homa 0.30000000000000004__tar.gz → 2.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of homa might be problematic. Click here for more details.

@@ -1,16 +1,15 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: homa
3
- Version: 0.30000000000000004
3
+ Version: 2.1
4
4
  Maintainer: Taha Shieenavaz
5
5
  Maintainer-email: tahashieenavaz@gmail.com
6
6
  Description-Content-Type: text/markdown
7
7
  License-File: LICENSE
8
+ Requires-Dist: torchvision
9
+ Requires-Dist: torch
8
10
 
9
- <p align="center">
10
- <img
11
- src="https://raw.githubusercontent.com/tahashieenavaz/homa/main/art/homa.svg"
12
- width=400
13
- />
14
- </p>
11
+ # Homa
15
12
 
16
- <hr />
13
+ <div align="center">
14
+ <img src="art/homa.svg" width="500" />
15
+ </div>
homa-2.1/README.md ADDED
@@ -0,0 +1,5 @@
1
+ # Homa
2
+
3
+ <div align="center">
4
+ <img src="art/homa.svg" width="500" />
5
+ </div>
@@ -0,0 +1,2 @@
1
+ from .datasets import ImageDataset
2
+ from .datasets import AugmentedDataset
@@ -0,0 +1,71 @@
1
+ import torch
2
+ from torchvision import transforms
3
+
4
+
5
+ class ImageDataset(torch.utils.data.Dataset):
6
+ def __init__(self, images, labels, transform=None):
7
+ self.images = images
8
+ self.labels = labels
9
+ self.transform = transform
10
+
11
+ def __len__(self):
12
+ return len(self.labels)
13
+
14
+ def __getitem__(self, idx):
15
+ image = self.images[idx]
16
+ label = self.labels[idx]
17
+
18
+ if self.transform:
19
+ image = self.transform(image)
20
+
21
+ return image, torch.tensor(label, dtype=torch.long)
22
+
23
+
24
+ class AugmentedDataset(torch.utils.data.Dataset):
25
+ def __init__(self, dataset, transform_probability=0.6):
26
+ self.original_dataset = dataset
27
+ self.transform_probability = transform_probability
28
+ self.augmented_data = []
29
+ self.transformations = [
30
+ transforms.Compose(
31
+ [
32
+ transforms.RandomHorizontalFlip(),
33
+ transforms.ColorJitter(
34
+ brightness=0.5, contrast=0.5, saturation=0.5, hue=0.2
35
+ ),
36
+ transforms.RandomRotation(45),
37
+ ]
38
+ ),
39
+ transforms.Compose(
40
+ [
41
+ transforms.RandomVerticalFlip(),
42
+ transforms.RandomAffine(
43
+ degrees=30, translate=(0.1, 0.1), scale=(0.8, 1.2)
44
+ ),
45
+ transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 2.0)),
46
+ ]
47
+ ),
48
+ transforms.Compose(
49
+ [
50
+ transforms.RandomResizedCrop(size=(224, 224), scale=(0.5, 1.0)),
51
+ transforms.RandomPerspective(distortion_scale=0.5, p=1.0),
52
+ transforms.RandomGrayscale(p=0.3),
53
+ ]
54
+ ),
55
+ ]
56
+ self._augment_dataset()
57
+
58
+ def _augment_dataset(self):
59
+ for image, label in self.original_dataset:
60
+ if torch.rand(1).item() < self.transform_probability:
61
+ for transform in self.transformations:
62
+ augmented_image = transform(image)
63
+ self.augmented_data.append((augmented_image, label))
64
+ else:
65
+ self.augmented_data.append((image, label))
66
+
67
+ def __len__(self):
68
+ return len(self.augmented_data)
69
+
70
+ def __getitem__(self, idx):
71
+ return self.augmented_data[idx]
@@ -1,16 +1,15 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: homa
3
- Version: 0.30000000000000004
3
+ Version: 2.1
4
4
  Maintainer: Taha Shieenavaz
5
5
  Maintainer-email: tahashieenavaz@gmail.com
6
6
  Description-Content-Type: text/markdown
7
7
  License-File: LICENSE
8
+ Requires-Dist: torchvision
9
+ Requires-Dist: torch
8
10
 
9
- <p align="center">
10
- <img
11
- src="https://raw.githubusercontent.com/tahashieenavaz/homa/main/art/homa.svg"
12
- width=400
13
- />
14
- </p>
11
+ # Homa
15
12
 
16
- <hr />
13
+ <div align="center">
14
+ <img src="art/homa.svg" width="500" />
15
+ </div>
@@ -0,0 +1,10 @@
1
+ LICENSE
2
+ README.md
3
+ setup.py
4
+ homa/__init__.py
5
+ homa/datasets.py
6
+ homa.egg-info/PKG-INFO
7
+ homa.egg-info/SOURCES.txt
8
+ homa.egg-info/dependency_links.txt
9
+ homa.egg-info/requires.txt
10
+ homa.egg-info/top_level.txt
@@ -0,0 +1,2 @@
1
+ torchvision
2
+ torch
@@ -9,7 +9,7 @@ with open("version.txt", "r") as fh:
9
9
  current_version = float(fh.readline())
10
10
 
11
11
  with open("version.txt", "w") as fh:
12
- next_version = current_version + 0.1
12
+ next_version = round(current_version + 0.01, 2)
13
13
  fh.write(str(next_version))
14
14
 
15
15
  setup(
@@ -18,10 +18,7 @@ setup(
18
18
  maintainer_email="tahashieenavaz@gmail.com",
19
19
  version=next_version,
20
20
  packages=find_packages(),
21
- install_requires=[
22
- "opencv-python",
23
- "numpy"
24
- ],
21
+ install_requires=["torchvision", "torch"],
25
22
  long_description=description,
26
23
  long_description_content_type="text/markdown",
27
24
  )
@@ -1,8 +0,0 @@
1
- <p align="center">
2
- <img
3
- src="https://raw.githubusercontent.com/tahashieenavaz/homa/main/art/homa.svg"
4
- width=400
5
- />
6
- </p>
7
-
8
- <hr />
@@ -1 +0,0 @@
1
- from .main import *
@@ -1,11 +0,0 @@
1
- from typing import List
2
-
3
-
4
- class Collection:
5
- def __init__(self, items: List[any]):
6
- self.value = items
7
-
8
- def map(self, callback: callable):
9
- return list(
10
- map(callback, self.value)
11
- )
@@ -1,4 +0,0 @@
1
- class Logger:
2
- @staticmethod
3
- def danger(message: str) -> None:
4
- print(message)
@@ -1,29 +0,0 @@
1
- from ..helpers import is_colab
2
-
3
-
4
- class RepositoryWrapper:
5
- def __init__(self):
6
- self.sigmaX = 0
7
- self.sigmaY = 0
8
-
9
- self.directory = "./"
10
- self.images = {}
11
- self.cameras = {}
12
- self.window_counter = 0
13
-
14
- if is_colab():
15
- from google.colab.pathces import cv2_imshow as imshow
16
- else:
17
- from cv2 import imshow
18
-
19
- self.imshow = imshow
20
-
21
- def get_counter(self):
22
- self.window_counter += 1
23
- return self.window_counter
24
-
25
- def __getattr__(self, name: str) -> any:
26
- pass
27
-
28
-
29
- Repository = RepositoryWrapper()
File without changes
File without changes
@@ -1,16 +0,0 @@
1
- import sys
2
- from typing import List
3
- from .classes.Collection import Collection
4
- from .classes.Logger import Logger
5
-
6
-
7
- def is_colab() -> bool:
8
- return 'google.colab' in sys.modules
9
-
10
-
11
- def collection(items: List[any]):
12
- return Collection(items)
13
-
14
-
15
- def danger(message: str) -> None:
16
- Logger.danger(message)
@@ -1,108 +0,0 @@
1
- import cv2
2
- import numpy
3
- from typing import List
4
- from .helpers import collection
5
- from .helpers import danger
6
-
7
- from .classes.Repository import Repository
8
-
9
-
10
- def path(directory: str) -> None:
11
- Repository.directory = directory
12
-
13
-
14
- def write(key: str, filename: str) -> None:
15
- cv2.imwrite(
16
- filename=filename,
17
- img=Repository.images[key]
18
- )
19
-
20
-
21
- def save(key: str, filename: str) -> None:
22
- write(key, filename)
23
-
24
-
25
- def image(filename: str, key: str | None = None, color: bool = True) -> None:
26
- # TODO: add no extension in the file
27
- if key is None:
28
- key = filename
29
-
30
- Repository.images[key] = cv2.imread(filename, int(color))
31
- return Repository.images[key]
32
-
33
-
34
- def show(key: any = None) -> None:
35
- # TODO: add functionality to distinguish between camera and images
36
-
37
- if key is not None and not isinstance(key, str):
38
- Repository.imshow(f"Window #{Repository.get_counter()}", key)
39
-
40
- elif key is None:
41
- for key, image in Repository.images.items():
42
- Repository.imshow(key, image)
43
-
44
- elif key is not None:
45
- if key in Repository.images:
46
- Repository.imshow(key, Repository.images[key])
47
- else:
48
- danger(f"No image found with key {key}")
49
-
50
- cv2.waitKey(0)
51
-
52
-
53
- def camera():
54
- capture = cv2.VideoCapture()
55
- _, frame = capture.read()
56
- Repository.camera_frame = frame
57
-
58
-
59
- def stack(keys: List[str], new_key: str, axis: int):
60
- Repository.images[new_key] = numpy.concatenate(
61
- collection(keys).map(lambda key: Repository.images[key]),
62
- axis=axis
63
- )
64
-
65
-
66
- def vstack(keys: List[str], new_key: str) -> None:
67
- stack(keys, new_key, 1)
68
-
69
-
70
- def hstack(keys: List[str] | str, new_key: str | None = None):
71
- if isinstance(keys, str) and new_key is None:
72
- hstack([keys], keys)
73
- return
74
-
75
- stack(keys, new_key, 0)
76
-
77
-
78
- def blur(key: str, kernel: int | List[int] = (7, 7), new_key: str | None = None):
79
- if new_key is None:
80
- new_key = key
81
-
82
- if isinstance(kernel, int):
83
- kernel = (kernel, kernel)
84
-
85
- Repository.images[new_key] = cv2.blur(
86
- Repository.images[key],
87
- kernel
88
- )
89
-
90
-
91
- def sigma(x: float = 0, y: float = 0):
92
- Repository.sigmaX = x
93
- Repository.sigmaY = y
94
-
95
-
96
- def gaussian(key: str, kernel: None | List[int] = None, new_key: str | None = None):
97
- if new_key is None:
98
- new_key = key
99
-
100
- if isinstance(kernel, int):
101
- kernel = (kernel, kernel)
102
-
103
- Repository.images[new_key] = cv2.GaussianBlur(
104
- Repository.images[key],
105
- kernel,
106
- sigmaX=Repository.sigmaX,
107
- sigmaY=Repository.sigmaY
108
- )
@@ -1,16 +0,0 @@
1
- LICENSE
2
- README.md
3
- setup.py
4
- homa/__init__.py
5
- homa/constants.py
6
- homa/helpers.py
7
- homa/main.py
8
- homa.egg-info/PKG-INFO
9
- homa.egg-info/SOURCES.txt
10
- homa.egg-info/dependency_links.txt
11
- homa.egg-info/requires.txt
12
- homa.egg-info/top_level.txt
13
- homa/classes/Collection.py
14
- homa/classes/Logger.py
15
- homa/classes/Repository.py
16
- homa/classes/__init__.py
@@ -1,2 +0,0 @@
1
- opencv-python
2
- numpy
File without changes
File without changes