goal of this mode is to estimate the spatially-varying background emission on a per-slice basis. The final output is a reconstructed 3D background datacube with the same shape as the input cube. This background cube can either be focused on a specific region or line of sight—leaving all other voxels as NaNs—or computed across the full spatial extent of the cube. The extraction
|
|
45
|
+
**Native support for the analysis of FITS datacubes**. The code enables users to treat each slice along the third axis as an independent 2D map. This functionality is fully compatible with the existing parallelization framework, allowing multiple slices to be processed simultaneously across different cores. The primary goal of this mode is to estimate the spatially-varying background emission on a per-slice basis. The final output is a reconstructed 3D background datacube with the same shape as the input cube. This background cube can either be focused on a specific region or line of sight—leaving all other voxels as NaNs—or computed across the full spatial extent of the cube. The region where to perform the extraction and related parameters are configurable via the config.yaml file, offering flexibility for both targeted and global background modeling.
|
|
45
46
|
|
|
46
|
-
**Improved source detection reliability**. The source detection module has been significantly improved through the implementation of a more robust sigma-clipping algorithm for estimating the root mean square (*rms*) noise of the input map. This enhancement ensures a more accurate characterization of the background fluctuations by iteratively excluding outliers and recalculating the noise level, even in the presence of bright sources or residual structures. The resulting *rms* value is then used as a reference threshold to identify compact sources with peak intensities exceeding a user-defined significance level, set as *n_sigma* × *rms*, where*n_sigma* is configurable via the config.yaml file. This refinement improves the reliability and reproducibility of the source detection process across heterogeneous datasets.
|
|
47
|
+
**Improved source detection reliability**. The source detection module has been significantly improved through the implementation of a more robust sigma-clipping algorithm for estimating the root mean square (*rms*) noise of the input map. This enhancement ensures a more accurate characterization of the background fluctuations by iteratively excluding outliers and recalculating the noise level, even in the presence of bright sources or residual structures. The resulting *rms* value is then used as a reference threshold to identify compact sources with peak intensities exceeding a user-defined significance level, set as *n_sigma* × *rms*, where *n_sigma* is configurable via the config.yaml file. This refinement improves the reliability and reproducibility of the source detection process across heterogeneous datasets.
|
|
47
48
|
|
|
48
|
-
**Advanced background estimation strategy**. *Hyper-Py* introduces a robust and flexible background estimation framework designed to improve subtraction accuracy in complex
|
|
49
|
+
**Advanced background estimation strategy**. *Hyper-Py* introduces a robust and flexible background estimation framework designed to improve subtraction accuracy in complex regions and in case of blended sources. Unlike the original IDL version, which estimated and subtracted the background independently of source modeling @Traficante15, *Hyper-Py* supports multiple statistical methods for background fitting, applied to masked cutouts around each source. Users can select from least-squares regression, Huber regression, and Theil–Sen regression, either individually or in combination. The least-squares method is optimal in regions dominated by Gaussian noise. The Huber regressor provides robustness against outliers by interpolating between L2 and L1 loss functions, with the tuning parameter ε (huber_epsilons in the config file) controlling the transition. The Theil–Sen estimator is a non-parametric, highly robust approach particularly suited for non-Gaussian noise or residual contamination. When multiple methods are enabled, *Hyper-Py* evaluates all and selects the background model that minimizes the residuals within the unmasked region, ensuring accurate reconstruction even in the presence of variable gradients or faint extended emission. In addition, *Hyper-Py* offers an optional joint fit of the background and 2D elliptical Gaussians, which may improve stability or convergence in specific cases. When this combined fit is used, the background polynomial terms can be regularized using L2 (ridge) regression, helping suppress unphysically large coefficients. This constraint enhances the robustness of the background model in regions with strong intensity gradients or spatially variable emission, reducing the risk of overfitting the background at the expenses of the source flux estimation.
|
|
49
50
|
|
|
50
51
|
**Gaussian + background model optimization strategy**. The combined fitting is optimized using the Levenberg–Marquardt algorithm, implemented via the "least_squares" minimizer from the lmfit package (equivalent to the scipy.optimize.least_squares function). This method allows flexible control over the cost function via the loss parameter, which modifies the residuals used during minimization.
|
|
51
52
|
Specifically, we adopt a robust loss function, setting loss = "cauchy". This choice reduces the influence of outliers by scaling the residuals in a non-linear way, effectively down-weighting pixels that deviate significantly from the model. Compared to the standard least-squares loss ("linear"), robust losses like "cauchy" are better suited to data affected by small-scale artifacts, unmasked sources, or non-Gaussian noise features. Alternative loss functions such as "soft_l1" and "huber" are also available and may offer improved convergence speed in some cases, particularly when dealing with moderately noisy data.
|
|
@@ -54,7 +55,7 @@ Specifically, we adopt a robust loss function, setting loss = "cauchy". This cho
|
|
|
54
55
|
|
|
55
56
|
**Improved user configurability**. *Hyper-Py* is designed to be more user-friendly, featuring a clear and well-documented configuration file. This allows users to adapt the full photometric workflow to a wide range of observational conditions and scientific goals by modifying only a minimal set of parameters. The modular structure of the configuration also enhances transparency and reproducibility in all stages of the analysis.
|
|
56
57
|
|
|
57
|
-
We assessed the performance of the *Hyper-Py* pipeline using a dedicated suite of simulations. Specifically, we adopted a noise-only map derived from the ALMA program #2022.1.0917.S and produced two maps with this reference header. In each of
|
|
58
|
+
We assessed the performance of the *Hyper-Py* pipeline using a dedicated suite of simulations. Specifically, we adopted a noise-only map derived from the ALMA program #2022.1.0917.S and produced two maps with this reference header. In each of these maps we injected a variable background and 500 synthetic 2D Gaussian sources into it. These sources were designed to emulate the properties of real, compact astronomical objects: integrated fluxes ranged between 8 and 20 times the map *rms* (corresponding to peak fluxes of approximately 1–1.5 times the *rms*), and FWHMs spanned from 0.5 to 1.5 times the beam size, as computed from the FITS header, to simulate both unresolved and moderately extended sources @Elia21. The source position angles were randomly assigned, and a minimum overlap fraction of 30% was imposed to ensure a significant level of blending, thus providing a rigorous test of the code under realistic and challenging conditions. We then compared the performance of the original IDL implementation of **HYPER** with the new Python-based *Hyper-Py* version. Both codes were run using equivalent configurations, with *Hyper-Py* additionally benefiting from its extended capabilities—such as improved background estimation, optional L2 regularization, and multi-core parallel processing. The main results of this comparison are presented in **Table 1**, where we show the differences between the number of identified sources and the false positives by *Hyper-Py* and **HYPER**, respectively.
|
|
58
59
|
|
|
59
60
|
| Catalog | Source Type | Total | Matched | False | False Percentage |
|
|
60
61
|
|--------:|:------------|------:|--------:|------:|------------------:|
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6/src/hyper_py_photometry.egg-info}/PKG-INFO
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: hyper-py-photometry
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.6
|
|
4
4
|
Summary: HYPER: Hybrid Photometry Photometry and Extraction Routine
|
|
5
5
|
Author-email: Alessio Traficante <alessio.traficante@inaf.it>
|
|
6
6
|
Project-URL: Homepage, https://github.com/alessio-traficante/hyper-py
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/.github/workflows/Hyper-py_paper.yml
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/map_500_Gaussians_1.fits
RENAMED
|
File without changes
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/map_500_Gaussians_2.fits
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/table_500_Gaussians_1.txt
RENAMED
|
File without changes
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/IDL_comparison/table_500_Gaussians_2.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/paper/Figures/Flux_Diff_Histogram_Int.png
RENAMED
|
File without changes
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/paper/Figures/Flux_Diff_Histogram_Peak.png
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/assets/default_config.yaml
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py/create_background_slices.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{hyper_py_photometry-0.1.5 → hyper_py_photometry-0.1.6}/src/hyper_py_photometry.egg-info/SOURCES.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|