hydraflow 0.2.7__tar.gz → 0.2.9__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {hydraflow-0.2.7 → hydraflow-0.2.9}/PKG-INFO +1 -1
- {hydraflow-0.2.7 → hydraflow-0.2.9}/pyproject.toml +2 -2
- {hydraflow-0.2.7 → hydraflow-0.2.9}/src/hydraflow/__init__.py +7 -4
- {hydraflow-0.2.7 → hydraflow-0.2.9}/src/hydraflow/asyncio.py +9 -3
- {hydraflow-0.2.7 → hydraflow-0.2.9}/src/hydraflow/context.py +24 -8
- {hydraflow-0.2.7 → hydraflow-0.2.9}/src/hydraflow/info.py +57 -4
- hydraflow-0.2.9/src/hydraflow/mlflow.py +175 -0
- hydraflow-0.2.9/src/hydraflow/progress.py +202 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/src/hydraflow/run_collection.py +31 -122
- hydraflow-0.2.7/tests/scripts/log_run.py → hydraflow-0.2.9/tests/scripts/app.py +21 -3
- hydraflow-0.2.9/tests/scripts/progress.py +72 -0
- hydraflow-0.2.9/tests/test_app.py +100 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/test_context.py +1 -1
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/test_info.py +14 -1
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/test_log_run.py +5 -3
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/test_progress.py +1 -1
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/test_run_collection.py +5 -5
- hydraflow-0.2.7/mlruns/0/meta.yaml +0 -6
- hydraflow-0.2.7/src/hydraflow/mlflow.py +0 -119
- hydraflow-0.2.7/src/hydraflow/progress.py +0 -131
- {hydraflow-0.2.7 → hydraflow-0.2.9}/.devcontainer/devcontainer.json +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/.devcontainer/postCreate.sh +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/.devcontainer/starship.toml +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/.gitattributes +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/.gitignore +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/LICENSE +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/README.md +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/src/hydraflow/config.py +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/scripts/__init__.py +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/scripts/watch.py +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/test_asyncio.py +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/test_config.py +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/test_mlflow.py +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/test_version.py +0 -0
- {hydraflow-0.2.7 → hydraflow-0.2.9}/tests/test_watch.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: hydraflow
|
3
|
-
Version: 0.2.
|
3
|
+
Version: 0.2.9
|
4
4
|
Summary: Hydraflow integrates Hydra and MLflow to manage and track machine learning experiments.
|
5
5
|
Project-URL: Documentation, https://github.com/daizutabi/hydraflow
|
6
6
|
Project-URL: Source, https://github.com/daizutabi/hydraflow
|
@@ -4,7 +4,7 @@ build-backend = "hatchling.build"
|
|
4
4
|
|
5
5
|
[project]
|
6
6
|
name = "hydraflow"
|
7
|
-
version = "0.2.
|
7
|
+
version = "0.2.9"
|
8
8
|
description = "Hydraflow integrates Hydra and MLflow to manage and track machine learning experiments."
|
9
9
|
readme = "README.md"
|
10
10
|
license = "MIT"
|
@@ -63,7 +63,7 @@ asyncio_default_fixture_loop_scope = "function"
|
|
63
63
|
exclude_lines = ["no cov", "raise NotImplementedError", "if TYPE_CHECKING:"]
|
64
64
|
|
65
65
|
[tool.ruff]
|
66
|
-
line-length =
|
66
|
+
line-length = 88
|
67
67
|
target-version = "py312"
|
68
68
|
|
69
69
|
[tool.ruff.lint]
|
@@ -1,11 +1,12 @@
|
|
1
1
|
from .context import chdir_artifact, log_run, start_run, watch
|
2
|
-
from .info import load_config
|
3
|
-
from .mlflow import
|
4
|
-
from .run_collection import (
|
5
|
-
RunCollection,
|
2
|
+
from .info import get_artifact_dir, get_hydra_output_dir, load_config
|
3
|
+
from .mlflow import (
|
6
4
|
list_runs,
|
7
5
|
search_runs,
|
6
|
+
set_experiment,
|
8
7
|
)
|
8
|
+
from .progress import multi_tasks_progress, parallel_progress
|
9
|
+
from .run_collection import RunCollection
|
9
10
|
|
10
11
|
__all__ = [
|
11
12
|
"RunCollection",
|
@@ -15,6 +16,8 @@ __all__ = [
|
|
15
16
|
"list_runs",
|
16
17
|
"load_config",
|
17
18
|
"log_run",
|
19
|
+
"multi_tasks_progress",
|
20
|
+
"parallel_progress",
|
18
21
|
"search_runs",
|
19
22
|
"set_experiment",
|
20
23
|
"start_run",
|
@@ -41,7 +41,9 @@ async def execute_command(
|
|
41
41
|
int: The return code of the process.
|
42
42
|
"""
|
43
43
|
try:
|
44
|
-
process = await asyncio.create_subprocess_exec(
|
44
|
+
process = await asyncio.create_subprocess_exec(
|
45
|
+
program, *args, stdout=PIPE, stderr=PIPE
|
46
|
+
)
|
45
47
|
await asyncio.gather(
|
46
48
|
process_stream(process.stdout, stdout),
|
47
49
|
process_stream(process.stderr, stderr),
|
@@ -100,7 +102,9 @@ async def monitor_file_changes(
|
|
100
102
|
"""
|
101
103
|
str_paths = [str(path) for path in paths]
|
102
104
|
try:
|
103
|
-
async for changes in watchfiles.awatch(
|
105
|
+
async for changes in watchfiles.awatch(
|
106
|
+
*str_paths, stop_event=stop_event, **awatch_kwargs
|
107
|
+
):
|
104
108
|
callback(changes)
|
105
109
|
except Exception as e:
|
106
110
|
logger.error(f"Error watching files: {e}")
|
@@ -129,7 +133,9 @@ async def run_and_monitor(
|
|
129
133
|
"""
|
130
134
|
stop_event = asyncio.Event()
|
131
135
|
run_task = asyncio.create_task(
|
132
|
-
execute_command(
|
136
|
+
execute_command(
|
137
|
+
program, *args, stop_event=stop_event, stdout=stdout, stderr=stderr
|
138
|
+
)
|
133
139
|
)
|
134
140
|
if watch and paths:
|
135
141
|
monitor_task = asyncio.create_task(
|
@@ -14,10 +14,11 @@ from typing import TYPE_CHECKING
|
|
14
14
|
|
15
15
|
import mlflow
|
16
16
|
from hydra.core.hydra_config import HydraConfig
|
17
|
-
from watchdog.events import FileModifiedEvent,
|
17
|
+
from watchdog.events import FileModifiedEvent, PatternMatchingEventHandler
|
18
18
|
from watchdog.observers import Observer
|
19
19
|
|
20
|
-
from hydraflow.
|
20
|
+
from hydraflow.info import get_artifact_dir
|
21
|
+
from hydraflow.mlflow import log_params
|
21
22
|
|
22
23
|
if TYPE_CHECKING:
|
23
24
|
from collections.abc import Callable, Iterator
|
@@ -68,7 +69,7 @@ def log_run(
|
|
68
69
|
mlflow.log_artifact(local_path)
|
69
70
|
|
70
71
|
try:
|
71
|
-
with watch(log_artifact, output_dir):
|
72
|
+
with watch(log_artifact, output_dir, ignore_log=False):
|
72
73
|
yield
|
73
74
|
|
74
75
|
except Exception as e:
|
@@ -140,9 +141,11 @@ def start_run(
|
|
140
141
|
|
141
142
|
@contextmanager
|
142
143
|
def watch(
|
143
|
-
|
144
|
+
callback: Callable[[Path], None],
|
144
145
|
dir: Path | str = "",
|
145
146
|
timeout: int = 60,
|
147
|
+
ignore_patterns: list[str] | None = None,
|
148
|
+
ignore_log: bool = True,
|
146
149
|
) -> Iterator[None]:
|
147
150
|
"""
|
148
151
|
Watch the given directory for changes and call the provided function
|
@@ -154,7 +157,7 @@ def watch(
|
|
154
157
|
period or until the context is exited.
|
155
158
|
|
156
159
|
Args:
|
157
|
-
|
160
|
+
callback (Callable[[Path], None]): The function to call when a change is
|
158
161
|
detected. It should accept a single argument of type `Path`,
|
159
162
|
which is the path of the modified file.
|
160
163
|
dir (Path | str): The directory to watch. If not specified,
|
@@ -174,7 +177,7 @@ def watch(
|
|
174
177
|
if isinstance(dir, Path):
|
175
178
|
dir = dir.as_posix()
|
176
179
|
|
177
|
-
handler = Handler(
|
180
|
+
handler = Handler(callback, ignore_patterns=ignore_patterns, ignore_log=ignore_log)
|
178
181
|
observer = Observer()
|
179
182
|
observer.schedule(handler, dir, recursive=True)
|
180
183
|
observer.start()
|
@@ -198,10 +201,23 @@ def watch(
|
|
198
201
|
observer.join()
|
199
202
|
|
200
203
|
|
201
|
-
class Handler(
|
202
|
-
def __init__(
|
204
|
+
class Handler(PatternMatchingEventHandler):
|
205
|
+
def __init__(
|
206
|
+
self,
|
207
|
+
func: Callable[[Path], None],
|
208
|
+
ignore_patterns: list[str] | None = None,
|
209
|
+
ignore_log: bool = True,
|
210
|
+
) -> None:
|
203
211
|
self.func = func
|
204
212
|
|
213
|
+
if ignore_log:
|
214
|
+
if ignore_patterns:
|
215
|
+
ignore_patterns.append("*.log")
|
216
|
+
else:
|
217
|
+
ignore_patterns = ["*.log"]
|
218
|
+
|
219
|
+
super().__init__(ignore_patterns=ignore_patterns)
|
220
|
+
|
205
221
|
def on_modified(self, event: FileModifiedEvent) -> None:
|
206
222
|
file = Path(str(event.src_path))
|
207
223
|
if file.is_file():
|
@@ -1,14 +1,14 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
+
from pathlib import Path
|
3
4
|
from typing import TYPE_CHECKING
|
4
5
|
|
6
|
+
import mlflow
|
7
|
+
from hydra.core.hydra_config import HydraConfig
|
8
|
+
from mlflow.tracking import artifact_utils
|
5
9
|
from omegaconf import DictConfig, OmegaConf
|
6
10
|
|
7
|
-
from hydraflow.mlflow import get_artifact_dir
|
8
|
-
|
9
11
|
if TYPE_CHECKING:
|
10
|
-
from pathlib import Path
|
11
|
-
|
12
12
|
from mlflow.entities import Run
|
13
13
|
|
14
14
|
from hydraflow.run_collection import RunCollection
|
@@ -43,6 +43,59 @@ class RunCollectionInfo:
|
|
43
43
|
return [load_config(run) for run in self._runs]
|
44
44
|
|
45
45
|
|
46
|
+
def get_artifact_dir(run: Run | None = None) -> Path:
|
47
|
+
"""
|
48
|
+
Retrieve the artifact directory for the given run.
|
49
|
+
|
50
|
+
This function uses MLflow to get the artifact directory for the given run.
|
51
|
+
|
52
|
+
Args:
|
53
|
+
run (Run | None): The run object. Defaults to None.
|
54
|
+
|
55
|
+
Returns:
|
56
|
+
The local path to the directory where the artifacts are downloaded.
|
57
|
+
"""
|
58
|
+
if run is None:
|
59
|
+
uri = mlflow.get_artifact_uri()
|
60
|
+
else:
|
61
|
+
uri = artifact_utils.get_artifact_uri(run.info.run_id)
|
62
|
+
|
63
|
+
return Path(mlflow.artifacts.download_artifacts(uri))
|
64
|
+
|
65
|
+
|
66
|
+
def get_hydra_output_dir(run: Run | None = None) -> Path:
|
67
|
+
"""
|
68
|
+
Retrieve the Hydra output directory for the given run.
|
69
|
+
|
70
|
+
This function returns the Hydra output directory. If no run is provided,
|
71
|
+
it retrieves the output directory from the current Hydra configuration.
|
72
|
+
If a run is provided, it retrieves the artifact path for the run, loads
|
73
|
+
the Hydra configuration from the downloaded artifacts, and returns the
|
74
|
+
output directory specified in that configuration.
|
75
|
+
|
76
|
+
Args:
|
77
|
+
run (Run | None): The run object. Defaults to None.
|
78
|
+
|
79
|
+
Returns:
|
80
|
+
Path: The path to the Hydra output directory.
|
81
|
+
|
82
|
+
Raises:
|
83
|
+
FileNotFoundError: If the Hydra configuration file is not found
|
84
|
+
in the artifacts.
|
85
|
+
"""
|
86
|
+
if run is None:
|
87
|
+
hc = HydraConfig.get()
|
88
|
+
return Path(hc.runtime.output_dir)
|
89
|
+
|
90
|
+
path = get_artifact_dir(run) / ".hydra/hydra.yaml"
|
91
|
+
|
92
|
+
if path.exists():
|
93
|
+
hc = OmegaConf.load(path)
|
94
|
+
return Path(hc.hydra.runtime.output_dir)
|
95
|
+
|
96
|
+
raise FileNotFoundError
|
97
|
+
|
98
|
+
|
46
99
|
def load_config(run: Run) -> DictConfig:
|
47
100
|
"""
|
48
101
|
Load the configuration for a given run.
|
@@ -0,0 +1,175 @@
|
|
1
|
+
"""
|
2
|
+
This module provides functionality to log parameters from Hydra configuration objects
|
3
|
+
and set up experiments using MLflow. It includes methods for managing experiments,
|
4
|
+
searching for runs, and logging parameters and artifacts.
|
5
|
+
|
6
|
+
Key Features:
|
7
|
+
- **Experiment Management**: Set and manage MLflow experiments with customizable names
|
8
|
+
based on Hydra configuration.
|
9
|
+
- **Run Logging**: Log parameters and metrics from Hydra configuration objects to
|
10
|
+
MLflow, ensuring that all relevant information is captured during experiments.
|
11
|
+
- **Run Search**: Search for runs based on various criteria, allowing for flexible
|
12
|
+
retrieval of experiment results.
|
13
|
+
- **Artifact Management**: Retrieve and log artifacts associated with runs, facilitating
|
14
|
+
easy access to outputs generated during experiments.
|
15
|
+
|
16
|
+
This module is designed to integrate seamlessly with Hydra, providing a robust
|
17
|
+
solution for tracking machine learning experiments and their associated metadata.
|
18
|
+
"""
|
19
|
+
|
20
|
+
from __future__ import annotations
|
21
|
+
|
22
|
+
from pathlib import Path
|
23
|
+
from typing import TYPE_CHECKING
|
24
|
+
|
25
|
+
import mlflow
|
26
|
+
from hydra.core.hydra_config import HydraConfig
|
27
|
+
from mlflow.entities import ViewType
|
28
|
+
from mlflow.tracking.fluent import SEARCH_MAX_RESULTS_PANDAS
|
29
|
+
|
30
|
+
from hydraflow.config import iter_params
|
31
|
+
from hydraflow.run_collection import RunCollection
|
32
|
+
|
33
|
+
if TYPE_CHECKING:
|
34
|
+
from mlflow.entities.experiment import Experiment
|
35
|
+
|
36
|
+
|
37
|
+
def set_experiment(
|
38
|
+
prefix: str = "",
|
39
|
+
suffix: str = "",
|
40
|
+
uri: str | Path | None = None,
|
41
|
+
) -> Experiment:
|
42
|
+
"""
|
43
|
+
Sets the experiment name and tracking URI optionally.
|
44
|
+
|
45
|
+
This function sets the experiment name by combining the given prefix,
|
46
|
+
the job name from HydraConfig, and the given suffix. Optionally, it can
|
47
|
+
also set the tracking URI.
|
48
|
+
|
49
|
+
Args:
|
50
|
+
prefix (str): The prefix to prepend to the experiment name.
|
51
|
+
suffix (str): The suffix to append to the experiment name.
|
52
|
+
uri (str | Path | None): The tracking URI to use. Defaults to None.
|
53
|
+
|
54
|
+
Returns:
|
55
|
+
Experiment: An instance of `mlflow.entities.Experiment` representing
|
56
|
+
the new active experiment.
|
57
|
+
"""
|
58
|
+
if uri is not None:
|
59
|
+
mlflow.set_tracking_uri(uri)
|
60
|
+
|
61
|
+
hc = HydraConfig.get()
|
62
|
+
name = f"{prefix}{hc.job.name}{suffix}"
|
63
|
+
return mlflow.set_experiment(name)
|
64
|
+
|
65
|
+
|
66
|
+
def log_params(config: object, *, synchronous: bool | None = None) -> None:
|
67
|
+
"""
|
68
|
+
Log the parameters from the given configuration object.
|
69
|
+
|
70
|
+
This method logs the parameters from the provided configuration object
|
71
|
+
using MLflow. It iterates over the parameters and logs them using the
|
72
|
+
`mlflow.log_param` method.
|
73
|
+
|
74
|
+
Args:
|
75
|
+
config (object): The configuration object to log the parameters from.
|
76
|
+
synchronous (bool | None): Whether to log the parameters synchronously.
|
77
|
+
Defaults to None.
|
78
|
+
"""
|
79
|
+
for key, value in iter_params(config):
|
80
|
+
mlflow.log_param(key, value, synchronous=synchronous)
|
81
|
+
|
82
|
+
|
83
|
+
def search_runs(
|
84
|
+
experiment_ids: list[str] | None = None,
|
85
|
+
filter_string: str = "",
|
86
|
+
run_view_type: int = ViewType.ACTIVE_ONLY,
|
87
|
+
max_results: int = SEARCH_MAX_RESULTS_PANDAS,
|
88
|
+
order_by: list[str] | None = None,
|
89
|
+
search_all_experiments: bool = False,
|
90
|
+
experiment_names: list[str] | None = None,
|
91
|
+
) -> RunCollection:
|
92
|
+
"""
|
93
|
+
Search for Runs that fit the specified criteria.
|
94
|
+
|
95
|
+
This function wraps the `mlflow.search_runs` function and returns the
|
96
|
+
results as a `RunCollection` object. It allows for flexible searching of
|
97
|
+
MLflow runs based on various criteria.
|
98
|
+
|
99
|
+
Note:
|
100
|
+
The returned runs are sorted by their start time in ascending order.
|
101
|
+
|
102
|
+
Args:
|
103
|
+
experiment_ids (list[str] | None): List of experiment IDs. Search can
|
104
|
+
work with experiment IDs or experiment names, but not both in the
|
105
|
+
same call. Values other than ``None`` or ``[]`` will result in
|
106
|
+
error if ``experiment_names`` is also not ``None`` or ``[]``.
|
107
|
+
``None`` will default to the active experiment if ``experiment_names``
|
108
|
+
is ``None`` or ``[]``.
|
109
|
+
filter_string (str): Filter query string, defaults to searching all
|
110
|
+
runs.
|
111
|
+
run_view_type (int): one of enum values ``ACTIVE_ONLY``, ``DELETED_ONLY``,
|
112
|
+
or ``ALL`` runs defined in :py:class:`mlflow.entities.ViewType`.
|
113
|
+
max_results (int): The maximum number of runs to put in the dataframe.
|
114
|
+
Default is 100,000 to avoid causing out-of-memory issues on the user's
|
115
|
+
machine.
|
116
|
+
order_by (list[str] | None): List of columns to order by (e.g.,
|
117
|
+
"metrics.rmse"). The ``order_by`` column can contain an optional
|
118
|
+
``DESC`` or ``ASC`` value. The default is ``ASC``. The default
|
119
|
+
ordering is to sort by ``start_time DESC``, then ``run_id``.
|
120
|
+
``start_time DESC``, then ``run_id``.
|
121
|
+
search_all_experiments (bool): Boolean specifying whether all
|
122
|
+
experiments should be searched. Only honored if ``experiment_ids``
|
123
|
+
is ``[]`` or ``None``.
|
124
|
+
experiment_names (list[str] | None): List of experiment names. Search
|
125
|
+
can work with experiment IDs or experiment names, but not both in
|
126
|
+
the same call. Values other than ``None`` or ``[]`` will result in
|
127
|
+
error if ``experiment_ids`` is also not ``None`` or ``[]``.
|
128
|
+
``experiment_ids`` is also not ``None`` or ``[]``. ``None`` will
|
129
|
+
default to the active experiment if ``experiment_ids`` is ``None``
|
130
|
+
or ``[]``.
|
131
|
+
|
132
|
+
Returns:
|
133
|
+
A `RunCollection` object containing the search results.
|
134
|
+
"""
|
135
|
+
runs = mlflow.search_runs(
|
136
|
+
experiment_ids=experiment_ids,
|
137
|
+
filter_string=filter_string,
|
138
|
+
run_view_type=run_view_type,
|
139
|
+
max_results=max_results,
|
140
|
+
order_by=order_by,
|
141
|
+
output_format="list",
|
142
|
+
search_all_experiments=search_all_experiments,
|
143
|
+
experiment_names=experiment_names,
|
144
|
+
)
|
145
|
+
runs = sorted(runs, key=lambda run: run.info.start_time) # type: ignore
|
146
|
+
return RunCollection(runs) # type: ignore
|
147
|
+
|
148
|
+
|
149
|
+
def list_runs(experiment_names: list[str] | None = None) -> RunCollection:
|
150
|
+
"""
|
151
|
+
List all runs for the specified experiments.
|
152
|
+
|
153
|
+
This function retrieves all runs for the given list of experiment names.
|
154
|
+
If no experiment names are provided (None), it defaults to searching all runs
|
155
|
+
for the currently active experiment. If an empty list is provided, the function
|
156
|
+
will search all runs for all experiments except the "Default" experiment.
|
157
|
+
The function returns the results as a `RunCollection` object.
|
158
|
+
|
159
|
+
Note:
|
160
|
+
The returned runs are sorted by their start time in ascending order.
|
161
|
+
|
162
|
+
Args:
|
163
|
+
experiment_names (list[str] | None): List of experiment names to search
|
164
|
+
for runs. If None or an empty list is provided, the function will
|
165
|
+
search the currently active experiment or all experiments except
|
166
|
+
the "Default" experiment.
|
167
|
+
|
168
|
+
Returns:
|
169
|
+
A `RunCollection` object containing the runs for the specified experiments.
|
170
|
+
"""
|
171
|
+
if experiment_names == []:
|
172
|
+
experiments = mlflow.search_experiments()
|
173
|
+
experiment_names = [e.name for e in experiments if e.name != "Default"]
|
174
|
+
|
175
|
+
return search_runs(experiment_names=experiment_names)
|
@@ -0,0 +1,202 @@
|
|
1
|
+
"""
|
2
|
+
Module for managing progress tracking in parallel processing using Joblib
|
3
|
+
and Rich's Progress bar.
|
4
|
+
|
5
|
+
Provide context managers and functions to facilitate the execution
|
6
|
+
of tasks in parallel while displaying progress updates.
|
7
|
+
|
8
|
+
The following key components are provided:
|
9
|
+
|
10
|
+
- JoblibProgress: A context manager for tracking progress with Rich's Progress
|
11
|
+
bar.
|
12
|
+
- parallel_progress: A function to execute a given function in parallel over
|
13
|
+
an iterable with progress tracking.
|
14
|
+
- multi_tasks_progress: A function to render auto-updating progress bars for
|
15
|
+
multiple tasks concurrently.
|
16
|
+
|
17
|
+
Usage:
|
18
|
+
Import the necessary functions and use them to manage progress in your
|
19
|
+
parallel processing tasks.
|
20
|
+
"""
|
21
|
+
|
22
|
+
from __future__ import annotations
|
23
|
+
|
24
|
+
from contextlib import contextmanager
|
25
|
+
from typing import TYPE_CHECKING, TypeVar
|
26
|
+
|
27
|
+
import joblib
|
28
|
+
from rich.progress import Progress
|
29
|
+
|
30
|
+
if TYPE_CHECKING:
|
31
|
+
from collections.abc import Callable, Iterable, Iterator
|
32
|
+
|
33
|
+
from rich.progress import ProgressColumn
|
34
|
+
|
35
|
+
|
36
|
+
# https://github.com/jonghwanhyeon/joblib-progress/blob/main/joblib_progress/__init__.py
|
37
|
+
@contextmanager
|
38
|
+
def JoblibProgress(
|
39
|
+
*columns: ProgressColumn | str,
|
40
|
+
description: str | None = None,
|
41
|
+
total: int | None = None,
|
42
|
+
**kwargs,
|
43
|
+
) -> Iterator[Progress]:
|
44
|
+
"""
|
45
|
+
Context manager for tracking progress using Joblib with Rich's Progress bar.
|
46
|
+
|
47
|
+
Args:
|
48
|
+
*columns (ProgressColumn | str): Columns to display in the progress bar.
|
49
|
+
description (str | None, optional): A description for the progress task.
|
50
|
+
Defaults to None.
|
51
|
+
total (int | None, optional): The total number of tasks. If None, it will
|
52
|
+
be determined automatically.
|
53
|
+
**kwargs: Additional keyword arguments passed to the Progress instance.
|
54
|
+
|
55
|
+
Yields:
|
56
|
+
Progress: A Progress instance for managing the progress bar.
|
57
|
+
|
58
|
+
Example:
|
59
|
+
with JoblibProgress("task", total=100) as progress:
|
60
|
+
# Your parallel processing code here
|
61
|
+
"""
|
62
|
+
if not columns:
|
63
|
+
columns = Progress.get_default_columns()
|
64
|
+
|
65
|
+
progress = Progress(*columns, **kwargs)
|
66
|
+
|
67
|
+
if description is None:
|
68
|
+
description = "Processing..."
|
69
|
+
|
70
|
+
task_id = progress.add_task(description, total=total)
|
71
|
+
print_progress = joblib.parallel.Parallel.print_progress
|
72
|
+
|
73
|
+
def update_progress(self: joblib.parallel.Parallel):
|
74
|
+
progress.update(task_id, completed=self.n_completed_tasks, refresh=True)
|
75
|
+
return print_progress(self)
|
76
|
+
|
77
|
+
try:
|
78
|
+
joblib.parallel.Parallel.print_progress = update_progress
|
79
|
+
progress.start()
|
80
|
+
yield progress
|
81
|
+
|
82
|
+
finally:
|
83
|
+
progress.stop()
|
84
|
+
joblib.parallel.Parallel.print_progress = print_progress
|
85
|
+
|
86
|
+
|
87
|
+
T = TypeVar("T")
|
88
|
+
U = TypeVar("U")
|
89
|
+
|
90
|
+
|
91
|
+
def parallel_progress(
|
92
|
+
func: Callable[[T], U],
|
93
|
+
iterable: Iterable[T],
|
94
|
+
*columns: ProgressColumn | str,
|
95
|
+
n_jobs: int = -1,
|
96
|
+
description: str | None = None,
|
97
|
+
**kwargs,
|
98
|
+
) -> list[U]:
|
99
|
+
"""
|
100
|
+
Execute a function in parallel over an iterable with progress tracking.
|
101
|
+
|
102
|
+
Args:
|
103
|
+
func (Callable[[T], U]): The function to execute on each item in the
|
104
|
+
iterable.
|
105
|
+
iterable (Iterable[T]): An iterable of items to process.
|
106
|
+
*columns (ProgressColumn | str): Additional columns to display in the
|
107
|
+
progress bar.
|
108
|
+
n_jobs (int, optional): The number of jobs to run in parallel.
|
109
|
+
Defaults to -1 (all processors).
|
110
|
+
description (str | None, optional): A description for the progress bar.
|
111
|
+
Defaults to None.
|
112
|
+
**kwargs: Additional keyword arguments passed to the Progress instance.
|
113
|
+
|
114
|
+
Returns:
|
115
|
+
list[U]: A list of results from applying the function to each item in
|
116
|
+
the iterable.
|
117
|
+
"""
|
118
|
+
iterable = list(iterable)
|
119
|
+
total = len(iterable)
|
120
|
+
|
121
|
+
with JoblibProgress(*columns, description=description, total=total, **kwargs):
|
122
|
+
it = (joblib.delayed(func)(x) for x in iterable)
|
123
|
+
return joblib.Parallel(n_jobs=n_jobs)(it) # type: ignore
|
124
|
+
|
125
|
+
|
126
|
+
def multi_tasks_progress(
|
127
|
+
iterables: Iterable[Iterable[int | tuple[int, int]]],
|
128
|
+
*columns: ProgressColumn | str,
|
129
|
+
n_jobs: int = -1,
|
130
|
+
description: str = "#{:0>3}",
|
131
|
+
main_description: str = "main",
|
132
|
+
transient: bool | None = None,
|
133
|
+
**kwargs,
|
134
|
+
) -> None:
|
135
|
+
"""
|
136
|
+
Render auto-updating progress bars for multiple tasks concurrently.
|
137
|
+
|
138
|
+
Args:
|
139
|
+
iterables (Iterable[Iterable[int | tuple[int, int]]]): A collection of
|
140
|
+
iterables, each representing a task. Each iterable can yield
|
141
|
+
integers (completed) or tuples of integers (completed, total).
|
142
|
+
*columns (ProgressColumn | str): Additional columns to display in the
|
143
|
+
progress bars.
|
144
|
+
n_jobs (int, optional): Number of jobs to run in parallel. Defaults to
|
145
|
+
-1, which means using all processors.
|
146
|
+
description (str, optional): Format string for describing tasks. Defaults to
|
147
|
+
"#{:0>3}".
|
148
|
+
main_description (str, optional): Description for the main task.
|
149
|
+
Defaults to "main".
|
150
|
+
transient (bool | None, optional): Whether to remove the progress bar
|
151
|
+
after completion. Defaults to None.
|
152
|
+
**kwargs: Additional keyword arguments passed to the Progress instance.
|
153
|
+
|
154
|
+
Returns:
|
155
|
+
None
|
156
|
+
"""
|
157
|
+
if not columns:
|
158
|
+
columns = Progress.get_default_columns()
|
159
|
+
|
160
|
+
iterables = list(iterables)
|
161
|
+
|
162
|
+
with Progress(*columns, transient=transient or False, **kwargs) as progress:
|
163
|
+
n = len(iterables)
|
164
|
+
|
165
|
+
task_main = progress.add_task(main_description, total=None) if n > 1 else None
|
166
|
+
tasks = [
|
167
|
+
progress.add_task(description.format(i), start=False, total=None)
|
168
|
+
for i in range(n)
|
169
|
+
]
|
170
|
+
|
171
|
+
total = {}
|
172
|
+
completed = {}
|
173
|
+
|
174
|
+
def func(i: int) -> None:
|
175
|
+
completed[i] = 0
|
176
|
+
total[i] = None
|
177
|
+
progress.start_task(tasks[i])
|
178
|
+
|
179
|
+
for index in iterables[i]:
|
180
|
+
if isinstance(index, tuple):
|
181
|
+
completed[i], total[i] = index[0] + 1, index[1]
|
182
|
+
else:
|
183
|
+
completed[i] = index + 1
|
184
|
+
|
185
|
+
progress.update(tasks[i], total=total[i], completed=completed[i])
|
186
|
+
if task_main is not None:
|
187
|
+
if all(t is not None for t in total.values()):
|
188
|
+
t = sum(total.values())
|
189
|
+
else:
|
190
|
+
t = None
|
191
|
+
c = sum(completed.values())
|
192
|
+
progress.update(task_main, total=t, completed=c)
|
193
|
+
|
194
|
+
if transient or n > 1:
|
195
|
+
progress.remove_task(tasks[i])
|
196
|
+
|
197
|
+
if n > 1:
|
198
|
+
it = (joblib.delayed(func)(i) for i in range(n))
|
199
|
+
joblib.Parallel(n_jobs, prefer="threads")(it)
|
200
|
+
|
201
|
+
else:
|
202
|
+
func(0)
|