honeybee-radiance-postprocess 0.4.417__py2.py3-none-any.whl → 0.4.419__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,5 @@
1
1
  """Modules for post-processing simulation outputs."""
2
2
  import click
3
- import logging
4
3
 
5
4
  from honeybee.cli import main
6
5
  from .grid import grid
@@ -8,9 +7,7 @@ from .mtxop import mtxop
8
7
  from .postprocess import post_process
9
8
  from .schedule import schedule
10
9
  from .translate import translate
11
-
12
-
13
- _logger = logging.getLogger(__name__)
10
+ from .viewfactor import view_factor
14
11
 
15
12
 
16
13
  # command group for all postprocess extension commands.
@@ -26,6 +23,7 @@ postprocess.add_command(mtxop)
26
23
  postprocess.add_command(post_process, name='post-process')
27
24
  postprocess.add_command(schedule)
28
25
  postprocess.add_command(translate)
26
+ postprocess.add_command(view_factor)
29
27
 
30
28
  # add postprocess sub-commands to honeybee CLI
31
29
  main.add_command(postprocess)
@@ -61,66 +61,133 @@ def abnt_nbr_15575(
61
61
  file is used to extract the center points of the sensor grids. It is
62
62
  a requirement that the sensor grids have Meshes.
63
63
  """
64
- def find_surrounding_points(x, y, x_coords, y_coords):
65
- """Find the four nearest points and return the minimum and maximum
66
- x and y values."""
67
- # calculate Euclidean distances
68
- distances = np.sqrt((x_coords - x)**2 + (y_coords - y)**2)
69
- # get the four nearest points
70
- if len(distances) < 4:
71
- # if the grid for some reason has less than four sensors
72
- nearest_indices = np.argsort(distances)[:len(distances)]
64
+ def find_surrounding_points(points, values, new_point):
65
+ """Find the four surrounding points for bilinear interpolation.
66
+
67
+ Args:
68
+ points: 2D array of points, shape.
69
+ values: 1D array of values at the points.
70
+ new_point: 1D array of the point to interpolate.
71
+
72
+ Returns:
73
+ tuple: (surrounding_points, surrounding_values) and their counts.
74
+ """
75
+ x, y = new_point
76
+ lower_left = None
77
+ upper_left = None
78
+ lower_right = None
79
+ upper_right = None
80
+
81
+ for i, (px, py) in enumerate(points):
82
+ if px <= x and py <= y:
83
+ if lower_left is None or (px >= lower_left[0] and py >= lower_left[1]):
84
+ lower_left = (px, py, values[i])
85
+ if px <= x and py >= y:
86
+ if upper_left is None or (px >= upper_left[0] and py <= upper_left[1]):
87
+ upper_left = (px, py, values[i])
88
+ if px >= x and py >= y:
89
+ if upper_right is None or (px <= upper_right[0] and py <= upper_right[1]):
90
+ upper_right = (px, py, values[i])
91
+ if px >= x and py <= y:
92
+ if lower_right is None or (px <= lower_right[0] and py >= lower_right[1]):
93
+ lower_right = (px, py, values[i])
94
+
95
+ surrounding_points = []
96
+ surrounding_values = []
97
+ if lower_left:
98
+ surrounding_points.append(lower_left[:2])
99
+ surrounding_values.append(lower_left[2])
100
+ if upper_left:
101
+ surrounding_points.append(upper_left[:2])
102
+ surrounding_values.append(upper_left[2])
103
+ if upper_right:
104
+ surrounding_points.append(upper_right[:2])
105
+ surrounding_values.append(upper_right[2])
106
+ if lower_right:
107
+ surrounding_points.append(lower_right[:2])
108
+ surrounding_values.append(lower_right[2])
109
+
110
+ return np.array(surrounding_points), np.array(surrounding_values)
111
+
112
+ def bilinear_interpolate(surrounding_points, surrounding_values, new_point):
113
+ """Perform bilinear interpolation given four surrounding points.
114
+
115
+ Args:
116
+ surrounding_points: 2D array of points.
117
+ surrounding_values: 1D array of values at the points.
118
+ new_point: 1D array of the point to interpolate.
119
+
120
+ Returns:
121
+ Interpolated value at the new_point.
122
+ """
123
+ x1, y1 = surrounding_points[0]
124
+ x2, y2 = surrounding_points[2]
125
+ x, y = new_point
126
+
127
+ fQ11 = surrounding_values[0]
128
+ fQ21 = surrounding_values[3]
129
+ fQ12 = surrounding_values[1]
130
+ fQ22 = surrounding_values[2]
131
+
132
+ interpolated_value = (
133
+ fQ11 * (x2 - x) * (y2 - y) +
134
+ fQ21 * (x - x1) * (y2 - y) +
135
+ fQ12 * (x2 - x) * (y - y1) +
136
+ fQ22 * (x - x1) * (y - y1)
137
+ ) / ((x2 - x1) * (y2 - y1))
138
+
139
+ return interpolated_value
140
+
141
+ def inverse_distance_weighting(points, values, new_point, n_nearest=4):
142
+ """Perform inverse distance weighting interpolation.
143
+
144
+ Args:
145
+ points: 2D array of points.
146
+ values: 1D array of values at the points
147
+ new_point: 1D array of the point to interpolate.
148
+ n_nearest: Number of nearest points to consider for interpolation.
149
+
150
+ Returns:
151
+ Interpolated value at the new_point.
152
+ """
153
+ distances = np.linalg.norm(points - new_point, axis=1)
154
+ nearest_indices = np.argsort(distances)[:min(n_nearest, len(points))]
155
+
156
+ nearest_values = values[nearest_indices]
157
+ nearest_distances = distances[nearest_indices]
158
+
159
+ if np.any(nearest_distances == 0):
160
+ # if the new point coincides with an existing point, return its value
161
+ return nearest_values[nearest_distances == 0][0]
162
+
163
+ weights = 1 / nearest_distances
164
+ weights /= weights.sum() # normalize weights
165
+ return np.dot(weights, nearest_values)
166
+
167
+ def perform_interpolation(x, y, x_coords, y_coords, pit_values):
168
+ points = np.column_stack((x_coords, y_coords))
169
+ values = np.array(pit_values)
170
+ new_point = np.array([x, y])
171
+
172
+ surrounding_points, surrounding_values = \
173
+ find_surrounding_points(points, values, new_point)
174
+
175
+ if len(surrounding_points) == 4:
176
+ interpolated_value = \
177
+ bilinear_interpolate(surrounding_points,
178
+ surrounding_values, new_point)
73
179
  else:
74
- nearest_indices = np.argsort(distances)[:4]
75
- x_values = x_coords[nearest_indices]
76
- y_values = y_coords[nearest_indices]
77
- x1, x2 = min(x_values), max(x_values)
78
- y1, y2 = min(y_values), max(y_values)
79
-
80
- return x1, x2, y1, y2
81
-
82
- def get_value(x, y, x_coords, y_coords, values):
83
- tolerance = 0.001
84
- index = np.where((np.abs(x_coords - x) <= tolerance) & (np.abs(y_coords - y) <= tolerance))
85
- return values[index][0]
86
-
87
- def perform_interpolation(x, y, x_coords, y_caoords, pit_values):
88
- x1, x2, y1, y2 = find_surrounding_points(x, y, x_coords, y_coords)
89
-
90
- # extract the illuminance values at the surrounding points
91
- f_Q11 = get_value(x1, y1, x_coords, y_coords, pit_values) # bottom-left
92
- f_Q21 = get_value(x2, y1, x_coords, y_coords, pit_values) # bottom-right
93
- f_Q12 = get_value(x1, y2, x_coords, y_coords, pit_values) # top-left
94
- f_Q22 = get_value(x2, y2, x_coords, y_coords, pit_values) # top-right
95
-
96
- # edge cases
97
- if x == x1 and y == y1:
98
- f_xy = f_Q11
99
- elif x == x2 and y == y1:
100
- f_xy = f_Q21
101
- elif x == x1 and y == y2:
102
- f_xy = f_Q12
103
- elif x == x2 and y == y2:
104
- f_xy = f_Q22
105
- elif x1 == x2:
106
- # linear interpolation in y direction
107
- f_xy = f_Q11 + (f_Q12 - f_Q11) * (y - y1) / (y2 - y1)
108
- elif y1 == y2:
109
- # linear interpolation in x direction
110
- f_xy = f_Q11 + (f_Q21 - f_Q11) * (x - x1) / (x2 - x1)
111
- else:
112
- # perform bilinear interpolation
113
- f_xy = (f_Q11 * (x2 - x) * (y2 - y) +
114
- f_Q21 * (x - x1) * (y2 - y) +
115
- f_Q12 * (x2 - x) * (y - y1) +
116
- f_Q22 * (x - x1) * (y - y1)) / ((x2 - x1) * (y2 - y1))
180
+ interpolated_value = \
181
+ inverse_distance_weighting(
182
+ points, values, new_point, n_nearest=4)
117
183
 
118
- return f_xy
184
+ return interpolated_value
119
185
 
120
186
  try:
121
187
  folder = Path(folder)
122
188
  hb_model: Model = Model.from_file(model_file)
123
- grouped_rooms, floor_heights = Room.group_by_floor_height(hb_model.rooms)
189
+ grouped_rooms, floor_heights = Room.group_by_floor_height(
190
+ hb_model.rooms)
124
191
 
125
192
  # pick the first group >= to ground level
126
193
  for gr, fh in zip(grouped_rooms, floor_heights):
@@ -157,14 +224,20 @@ def abnt_nbr_15575(
157
224
  sub_output = []
158
225
  for grid_info in grids_info:
159
226
  pit_values = \
160
- np.loadtxt(res_folder.joinpath(f'{grid_info["full_id"]}.res'))
227
+ np.loadtxt(res_folder.joinpath(
228
+ f'{grid_info["full_id"]}.res'))
161
229
  sensor_grid = sg_full_identifier[grid_info['full_id']]
162
230
  sensor_points = np.array(
163
- [[sensor.pos[0], sensor.pos[1]] for sensor in sensor_grid.sensors])
231
+ [[sensor.pos[0], sensor.pos[1], sensor.pos[2]]
232
+ for sensor in sensor_grid.sensors]
233
+ )
164
234
 
165
235
  x_coords = sensor_points[:, 0]
166
236
  y_coords = sensor_points[:, 1]
167
- room = hb_model.rooms_by_identifier([sensor_grid.room_identifier])[0]
237
+ z_coords = sensor_points[:, 2]
238
+
239
+ room = hb_model.rooms_by_identifier(
240
+ [sensor_grid.room_identifier])[0]
168
241
 
169
242
  pof_sensor_grid = \
170
243
  pof_sensor_grids.get(grid_info['full_id'], None)
@@ -175,25 +248,30 @@ def abnt_nbr_15575(
175
248
  room.horizontal_floor_boundaries(), 0.05
176
249
  )[0]
177
250
  if floor_face.is_convex:
178
- pof_sensor_grids[grid_info['full_id']] = \
179
- floor_face.centroid + Vector3D(0, 0, 0.75)
251
+ centroid = floor_face.centroid
180
252
  else:
181
- pof_sensor_grids[grid_info['full_id']] = \
182
- floor_face.pole_of_inaccessibility(0.01) + Vector3D(0, 0, 0.75)
253
+ centroid = floor_face.pole_of_inaccessibility(0.01)
254
+ dz = np.mean(z_coords) - centroid.z
255
+ pof_sensor_grids[grid_info['full_id']] = \
256
+ centroid + Vector3D(0, 0, dz)
183
257
  else:
184
- faces_3d = [Face3D(face_vertices) for face_vertices in sensor_grid.mesh.face_vertices]
185
- face_3d_union = Face3D.join_coplanar_faces(faces_3d, 0.05)
258
+ faces_3d = [
259
+ Face3D(face_vertices) for face_vertices in sensor_grid.mesh.face_vertices]
260
+ face_3d_union = Face3D.join_coplanar_faces(
261
+ faces_3d, 0.05)
186
262
  assert len(face_3d_union) == 1
187
263
  if face_3d_union[0].is_convex:
188
264
  centroid = face_3d_union[0].centroid
189
265
  pof_sensor_grids[grid_info['full_id']] = centroid
190
266
  else:
191
- pof = face_3d_union[0].pole_of_inaccessibility(0.01)
267
+ pof = face_3d_union[0].pole_of_inaccessibility(
268
+ 0.01)
192
269
  pof_sensor_grids[grid_info['full_id']] = pof
193
270
 
194
271
  x = pof_sensor_grids[grid_info['full_id']].x
195
272
  y = pof_sensor_grids[grid_info['full_id']].y
196
- f_xy = perform_interpolation(x, y, x_coords, y_coords, pit_values)
273
+ f_xy = perform_interpolation(
274
+ x, y, x_coords, y_coords, pit_values)
197
275
 
198
276
  if room in ground_level_rooms:
199
277
  minimo = 48
@@ -204,7 +282,7 @@ def abnt_nbr_15575(
204
282
  level = 'Superior'
205
283
  elif f_xy >= 90:
206
284
  level = 'Intermediário'
207
- elif f_xy >= minimo: # add check for ground floor (48 lux)
285
+ elif f_xy >= minimo: # add check for ground floor (48 lux)
208
286
  level = 'Mínimo'
209
287
  else:
210
288
  level = 'Não atende'
@@ -232,19 +310,23 @@ def abnt_nbr_15575(
232
310
  }
233
311
  )
234
312
 
235
- conditions = [pit_values >= 120, pit_values >= 90, pit_values >= 60, pit_values < 60]
313
+ conditions = [pit_values >= 120, pit_values >=
314
+ 90, pit_values >= 60, pit_values < 60]
236
315
  conditions_values = [3, 2, 1, 0]
237
316
  illuminance_level = np.select(conditions, conditions_values)
238
317
 
239
- ill_level_file = illuminance_levels_folder.joinpath(_subfolder, f'{grid_info["full_id"]}.res')
318
+ ill_level_file = illuminance_levels_folder.joinpath(
319
+ _subfolder, f'{grid_info["full_id"]}.res')
240
320
  ill_level_file.parent.mkdir(parents=True, exist_ok=True)
241
321
  np.savetxt(ill_level_file, illuminance_level, fmt='%d')
242
322
 
243
- grids_info_file = illuminance_levels_folder.joinpath(_subfolder, 'grids_info.json')
323
+ grids_info_file = illuminance_levels_folder.joinpath(
324
+ _subfolder, 'grids_info.json')
244
325
  grids_info_file.write_text(json.dumps(grids_info, indent=2))
245
326
 
246
327
  vis_data = metric_info_dict[_subfolder]
247
- vis_metadata_file = illuminance_levels_folder.joinpath(_subfolder, 'vis_metadata.json')
328
+ vis_metadata_file = illuminance_levels_folder.joinpath(
329
+ _subfolder, 'vis_metadata.json')
248
330
  vis_metadata_file.write_text(json.dumps(vis_data, indent=4))
249
331
 
250
332
  summary_output[_subfolder] = sub_output
@@ -0,0 +1,150 @@
1
+ """Commands to compute view factors to geometry."""
2
+ import click
3
+ import os
4
+ import sys
5
+ import logging
6
+ import math
7
+ import numpy as np
8
+
9
+ from honeybee_radiance.config import folders
10
+
11
+ from honeybee_radiance_command.rcontrib import Rcontrib, RcontribOptions
12
+ from honeybee_radiance_command._command_util import run_command
13
+
14
+ from ladybug.futil import preparedir
15
+
16
+ from honeybee_radiance_postprocess.reader import binary_to_array
17
+
18
+ _logger = logging.getLogger(__name__)
19
+
20
+
21
+ @click.group(help='Commands to compute view factors to geometry.')
22
+ def view_factor():
23
+ pass
24
+
25
+
26
+ @view_factor.command('contrib')
27
+ @click.argument(
28
+ 'octree', type=click.Path(exists=True, file_okay=True, resolve_path=True)
29
+ )
30
+ @click.argument(
31
+ 'sensor-grid', type=click.Path(exists=True, file_okay=True, resolve_path=True)
32
+ )
33
+ @click.argument(
34
+ 'modifiers', type=click.Path(exists=True, file_okay=True, resolve_path=True)
35
+ )
36
+ @click.option(
37
+ '--ray-count', type=click.INT, default=6, show_default=True,
38
+ help='The number of rays to be equally distributed over a sphere to compute '
39
+ 'the view factor for each of the input sensors.'
40
+ )
41
+ @click.option(
42
+ '--rad-params', show_default=True, help='Radiance parameters.'
43
+ )
44
+ @click.option(
45
+ '--rad-params-locked', show_default=True, help='Protected Radiance parameters. '
46
+ 'These values will overwrite user input rad parameters.'
47
+ )
48
+ @click.option(
49
+ '--folder', default='.', help='Output folder into which the modifier and '
50
+ 'octree files will be written.'
51
+ )
52
+ @click.option(
53
+ '--name', default='view_factor', help='File name of the view factor file.'
54
+ )
55
+ def rcontrib_command_with_view_postprocess(
56
+ octree, sensor_grid, modifiers, ray_count, rad_params, rad_params_locked,
57
+ folder, name
58
+ ):
59
+ """Run rcontrib to get spherical view factors from a sensor grid.
60
+
61
+ This command is similar to the one in honeybee-radiance, but the
62
+ post-processing is using NumPy.
63
+
64
+ \b
65
+ Args:
66
+ octree: Path to octree file.
67
+ sensor-grid: Path to sensor grid file.
68
+ modifiers: Path to modifiers file.
69
+ """
70
+ try:
71
+ # create the directory if it's not there
72
+ if not os.path.isdir(folder):
73
+ preparedir(folder)
74
+
75
+ # generate the ray vectors to be used in the view factor calculation
76
+ if ray_count == 6:
77
+ rays = ((1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 0, 0), (0, -1, 0), (0, 0, -1))
78
+ else:
79
+ rays = _fibonacci_spiral(ray_count)
80
+ ray_str = [' {} {} {}\n'.format(*ray) for ray in rays]
81
+
82
+ # create a new .pts file with the view vectors
83
+ ray_file = os.path.abspath(os.path.join(folder, '{}.pts'.format(name)))
84
+ total_rays = 0
85
+ with open(sensor_grid) as sg_file:
86
+ with open(ray_file, 'w') as r_file:
87
+ for line in sg_file:
88
+ for ray in ray_str:
89
+ try:
90
+ r_file.write(' '.join(line.split()[:3]) + ray)
91
+ total_rays += 1
92
+ except Exception:
93
+ pass # we are at the end of the file
94
+
95
+ # set up the Rcontrib options
96
+ options = RcontribOptions()
97
+ if rad_params: # parse input radiance parameters
98
+ options.update_from_string(rad_params.strip())
99
+ if rad_params_locked: # overwrite input values with protected ones
100
+ options.update_from_string(rad_params_locked.strip())
101
+ # overwrite specific options that would otherwise break the command
102
+ options.M = modifiers
103
+ options.update_from_string('-I -V- -y {}'.format(total_rays))
104
+
105
+ # create the rcontrib command and run it
106
+ mtx_file = os.path.abspath(os.path.join(folder, '{}.mtx'.format(name)))
107
+ rcontrib = Rcontrib(options=options, octree=octree, sensors=ray_file)
108
+ cmd = rcontrib.to_radiance().replace('\\', '/')
109
+ cmd = '{} | rmtxop -ff - -c .333 .333 .334 > "{}"'.format(cmd, mtx_file.replace('\\', '/'))
110
+ run_command(cmd, env=folders.env)
111
+
112
+ # load the resulting matrix and process the results into view factors
113
+ array = binary_to_array(mtx_file)
114
+ view_fac_mtx = []
115
+ for i in range(0, len(array), ray_count):
116
+ sens_chunk = array[i:i+ray_count]
117
+ s_facs = np.sum(sens_chunk, axis=0) / (math.pi * ray_count)
118
+ view_fac_mtx.append(s_facs)
119
+
120
+ np.save(os.path.join(folder, '{}'.format(name)), view_fac_mtx)
121
+
122
+ except Exception:
123
+ _logger.exception('Failed to compute view factor contributions.')
124
+ sys.exit(1)
125
+ else:
126
+ sys.exit(0)
127
+
128
+
129
+ def _fibonacci_spiral(point_count=24):
130
+ """Get points distributed uniformly across a unit spherical surface.
131
+
132
+ Args:
133
+ point_count: Integer for the number of points to be distributed.
134
+
135
+ Returns:
136
+ List of tuple, each with 3 values representing the XYZ coordinates of
137
+ the points that were generated.
138
+ """
139
+ points = []
140
+ phi = math.pi * (3. - math.sqrt(5.))
141
+
142
+ for i in range(point_count):
143
+ y = 1 - (i / float(point_count - 1)) * 2
144
+ radius = math.sqrt(1 - y * y)
145
+ theta = phi * i
146
+ x = math.cos(theta) * radius
147
+ z = math.sin(theta) * radius
148
+ points.append((x, y, z))
149
+
150
+ return points
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: honeybee-radiance-postprocess
3
- Version: 0.4.417
3
+ Version: 0.4.419
4
4
  Summary: Postprocessing of Radiance results and matrices
5
5
  Home-page: https://github.com/ladybug-tools/honeybee-radiance-postprocess
6
6
  Author: Ladybug Tools
@@ -14,8 +14,8 @@ honeybee_radiance_postprocess/reader.py,sha256=6myKzfGC1pO8zPixg1kKrKjPihHabTKUh
14
14
  honeybee_radiance_postprocess/type_hints.py,sha256=4R0kZgacQrqzoh8Tq7f8MVzUDzynV-C_jlh80UV6GPE,1122
15
15
  honeybee_radiance_postprocess/util.py,sha256=-J5k1dhvyYJkb42jvTS_xxtokfGbmcucVPXdMWU1jUk,5098
16
16
  honeybee_radiance_postprocess/vis_metadata.py,sha256=7ywIgdiuNKcctxifhpy7-Q2oaSX2ngQBeA0Kh7q1Gg0,1780
17
- honeybee_radiance_postprocess/cli/__init__.py,sha256=4RkpR91GPXWatDE4I_27ce-N4FwolQoO6WO7H24DMXE,777
18
- honeybee_radiance_postprocess/cli/abnt.py,sha256=IEJdGi4fkLD75C833CVpk5WimMm7PVMGYV3QBNgVOGE,12785
17
+ honeybee_radiance_postprocess/cli/__init__.py,sha256=PVfwkuPFl4TnvQt8ovVm01JK0Alon81BaY-0tshAXyg,795
18
+ honeybee_radiance_postprocess/cli/abnt.py,sha256=GNLmVVrEQ-1oKr5ZmBllY-KODhgJPjLVidQ_dQMcpFk,15537
19
19
  honeybee_radiance_postprocess/cli/grid.py,sha256=6peLEAPVe-iw05_wdRpFruZLqO8myvC-_QT5W1q5sk8,10677
20
20
  honeybee_radiance_postprocess/cli/leed.py,sha256=QBR6AMJJWuZ0TevyMi2tXCWMLdS-ZSqtVTZDgqxwa7M,3112
21
21
  honeybee_radiance_postprocess/cli/mtxop.py,sha256=UZJnjNpPjDmShy1-Mxos4H2vTUqk_yP3ZyaC1_LLFeI,5015
@@ -24,13 +24,14 @@ honeybee_radiance_postprocess/cli/schedule.py,sha256=6uIy98Co4zm-ZRcELo4Lfx_aN3l
24
24
  honeybee_radiance_postprocess/cli/translate.py,sha256=18zkcGeRZALJ5Z82NEB3XZ-iEX2cHyneobGWV-IXWE0,6789
25
25
  honeybee_radiance_postprocess/cli/two_phase.py,sha256=xA6ayPv26DM5fuMkLhBMYGklf_j5ymowmncwJGXRgo8,7034
26
26
  honeybee_radiance_postprocess/cli/util.py,sha256=Be9cGmYhcV2W37ma6SgQPCWCpWLLLlroxRYN_l58kY0,4077
27
+ honeybee_radiance_postprocess/cli/viewfactor.py,sha256=kU36YRzLya5PReYREjTfw3zOcWKHYZjVlVclyuR7Cqk,5245
27
28
  honeybee_radiance_postprocess/results/__init__.py,sha256=1agBQbfT4Tf8KqSZzlfKYX8MeZryY4jJ1KB4HWqaDDk,182
28
29
  honeybee_radiance_postprocess/results/annual_daylight.py,sha256=ohysFt4OWlWUn_IvM6pjmiQcRTq_x5b998Iv0pw8AEQ,34964
29
30
  honeybee_radiance_postprocess/results/annual_irradiance.py,sha256=5zwrr4MNeHUebbSRpSBbscPOZUs2AHmYCQfIIbdYImY,8298
30
31
  honeybee_radiance_postprocess/results/results.py,sha256=GwyjIYljaCShx1b6NlYUBcU_gHhckmLcCMNrQ6HVDdE,53507
31
- honeybee_radiance_postprocess-0.4.417.dist-info/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
32
- honeybee_radiance_postprocess-0.4.417.dist-info/METADATA,sha256=HqKdr7FnplUd51XeDU0Co6q-fpeI928ntRVJto3e5vA,2245
33
- honeybee_radiance_postprocess-0.4.417.dist-info/WHEEL,sha256=unfA4MOaH0icIyIA5oH6E2sn2Hq5zKtLlHsWapZGwes,110
34
- honeybee_radiance_postprocess-0.4.417.dist-info/entry_points.txt,sha256=gFtVPx6UItXt27GfEZZO00eOZChJJEL6JwGSAB_O3rs,96
35
- honeybee_radiance_postprocess-0.4.417.dist-info/top_level.txt,sha256=4-sFbzy7ewP2EDqJV3jeFlAFx7SuxtoBBELWaKAnLdA,30
36
- honeybee_radiance_postprocess-0.4.417.dist-info/RECORD,,
32
+ honeybee_radiance_postprocess-0.4.419.dist-info/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
33
+ honeybee_radiance_postprocess-0.4.419.dist-info/METADATA,sha256=T_Z-_o7VPTM0_PzjEIrSnpQ_OnAo8NjMPup9sQ3ccmE,2245
34
+ honeybee_radiance_postprocess-0.4.419.dist-info/WHEEL,sha256=unfA4MOaH0icIyIA5oH6E2sn2Hq5zKtLlHsWapZGwes,110
35
+ honeybee_radiance_postprocess-0.4.419.dist-info/entry_points.txt,sha256=gFtVPx6UItXt27GfEZZO00eOZChJJEL6JwGSAB_O3rs,96
36
+ honeybee_radiance_postprocess-0.4.419.dist-info/top_level.txt,sha256=4-sFbzy7ewP2EDqJV3jeFlAFx7SuxtoBBELWaKAnLdA,30
37
+ honeybee_radiance_postprocess-0.4.419.dist-info/RECORD,,