humalab 0.0.4__tar.gz → 0.0.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of humalab might be problematic. Click here for more details.
- humalab-0.0.5/.github/pull_request_template.md +8 -0
- {humalab-0.0.4/humalab.egg-info → humalab-0.0.5}/PKG-INFO +1 -1
- humalab-0.0.5/VERSION +1 -0
- humalab-0.0.5/humalab/assets/__init__.py +4 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/assets/files/urdf_file.py +1 -1
- {humalab-0.0.4 → humalab-0.0.5}/humalab/assets/resource_manager.py +3 -2
- {humalab-0.0.4 → humalab-0.0.5}/humalab/dists/bernoulli.py +15 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/dists/categorical.py +4 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/dists/discrete.py +22 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/dists/gaussian.py +22 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/dists/log_uniform.py +22 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/dists/truncated_gaussian.py +36 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/dists/uniform.py +22 -0
- humalab-0.0.5/humalab/episode.py +26 -0
- humalab-0.0.5/humalab/evaluators/__init__.py +16 -0
- humalab-0.0.5/humalab/humalab.py +164 -0
- humalab-0.0.5/humalab/humalab_api_client.py +764 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/humalab_config.py +0 -13
- humalab-0.0.5/humalab/humalab_main.py +119 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/humalab_test.py +0 -12
- {humalab-0.0.4 → humalab-0.0.5}/humalab/run.py +0 -12
- {humalab-0.0.4 → humalab-0.0.5}/humalab/scenario.py +172 -16
- {humalab-0.0.4 → humalab-0.0.5/humalab.egg-info}/PKG-INFO +1 -1
- {humalab-0.0.4 → humalab-0.0.5}/humalab.egg-info/SOURCES.txt +4 -0
- {humalab-0.0.4 → humalab-0.0.5}/pyproject.toml +1 -1
- humalab-0.0.4/VERSION +0 -1
- humalab-0.0.4/humalab/assets/__init__.py +0 -4
- humalab-0.0.4/humalab/humalab.py +0 -217
- humalab-0.0.4/humalab/humalab_api_client.py +0 -273
- {humalab-0.0.4 → humalab-0.0.5}/.gitignore +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/LICENSE +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/Makefile +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/README.md +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/build.sh +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/__init__.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/assets/archive.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/assets/files/__init__.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/assets/files/resource_file.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/constants.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/dists/__init__.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/dists/distribution.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/metrics/__init__.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/metrics/dist_metric.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/metrics/metric.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/metrics/summary.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab/scenario_test.py +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab.egg-info/dependency_links.txt +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab.egg-info/entry_points.txt +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab.egg-info/not-zip-safe +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab.egg-info/requires.txt +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/humalab.egg-info/top_level.txt +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/requirements-dev.txt +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/requirements.txt +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/setup.cfg +0 -0
- {humalab-0.0.4 → humalab-0.0.5}/setup.py +0 -0
humalab-0.0.5/VERSION
ADDED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
0.0.5
|
|
@@ -25,7 +25,7 @@ class URDFFile(ResourceFile):
|
|
|
25
25
|
|
|
26
26
|
def _extract(self):
|
|
27
27
|
working_path = os.path.dirname(self._filename)
|
|
28
|
-
if
|
|
28
|
+
if os.path.exists(self._filename):
|
|
29
29
|
_, ext = os.path.splitext(self._filename)
|
|
30
30
|
ext = ext.lstrip('.') # Remove leading dot
|
|
31
31
|
if ext.lower() != "urdf":
|
|
@@ -31,13 +31,14 @@ class ResourceManager:
|
|
|
31
31
|
return False
|
|
32
32
|
|
|
33
33
|
def download(self,
|
|
34
|
+
project: str,
|
|
34
35
|
name: str,
|
|
35
36
|
version: int | None=None) -> Any:
|
|
36
|
-
resource = self._api_client.get_resource(name=name, version=version)
|
|
37
|
-
file_content = self._api_client.download_resource(name="lerobot")
|
|
37
|
+
resource = self._api_client.get_resource(project_name=project, name=name, version=version)
|
|
38
38
|
filename = os.path.basename(resource['resource_url'])
|
|
39
39
|
filename = os.path.join(self._asset_dir(name, resource["version"]), filename)
|
|
40
40
|
if self._create_asset_dir(name, resource["version"]):
|
|
41
|
+
file_content = self._api_client.download_resource(project_name=project, name="lerobot")
|
|
41
42
|
with open(filename, "wb") as f:
|
|
42
43
|
f.write(file_content)
|
|
43
44
|
|
|
@@ -20,6 +20,21 @@ class Bernoulli(Distribution):
|
|
|
20
20
|
self._p = p
|
|
21
21
|
self._size = size
|
|
22
22
|
|
|
23
|
+
@staticmethod
|
|
24
|
+
def validate(dimensions: int, *args) -> bool:
|
|
25
|
+
arg1 = args[0]
|
|
26
|
+
if dimensions == 0:
|
|
27
|
+
if not isinstance(arg1, (int, float)):
|
|
28
|
+
return False
|
|
29
|
+
return True
|
|
30
|
+
if dimensions == -1:
|
|
31
|
+
return True
|
|
32
|
+
if not isinstance(arg1, (int, float)):
|
|
33
|
+
if isinstance(arg1, (list, np.ndarray)):
|
|
34
|
+
if len(arg1) > dimensions:
|
|
35
|
+
return False
|
|
36
|
+
return True
|
|
37
|
+
|
|
23
38
|
def _sample(self) -> int | float | np.ndarray:
|
|
24
39
|
return self._generator.binomial(n=1, p=self._p, size=self._size)
|
|
25
40
|
|
|
@@ -25,6 +25,10 @@ class Categorical(Distribution):
|
|
|
25
25
|
weights = [w / weight_sum for w in weights]
|
|
26
26
|
self._weights = weights
|
|
27
27
|
|
|
28
|
+
@staticmethod
|
|
29
|
+
def validate(dimensions: int, *args) -> bool:
|
|
30
|
+
return True
|
|
31
|
+
|
|
28
32
|
def _sample(self) -> int | float | np.ndarray:
|
|
29
33
|
return self._generator.choice(self._choices, size=self._size, p=self._weights)
|
|
30
34
|
|
|
@@ -26,6 +26,28 @@ class Discrete(Distribution):
|
|
|
26
26
|
self._high = np.array(high)
|
|
27
27
|
self._size = size
|
|
28
28
|
self._endpoint = endpoint if endpoint is not None else True
|
|
29
|
+
|
|
30
|
+
@staticmethod
|
|
31
|
+
def validate(dimensions: int, *args) -> bool:
|
|
32
|
+
arg1 = args[0]
|
|
33
|
+
arg2 = args[1]
|
|
34
|
+
if dimensions == 0:
|
|
35
|
+
if not isinstance(arg1, int):
|
|
36
|
+
return False
|
|
37
|
+
if not isinstance(arg2, int):
|
|
38
|
+
return False
|
|
39
|
+
return True
|
|
40
|
+
if dimensions == -1:
|
|
41
|
+
return True
|
|
42
|
+
if not isinstance(arg1, int):
|
|
43
|
+
if isinstance(arg1, (list, np.ndarray)):
|
|
44
|
+
if len(arg1) > dimensions:
|
|
45
|
+
return False
|
|
46
|
+
if not isinstance(arg2, int):
|
|
47
|
+
if isinstance(arg2, (list, np.ndarray)):
|
|
48
|
+
if len(arg2) > dimensions:
|
|
49
|
+
return False
|
|
50
|
+
return True
|
|
29
51
|
|
|
30
52
|
def _sample(self) -> int | float | np.ndarray:
|
|
31
53
|
return self._generator.integers(self._low, self._high, size=self._size, endpoint=self._endpoint)
|
|
@@ -23,6 +23,28 @@ class Gaussian(Distribution):
|
|
|
23
23
|
self._scale = scale
|
|
24
24
|
self._size = size
|
|
25
25
|
|
|
26
|
+
@staticmethod
|
|
27
|
+
def validate(dimensions: int, *args) -> bool:
|
|
28
|
+
arg1 = args[0]
|
|
29
|
+
arg2 = args[1]
|
|
30
|
+
if dimensions == 0:
|
|
31
|
+
if not isinstance(arg1, (int, float)):
|
|
32
|
+
return False
|
|
33
|
+
if not isinstance(arg2, (int, float)):
|
|
34
|
+
return False
|
|
35
|
+
return True
|
|
36
|
+
if dimensions == -1:
|
|
37
|
+
return True
|
|
38
|
+
if not isinstance(arg1, (int, float)):
|
|
39
|
+
if isinstance(arg1, (list, np.ndarray)):
|
|
40
|
+
if len(arg1) > dimensions:
|
|
41
|
+
return False
|
|
42
|
+
if not isinstance(arg2, (int, float)):
|
|
43
|
+
if isinstance(arg2, (list, np.ndarray)):
|
|
44
|
+
if len(arg2) > dimensions:
|
|
45
|
+
return False
|
|
46
|
+
return True
|
|
47
|
+
|
|
26
48
|
def _sample(self) -> int | float | np.ndarray:
|
|
27
49
|
return self._generator.normal(loc=self._loc, scale=self._scale, size=self._size)
|
|
28
50
|
|
|
@@ -22,6 +22,28 @@ class LogUniform(Distribution):
|
|
|
22
22
|
self._log_low = np.log(np.array(low))
|
|
23
23
|
self._log_high = np.log(np.array(high))
|
|
24
24
|
self._size = size
|
|
25
|
+
|
|
26
|
+
@staticmethod
|
|
27
|
+
def validate(dimensions: int, *args) -> bool:
|
|
28
|
+
arg1 = args[0]
|
|
29
|
+
arg2 = args[1]
|
|
30
|
+
if dimensions == 0:
|
|
31
|
+
if not isinstance(arg1, (int, float)):
|
|
32
|
+
return False
|
|
33
|
+
if not isinstance(arg2, (int, float)):
|
|
34
|
+
return False
|
|
35
|
+
return True
|
|
36
|
+
if dimensions == -1:
|
|
37
|
+
return True
|
|
38
|
+
if not isinstance(arg1, (int, float)):
|
|
39
|
+
if isinstance(arg1, (list, np.ndarray)):
|
|
40
|
+
if len(arg1) > dimensions:
|
|
41
|
+
return False
|
|
42
|
+
if not isinstance(arg2, (int, float)):
|
|
43
|
+
if isinstance(arg2, (list, np.ndarray)):
|
|
44
|
+
if len(arg2) > dimensions:
|
|
45
|
+
return False
|
|
46
|
+
return True
|
|
25
47
|
|
|
26
48
|
def _sample(self) -> int | float | np.ndarray:
|
|
27
49
|
return np.exp(self._generator.uniform(self._log_low, self._log_high, size=self._size))
|
|
@@ -29,6 +29,42 @@ class TruncatedGaussian(Distribution):
|
|
|
29
29
|
self._high = high
|
|
30
30
|
self._size = size
|
|
31
31
|
|
|
32
|
+
@staticmethod
|
|
33
|
+
def validate(dimensions: int, *args) -> bool:
|
|
34
|
+
arg1 = args[0]
|
|
35
|
+
arg2 = args[1]
|
|
36
|
+
arg3 = args[2]
|
|
37
|
+
arg4 = args[3]
|
|
38
|
+
if dimensions == 0:
|
|
39
|
+
if not isinstance(arg1, (int, float)):
|
|
40
|
+
return False
|
|
41
|
+
if not isinstance(arg2, (int, float)):
|
|
42
|
+
return False
|
|
43
|
+
if not isinstance(arg3, (int, float)):
|
|
44
|
+
return False
|
|
45
|
+
if not isinstance(arg4, (int, float)):
|
|
46
|
+
return False
|
|
47
|
+
return True
|
|
48
|
+
if dimensions == -1:
|
|
49
|
+
return True
|
|
50
|
+
if not isinstance(arg1, (int, float)):
|
|
51
|
+
if isinstance(arg1, (list, np.ndarray)):
|
|
52
|
+
if len(arg1) > dimensions:
|
|
53
|
+
return False
|
|
54
|
+
if not isinstance(arg2, (int, float)):
|
|
55
|
+
if isinstance(arg2, (list, np.ndarray)):
|
|
56
|
+
if len(arg2) > dimensions:
|
|
57
|
+
return False
|
|
58
|
+
if not isinstance(arg3, (int, float)):
|
|
59
|
+
if isinstance(arg3, (list, np.ndarray)):
|
|
60
|
+
if len(arg3) > dimensions:
|
|
61
|
+
return False
|
|
62
|
+
if not isinstance(arg4, (int, float)):
|
|
63
|
+
if isinstance(arg4, (list, np.ndarray)):
|
|
64
|
+
if len(arg4) > dimensions:
|
|
65
|
+
return False
|
|
66
|
+
return True
|
|
67
|
+
|
|
32
68
|
def _sample(self) -> int | float | np.ndarray:
|
|
33
69
|
samples = self._generator.normal(loc=self._loc, scale=self._scale, size=self._size)
|
|
34
70
|
mask = (samples < self._low) | (samples > self._high)
|
|
@@ -23,6 +23,28 @@ class Uniform(Distribution):
|
|
|
23
23
|
self._high = np.array(high)
|
|
24
24
|
self._size = size
|
|
25
25
|
|
|
26
|
+
@staticmethod
|
|
27
|
+
def validate(dimensions: int, *args) -> bool:
|
|
28
|
+
arg1 = args[0]
|
|
29
|
+
arg2 = args[1]
|
|
30
|
+
if dimensions == 0:
|
|
31
|
+
if not isinstance(arg1, (int, float)):
|
|
32
|
+
return False
|
|
33
|
+
if not isinstance(arg2, (int, float)):
|
|
34
|
+
return False
|
|
35
|
+
return True
|
|
36
|
+
if dimensions == -1:
|
|
37
|
+
return True
|
|
38
|
+
if not isinstance(arg1, (int, float)):
|
|
39
|
+
if isinstance(arg1, (list, np.ndarray)):
|
|
40
|
+
if len(arg1) > dimensions:
|
|
41
|
+
return False
|
|
42
|
+
if not isinstance(arg2, (int, float)):
|
|
43
|
+
if isinstance(arg2, (list, np.ndarray)):
|
|
44
|
+
if len(arg2) > dimensions:
|
|
45
|
+
return False
|
|
46
|
+
return True
|
|
47
|
+
|
|
26
48
|
def _sample(self) -> int | float | np.ndarray:
|
|
27
49
|
return self._generator.uniform(self._low, self._high, size=self._size)
|
|
28
50
|
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
|
|
2
|
+
from humalab.scenario import Scenario
|
|
3
|
+
from omegaconf import DictConfig, OmegaConf
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class Episode:
|
|
7
|
+
def __init__(self, run_id: str, episode_id: str, scenario_conf: DictConfig):
|
|
8
|
+
self.run_id = run_id
|
|
9
|
+
self.episode_id = episode_id
|
|
10
|
+
self.scenario_conf = scenario_conf
|
|
11
|
+
|
|
12
|
+
@property
|
|
13
|
+
def scenario(self) -> DictConfig:
|
|
14
|
+
return self.scenario_conf
|
|
15
|
+
|
|
16
|
+
def finish(self):
|
|
17
|
+
print(f"Finishing episode {self.episode_id} for scenario {self.scenario.name}")
|
|
18
|
+
|
|
19
|
+
@property
|
|
20
|
+
def yaml(self) -> str:
|
|
21
|
+
"""The current scenario configuration as a YAML string.
|
|
22
|
+
|
|
23
|
+
Returns:
|
|
24
|
+
str: The current scenario as a YAML string.
|
|
25
|
+
"""
|
|
26
|
+
return OmegaConf.to_yaml(self.scenario_conf)
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
import random
|
|
2
|
+
|
|
3
|
+
def evaluate(video_path: str | list, task: str | list) -> dict | list[dict]:
|
|
4
|
+
"""
|
|
5
|
+
Evaluate the video and return metrics.
|
|
6
|
+
"""
|
|
7
|
+
# Placeholder implementation
|
|
8
|
+
if isinstance(video_path, list):
|
|
9
|
+
return [{"video_path": vp, "task": t,
|
|
10
|
+
"score": random.uniform(0, 1),
|
|
11
|
+
"confidence": random.uniform(0, 1)} for vp, t in zip(video_path, task)]
|
|
12
|
+
else:
|
|
13
|
+
return {"video_path": video_path, "task": task, "score": random.uniform(0, 1),
|
|
14
|
+
"confidence": random.uniform(0, 1)}
|
|
15
|
+
|
|
16
|
+
__all__ = ["evaluate"]
|
|
@@ -0,0 +1,164 @@
|
|
|
1
|
+
from contextlib import contextmanager
|
|
2
|
+
|
|
3
|
+
from omegaconf import OmegaConf
|
|
4
|
+
|
|
5
|
+
from humalab.run import Run
|
|
6
|
+
from humalab.humalab_config import HumalabConfig
|
|
7
|
+
from humalab.humalab_api_client import HumaLabApiClient
|
|
8
|
+
from humalab.constants import EpisodeStatus
|
|
9
|
+
import requests
|
|
10
|
+
|
|
11
|
+
import uuid
|
|
12
|
+
|
|
13
|
+
from collections.abc import Generator
|
|
14
|
+
|
|
15
|
+
from humalab.scenario import Scenario
|
|
16
|
+
|
|
17
|
+
_cur_run: Run | None = None
|
|
18
|
+
|
|
19
|
+
def _pull_scenario(client: HumaLabApiClient,
|
|
20
|
+
project_name: str,
|
|
21
|
+
scenario: str | list | dict | None = None,
|
|
22
|
+
scenario_id: str | None = None,) -> str | list | dict | None:
|
|
23
|
+
if scenario_id is not None:
|
|
24
|
+
scenario_arr = scenario_id.split(":")
|
|
25
|
+
if len(scenario_arr) < 1:
|
|
26
|
+
raise ValueError("Invalid scenario_id format. Expected 'scenario_id' or 'scenario_name:version'.")
|
|
27
|
+
scenario_real_id = scenario_arr[0]
|
|
28
|
+
scenario_version = int(scenario_arr[1]) if len(scenario_arr) > 1 else None
|
|
29
|
+
|
|
30
|
+
scenario_response = client.get_scenario(
|
|
31
|
+
project_name=project_name,
|
|
32
|
+
uuid=scenario_real_id, version=scenario_version)
|
|
33
|
+
return scenario_response["yaml_content"]
|
|
34
|
+
return scenario
|
|
35
|
+
|
|
36
|
+
@contextmanager
|
|
37
|
+
def init(project: str | None = None,
|
|
38
|
+
name: str | None = None,
|
|
39
|
+
description: str | None = None,
|
|
40
|
+
id: str | None = None,
|
|
41
|
+
tags: list[str] | None = None,
|
|
42
|
+
scenario: str | list | dict | None = None,
|
|
43
|
+
scenario_id: str | None = None,
|
|
44
|
+
base_url: str | None = None,
|
|
45
|
+
api_key: str | None = None,
|
|
46
|
+
seed: int | None=None,
|
|
47
|
+
timeout: float | None = None,
|
|
48
|
+
# num_env: int | None = None,
|
|
49
|
+
auto_create_scenario: bool = False,
|
|
50
|
+
) -> Generator[Run, None, None]:
|
|
51
|
+
"""
|
|
52
|
+
Initialize a new HumaLab run.
|
|
53
|
+
|
|
54
|
+
Args:
|
|
55
|
+
project: The project name under which to create the run.
|
|
56
|
+
name: The name of the run.
|
|
57
|
+
description: A description of the run.
|
|
58
|
+
id: The unique identifier for the run. If None, a new UUID will be generated.
|
|
59
|
+
tags: A list of tags to associate with the run.
|
|
60
|
+
scenario: The scenario configuration as a string, list, or dict.
|
|
61
|
+
scenario_id: The unique identifier of a pre-defined scenario to use.
|
|
62
|
+
base_url: The base URL of the HumaLab server.
|
|
63
|
+
api_key: The API key for authentication.
|
|
64
|
+
seed: An optional seed for scenario randomization.
|
|
65
|
+
timeout: The timeout for API requests.
|
|
66
|
+
# num_env: The number of parallel environments to run. (Not supported yet.)
|
|
67
|
+
auto_create_scenario: Whether to automatically create the scenario if it does not exist.
|
|
68
|
+
"""
|
|
69
|
+
global _cur_run
|
|
70
|
+
run = None
|
|
71
|
+
try:
|
|
72
|
+
humalab_config = HumalabConfig()
|
|
73
|
+
project = project or "default"
|
|
74
|
+
name = name or ""
|
|
75
|
+
description = description or ""
|
|
76
|
+
id = id or str(uuid.uuid4())
|
|
77
|
+
|
|
78
|
+
base_url = base_url or humalab_config.base_url
|
|
79
|
+
api_key = api_key or humalab_config.api_key
|
|
80
|
+
timeout = timeout or humalab_config.timeout
|
|
81
|
+
|
|
82
|
+
api_client = HumaLabApiClient(base_url=base_url,
|
|
83
|
+
api_key=api_key,
|
|
84
|
+
timeout=timeout)
|
|
85
|
+
final_scenario = _pull_scenario(client=api_client,
|
|
86
|
+
project_name=project,
|
|
87
|
+
scenario=scenario,
|
|
88
|
+
scenario_id=scenario_id)
|
|
89
|
+
|
|
90
|
+
project_resp = api_client.create_project(name=project)
|
|
91
|
+
|
|
92
|
+
scenario_inst = Scenario()
|
|
93
|
+
scenario_inst.init(run_id=id,
|
|
94
|
+
scenario=final_scenario,
|
|
95
|
+
seed=seed,
|
|
96
|
+
episode_id=str(uuid.uuid4()),
|
|
97
|
+
#num_env=num_env
|
|
98
|
+
)
|
|
99
|
+
if scenario_id is None and scenario is not None and auto_create_scenario:
|
|
100
|
+
scenario_response = api_client.create_scenario(
|
|
101
|
+
project_name=project_resp['name'],
|
|
102
|
+
name=f"{name} scenario",
|
|
103
|
+
description="Auto-created scenario",
|
|
104
|
+
yaml_content=OmegaConf.to_yaml(scenario_inst.template),
|
|
105
|
+
)
|
|
106
|
+
scenario_id = scenario_response['uuid']
|
|
107
|
+
try:
|
|
108
|
+
run_response = api_client.get_run(run_id=id)
|
|
109
|
+
api_client.update_run(
|
|
110
|
+
run_id=run_response['run_id'],
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
except requests.HTTPError as e:
|
|
114
|
+
if e.response.status_code == 404:
|
|
115
|
+
# If not found then create a new run,
|
|
116
|
+
# so ignore not found error.
|
|
117
|
+
run_response = None
|
|
118
|
+
else:
|
|
119
|
+
# Otherwise re-raise the exception.
|
|
120
|
+
raise
|
|
121
|
+
|
|
122
|
+
if run_response is None:
|
|
123
|
+
run_response = api_client.create_run(name=name,
|
|
124
|
+
project_name=project_resp['name'],
|
|
125
|
+
description=description,
|
|
126
|
+
tags=tags)
|
|
127
|
+
id = run_response['run_id']
|
|
128
|
+
api_client.update_run(
|
|
129
|
+
run_id=id,
|
|
130
|
+
description=description,
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
run = Run(
|
|
134
|
+
project=project_resp['name'],
|
|
135
|
+
name=run_response["name"],
|
|
136
|
+
description=run_response.get("description"),
|
|
137
|
+
id=run_response['run_id'],
|
|
138
|
+
tags=run_response.get("tags"),
|
|
139
|
+
scenario=scenario_inst,
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
_cur_run = run
|
|
143
|
+
yield run
|
|
144
|
+
finally:
|
|
145
|
+
if run:
|
|
146
|
+
run.finish()
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
def finish(status: EpisodeStatus = EpisodeStatus.PASS,
|
|
150
|
+
quiet: bool | None = None) -> None:
|
|
151
|
+
global _cur_run
|
|
152
|
+
if _cur_run:
|
|
153
|
+
_cur_run.finish(status=status, quiet=quiet)
|
|
154
|
+
|
|
155
|
+
def login(api_key: str | None = None,
|
|
156
|
+
relogin: bool | None = None,
|
|
157
|
+
host: str | None = None,
|
|
158
|
+
force: bool | None = None,
|
|
159
|
+
timeout: float | None = None) -> bool:
|
|
160
|
+
humalab_config = HumalabConfig()
|
|
161
|
+
humalab_config.api_key = api_key or humalab_config.api_key
|
|
162
|
+
humalab_config.base_url = host or humalab_config.base_url
|
|
163
|
+
humalab_config.timeout = timeout or humalab_config.timeout
|
|
164
|
+
return True
|