hydraflow 0.2.1__tar.gz → 0.2.2__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (27) hide show
  1. {hydraflow-0.2.1 → hydraflow-0.2.2}/.devcontainer/devcontainer.json +6 -1
  2. {hydraflow-0.2.1 → hydraflow-0.2.2}/PKG-INFO +15 -6
  3. {hydraflow-0.2.1 → hydraflow-0.2.2}/README.md +14 -5
  4. {hydraflow-0.2.1 → hydraflow-0.2.2}/pyproject.toml +1 -6
  5. {hydraflow-0.2.1 → hydraflow-0.2.2}/src/hydraflow/__init__.py +4 -2
  6. {hydraflow-0.2.1 → hydraflow-0.2.2}/src/hydraflow/config.py +3 -0
  7. hydraflow-0.2.2/src/hydraflow/runs.py +606 -0
  8. hydraflow-0.2.2/tests/scripts/watch.py +9 -0
  9. {hydraflow-0.2.1 → hydraflow-0.2.2}/tests/test_config.py +6 -0
  10. hydraflow-0.2.2/tests/test_runs.py +302 -0
  11. {hydraflow-0.2.1 → hydraflow-0.2.2}/tests/test_watch.py +5 -8
  12. hydraflow-0.2.1/src/hydraflow/runs.py +0 -422
  13. hydraflow-0.2.1/tests/scripts/watch.py +0 -23
  14. hydraflow-0.2.1/tests/test_runs.py +0 -277
  15. {hydraflow-0.2.1 → hydraflow-0.2.2}/.devcontainer/postCreate.sh +0 -0
  16. {hydraflow-0.2.1 → hydraflow-0.2.2}/.devcontainer/starship.toml +0 -0
  17. {hydraflow-0.2.1 → hydraflow-0.2.2}/.gitattributes +0 -0
  18. {hydraflow-0.2.1 → hydraflow-0.2.2}/.gitignore +0 -0
  19. {hydraflow-0.2.1 → hydraflow-0.2.2}/LICENSE +0 -0
  20. {hydraflow-0.2.1 → hydraflow-0.2.2}/src/hydraflow/context.py +0 -0
  21. {hydraflow-0.2.1 → hydraflow-0.2.2}/src/hydraflow/mlflow.py +0 -0
  22. {hydraflow-0.2.1 → hydraflow-0.2.2}/tests/scripts/__init__.py +0 -0
  23. {hydraflow-0.2.1 → hydraflow-0.2.2}/tests/scripts/log_run.py +0 -0
  24. {hydraflow-0.2.1 → hydraflow-0.2.2}/tests/test_context.py +0 -0
  25. {hydraflow-0.2.1 → hydraflow-0.2.2}/tests/test_log_run.py +0 -0
  26. {hydraflow-0.2.1 → hydraflow-0.2.2}/tests/test_mlflow.py +0 -0
  27. {hydraflow-0.2.1 → hydraflow-0.2.2}/tests/test_version.py +0 -0
@@ -7,7 +7,12 @@
7
7
  },
8
8
  "customizations": {
9
9
  "vscode": {
10
- "extensions": ["charliermarsh.ruff"]
10
+ "extensions": [
11
+ "charliermarsh.ruff",
12
+ "henriiik.vscode-sort",
13
+ "ms-python.python",
14
+ "ms-python.vscode-pylance"
15
+ ]
11
16
  }
12
17
  },
13
18
  "postCreateCommand": ".devcontainer/postCreate.sh"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: hydraflow
3
- Version: 0.2.1
3
+ Version: 0.2.2
4
4
  Summary: Hydraflow integrates Hydra and MLflow to manage and track machine learning experiments.
5
5
  Project-URL: Documentation, https://github.com/daizutabi/hydraflow
6
6
  Project-URL: Source, https://github.com/daizutabi/hydraflow
@@ -46,14 +46,23 @@ Description-Content-Type: text/markdown
46
46
 
47
47
  ## Overview
48
48
 
49
- Hydraflow is a powerful library designed to seamlessly integrate [Hydra](https://hydra.cc/) and [MLflow](https://mlflow.org/), making it easier to manage and track machine learning experiments. By combining the flexibility of Hydra's configuration management with the robust experiment tracking capabilities of MLflow, Hydraflow provides a comprehensive solution for managing complex machine learning workflows.
49
+ Hydraflow is a powerful library designed to seamlessly integrate
50
+ [Hydra](https://hydra.cc/) and [MLflow](https://mlflow.org/), making it easier to
51
+ manage and track machine learning experiments. By combining the flexibility of
52
+ Hydra's configuration management with the robust experiment tracking capabilities
53
+ of MLflow, Hydraflow provides a comprehensive solution for managing complex
54
+ machine learning workflows.
50
55
 
51
56
  ## Key Features
52
57
 
53
- - **Configuration Management**: Utilize Hydra's advanced configuration management to handle complex parameter sweeps and experiment setups.
54
- - **Experiment Tracking**: Leverage MLflow's tracking capabilities to log parameters, metrics, and artifacts for each run.
55
- - **Artifact Management**: Automatically log and manage artifacts, such as model checkpoints and configuration files, with MLflow.
56
- - **Seamless Integration**: Easily integrate Hydra and MLflow in your machine learning projects with minimal setup.
58
+ - **Configuration Management**: Utilize Hydra's advanced configuration management
59
+ to handle complex parameter sweeps and experiment setups.
60
+ - **Experiment Tracking**: Leverage MLflow's tracking capabilities to log parameters,
61
+ metrics, and artifacts for each run.
62
+ - **Artifact Management**: Automatically log and manage artifacts, such as model
63
+ checkpoints and configuration files, with MLflow.
64
+ - **Seamless Integration**: Easily integrate Hydra and MLflow in your machine learning
65
+ projects with minimal setup.
57
66
 
58
67
  ## Installation
59
68
 
@@ -17,14 +17,23 @@
17
17
 
18
18
  ## Overview
19
19
 
20
- Hydraflow is a powerful library designed to seamlessly integrate [Hydra](https://hydra.cc/) and [MLflow](https://mlflow.org/), making it easier to manage and track machine learning experiments. By combining the flexibility of Hydra's configuration management with the robust experiment tracking capabilities of MLflow, Hydraflow provides a comprehensive solution for managing complex machine learning workflows.
20
+ Hydraflow is a powerful library designed to seamlessly integrate
21
+ [Hydra](https://hydra.cc/) and [MLflow](https://mlflow.org/), making it easier to
22
+ manage and track machine learning experiments. By combining the flexibility of
23
+ Hydra's configuration management with the robust experiment tracking capabilities
24
+ of MLflow, Hydraflow provides a comprehensive solution for managing complex
25
+ machine learning workflows.
21
26
 
22
27
  ## Key Features
23
28
 
24
- - **Configuration Management**: Utilize Hydra's advanced configuration management to handle complex parameter sweeps and experiment setups.
25
- - **Experiment Tracking**: Leverage MLflow's tracking capabilities to log parameters, metrics, and artifacts for each run.
26
- - **Artifact Management**: Automatically log and manage artifacts, such as model checkpoints and configuration files, with MLflow.
27
- - **Seamless Integration**: Easily integrate Hydra and MLflow in your machine learning projects with minimal setup.
29
+ - **Configuration Management**: Utilize Hydra's advanced configuration management
30
+ to handle complex parameter sweeps and experiment setups.
31
+ - **Experiment Tracking**: Leverage MLflow's tracking capabilities to log parameters,
32
+ metrics, and artifacts for each run.
33
+ - **Artifact Management**: Automatically log and manage artifacts, such as model
34
+ checkpoints and configuration files, with MLflow.
35
+ - **Seamless Integration**: Easily integrate Hydra and MLflow in your machine learning
36
+ projects with minimal setup.
28
37
 
29
38
  ## Installation
30
39
 
@@ -4,7 +4,7 @@ build-backend = "hatchling.build"
4
4
 
5
5
  [project]
6
6
  name = "hydraflow"
7
- version = "0.2.1"
7
+ version = "0.2.2"
8
8
  description = "Hydraflow integrates Hydra and MLflow to manage and track machine learning experiments."
9
9
  readme = "README.md"
10
10
  license = "MIT"
@@ -48,11 +48,6 @@ filterwarnings = ['ignore:pkg_resources is deprecated:DeprecationWarning']
48
48
  [tool.coverage.report]
49
49
  exclude_lines = ["no cov", "raise NotImplementedError", "if TYPE_CHECKING:"]
50
50
 
51
- [tool.hatch.envs.docs.scripts]
52
- build = "mkdocs build --clean --strict {args}"
53
- serve = "mkdocs serve --dev-addr localhost:8000 {args}"
54
- deploy = "mkdocs gh-deploy --force"
55
-
56
51
  [tool.ruff]
57
52
  line-length = 100
58
53
  target-version = "py312"
@@ -2,18 +2,19 @@ from .context import Info, chdir_artifact, log_run, watch
2
2
  from .mlflow import set_experiment
3
3
  from .runs import (
4
4
  Run,
5
- Runs,
5
+ RunCollection,
6
6
  filter_runs,
7
7
  get_param_dict,
8
8
  get_param_names,
9
9
  get_run,
10
10
  load_config,
11
+ search_runs,
11
12
  )
12
13
 
13
14
  __all__ = [
14
15
  "Info",
15
16
  "Run",
16
- "Runs",
17
+ "RunCollection",
17
18
  "chdir_artifact",
18
19
  "filter_runs",
19
20
  "get_param_dict",
@@ -21,6 +22,7 @@ __all__ = [
21
22
  "get_run",
22
23
  "load_config",
23
24
  "log_run",
25
+ "search_runs",
24
26
  "set_experiment",
25
27
  "watch",
26
28
  ]
@@ -30,6 +30,9 @@ def iter_params(config: object, prefix: str = "") -> Iterator[tuple[str, Any]]:
30
30
  Yields:
31
31
  Key-value pairs representing the parameters in the configuration object.
32
32
  """
33
+ if config is None:
34
+ return
35
+
33
36
  if not isinstance(config, (DictConfig, ListConfig)):
34
37
  config = OmegaConf.create(config) # type: ignore
35
38