hydroanomaly 1.2.2__py3-none-any.whl → 1.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- hydroanomaly/__init__.py +1 -1
- hydroanomaly/ml.py +5 -5
- {hydroanomaly-1.2.2.dist-info → hydroanomaly-1.2.4.dist-info}/METADATA +2 -1
- hydroanomaly-1.2.4.dist-info/RECORD +10 -0
- hydroanomaly-1.2.2.dist-info/RECORD +0 -10
- {hydroanomaly-1.2.2.dist-info → hydroanomaly-1.2.4.dist-info}/WHEEL +0 -0
- {hydroanomaly-1.2.2.dist-info → hydroanomaly-1.2.4.dist-info}/licenses/LICENSE +0 -0
- {hydroanomaly-1.2.2.dist-info → hydroanomaly-1.2.4.dist-info}/top_level.txt +0 -0
hydroanomaly/__init__.py
CHANGED
hydroanomaly/ml.py
CHANGED
@@ -13,7 +13,7 @@ def match_nearest_datetime(sentinel_dt, usgs):
|
|
13
13
|
return np.nan
|
14
14
|
# Find the closest datetime in usgs to sentinel_dt
|
15
15
|
i = usgs.index.get_indexer([sentinel_dt], method='nearest')[0]
|
16
|
-
return usgs.iloc[i]['
|
16
|
+
return usgs.iloc[i]['turbidity']
|
17
17
|
|
18
18
|
# ============= Preprocessing and Feature Engineering ====================================================
|
19
19
|
def preprocess_data(sentinel, usgs):
|
@@ -92,14 +92,14 @@ def run_oneclass_svm(sentinel, usgs, plot=True):
|
|
92
92
|
df_out['predicted'] = best_y_pred
|
93
93
|
if plot:
|
94
94
|
plt.figure(figsize=(15,6))
|
95
|
-
plt.plot(df_out.index, df_out['turbidity'], label='
|
95
|
+
plt.plot(df_out.index, df_out['turbidity'], label='turbidity', color='blue')
|
96
96
|
plt.scatter(df_out[df_out['Classe']==1].index, df_out[df_out['Classe']==1]['turbidity'],
|
97
97
|
color='red', marker='x', label='True Anomaly', s=100)
|
98
98
|
plt.scatter(df_out[df_out['predicted']==1].index, df_out[df_out['predicted']==1]['turbidity'],
|
99
99
|
edgecolors='orange', facecolors='none', marker='o', label='Predicted Anomaly', s=80)
|
100
100
|
plt.title("True vs Predicted Anomalies (OneClassSVM)")
|
101
101
|
plt.xlabel("Datetime")
|
102
|
-
plt.ylabel("
|
102
|
+
plt.ylabel("turbidity")
|
103
103
|
plt.legend()
|
104
104
|
plt.grid(True)
|
105
105
|
plt.tight_layout()
|
@@ -156,14 +156,14 @@ def run_isolation_forest(sentinel, usgs, plot=True):
|
|
156
156
|
df_out['predicted'] = best_y_pred
|
157
157
|
if plot:
|
158
158
|
plt.figure(figsize=(15,6))
|
159
|
-
plt.plot(df_out.index, df_out['turbidity'], label='
|
159
|
+
plt.plot(df_out.index, df_out['turbidity'], label='turbidity', color='blue')
|
160
160
|
plt.scatter(df_out[df_out['Classe']==1].index, df_out[df_out['Classe']==1]['turbidity'],
|
161
161
|
color='red', marker='x', label='True Anomaly', s=100)
|
162
162
|
plt.scatter(df_out[df_out['predicted']==1].index, df_out[df_out['predicted']==1]['turbidity'],
|
163
163
|
edgecolors='orange', facecolors='none', marker='o', label='Predicted Anomaly', s=80)
|
164
164
|
plt.title("True vs Predicted Anomalies (Isolation Forest)")
|
165
165
|
plt.xlabel("Datetime")
|
166
|
-
plt.ylabel("
|
166
|
+
plt.ylabel("turbidity")
|
167
167
|
plt.legend()
|
168
168
|
plt.grid(True)
|
169
169
|
plt.tight_layout()
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: hydroanomaly
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.4
|
4
4
|
Summary: A Python package for hydro anomaly detection with simple USGS data retrieval
|
5
5
|
Author-email: Ehsan Kahrizi <ehsan.kahrizi@usu.edu>
|
6
6
|
License: MIT License
|
@@ -51,6 +51,7 @@ Requires-Dist: flake8>=3.8; extra == "dev"
|
|
51
51
|
Requires-Dist: mypy>=0.800; extra == "dev"
|
52
52
|
Dynamic: license-file
|
53
53
|
|
54
|
+

|
54
55
|
# HydroAnomaly
|
55
56
|
|
56
57
|
A Python package for hydro anomaly detection, **USGS water data retrieval**, and **time series visualization**.
|
@@ -0,0 +1,10 @@
|
|
1
|
+
hydroanomaly/__init__.py,sha256=_UrGbuvmsEN8iZ0C2y3RQ59wXfKC-SVIkLbWZEhc-U8,1664
|
2
|
+
hydroanomaly/ml.py,sha256=mkAQkL9mw2YcOPYISiJz9opT0xDaCbv91ivWRjpXB84,7357
|
3
|
+
hydroanomaly/sentinel_bands.py,sha256=XdpXUsJ8VeRQp9akDeQaVBefuuMrQIabslu8tg_FTpk,5399
|
4
|
+
hydroanomaly/usgs_turbidity.py,sha256=k0cXRXpTe1YgjfR0Htw77SLD8hM--43jiEiJwx1vRg0,5664
|
5
|
+
hydroanomaly/visualize.py,sha256=d_Ou1sTr648TdAW-94NXwNbLPL4rvYVYb5pw4Xux3aE,7228
|
6
|
+
hydroanomaly-1.2.4.dist-info/licenses/LICENSE,sha256=OphKV48tcMv6ep-7j-8T6nycykPT0g8ZlMJ9zbGvdPs,1066
|
7
|
+
hydroanomaly-1.2.4.dist-info/METADATA,sha256=sndWmucG1lyutvBajQKIA9CnVS1EzXwi-iJ36PmaMl8,13008
|
8
|
+
hydroanomaly-1.2.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
9
|
+
hydroanomaly-1.2.4.dist-info/top_level.txt,sha256=t-5Lc-eTLlkxIhR_N1Cpp6_YZafKS3xLLk9D2CtbE7o,13
|
10
|
+
hydroanomaly-1.2.4.dist-info/RECORD,,
|
@@ -1,10 +0,0 @@
|
|
1
|
-
hydroanomaly/__init__.py,sha256=eEPbr6I5DKj965gpDV3N3Oj6eL-QQYqG9mlV_UKCv2s,1664
|
2
|
-
hydroanomaly/ml.py,sha256=PNV4iWb0NLkcdv43r6zD4NnC07DUrzfE96ON5T57xDc,7357
|
3
|
-
hydroanomaly/sentinel_bands.py,sha256=XdpXUsJ8VeRQp9akDeQaVBefuuMrQIabslu8tg_FTpk,5399
|
4
|
-
hydroanomaly/usgs_turbidity.py,sha256=k0cXRXpTe1YgjfR0Htw77SLD8hM--43jiEiJwx1vRg0,5664
|
5
|
-
hydroanomaly/visualize.py,sha256=d_Ou1sTr648TdAW-94NXwNbLPL4rvYVYb5pw4Xux3aE,7228
|
6
|
-
hydroanomaly-1.2.2.dist-info/licenses/LICENSE,sha256=OphKV48tcMv6ep-7j-8T6nycykPT0g8ZlMJ9zbGvdPs,1066
|
7
|
-
hydroanomaly-1.2.2.dist-info/METADATA,sha256=jBVFAcyhIwdQlGltZK6Rwo9i6RlXVppQa8e2wL05brg,12981
|
8
|
-
hydroanomaly-1.2.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
9
|
-
hydroanomaly-1.2.2.dist-info/top_level.txt,sha256=t-5Lc-eTLlkxIhR_N1Cpp6_YZafKS3xLLk9D2CtbE7o,13
|
10
|
-
hydroanomaly-1.2.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|