homa 0.1.91__tar.gz → 0.1.99__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {homa-0.1.91 → homa-0.1.99}/PKG-INFO +1 -1
- {homa-0.1.91 → homa-0.1.99}/pyproject.toml +1 -1
- homa-0.1.99/src/homa/activations/classes/APLU.py +86 -0
- homa-0.1.99/src/homa/activations/classes/GALU.py +67 -0
- homa-0.1.99/src/homa/activations/classes/MELU.py +70 -0
- homa-0.1.99/src/homa/activations/classes/PDELU.py +54 -0
- homa-0.1.99/src/homa/activations/classes/SReLU.py +69 -0
- homa-0.1.99/src/homa/activations/classes/SmallGALU.py +58 -0
- homa-0.1.99/src/homa/activations/classes/WideMELU.py +90 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/concerns/CalculatesMetricNecessities.py +2 -2
- homa-0.1.99/src/homa/loss/LogitNormLoss.py +12 -0
- homa-0.1.99/src/homa/loss/Loss.py +2 -0
- homa-0.1.99/src/homa/loss/__init__.py +2 -0
- homa-0.1.99/src/homa/vision/StochasticResnet.py +9 -0
- homa-0.1.99/src/homa/vision/StochasticSwin.py +9 -0
- homa-0.1.99/src/homa/vision/Swin.py +12 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/__init__.py +1 -0
- homa-0.1.99/src/homa/vision/modules/SwinModule.py +23 -0
- homa-0.1.99/src/homa/vision/modules/__init__.py +2 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa.egg-info/PKG-INFO +1 -1
- {homa-0.1.91 → homa-0.1.99}/src/homa.egg-info/SOURCES.txt +6 -1
- homa-0.1.91/src/homa/activations/classes/APLU.py +0 -48
- homa-0.1.91/src/homa/activations/classes/GALU.py +0 -51
- homa-0.1.91/src/homa/activations/classes/MELU.py +0 -50
- homa-0.1.91/src/homa/activations/classes/PDELU.py +0 -39
- homa-0.1.91/src/homa/activations/classes/SReLU.py +0 -49
- homa-0.1.91/src/homa/activations/classes/SmallGALU.py +0 -39
- homa-0.1.91/src/homa/activations/classes/WideMELU.py +0 -61
- homa-0.1.91/src/homa/vision/StochasticResnet.py +0 -8
- homa-0.1.91/src/homa/vision/modules/StochasticResnetModule.py +0 -9
- homa-0.1.91/src/homa/vision/modules/__init__.py +0 -2
- {homa-0.1.91 → homa-0.1.99}/README.md +0 -0
- {homa-0.1.91 → homa-0.1.99}/setup.cfg +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/__init__.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/activations/__init__.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/activations/classes/StochasticActivation.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/activations/classes/__init__.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/activations/utils.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/cli/HomaCommand.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/cli/namespaces/CacheNamespace.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/cli/namespaces/MakeNamespace.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/cli/namespaces/__init__.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/device.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/Ensemble.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/__init__.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/concerns/PredictsProbabilities.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/concerns/ReportsClassificationMetrics.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/concerns/ReportsEnsembleAccuracy.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/concerns/ReportsEnsembleF1.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/concerns/ReportsEnsembleKappa.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/concerns/ReportsLogits.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/concerns/ReportsSize.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/concerns/StoresModels.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/ensemble/concerns/__init__.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/settings.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/torch/__init__.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/torch/helpers.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/utils.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/ClassificationModel.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/Model.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/Resnet.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/concerns/HasLabels.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/concerns/HasLogits.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/concerns/HasProbabilities.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/concerns/ReportsAccuracy.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/concerns/ReportsMetrics.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/concerns/Trainable.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/concerns/__init__.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/modules/ResnetModule.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa/vision/utils.py +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa.egg-info/dependency_links.txt +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa.egg-info/entry_points.txt +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa.egg-info/requires.txt +0 -0
- {homa-0.1.91 → homa-0.1.99}/src/homa.egg-info/top_level.txt +0 -0
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "homa"
|
|
7
|
-
version = "0.1.
|
|
7
|
+
version = "0.1.99"
|
|
8
8
|
description = "A curated list of machine learning and deep learning helpers."
|
|
9
9
|
authors = [
|
|
10
10
|
{ name="Taha Shieenavaz", email="tahashieenavaz@gmail.com" },
|
|
@@ -0,0 +1,86 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch import nn
|
|
3
|
+
from torch.nn.parameter import Parameter, UninitializedParameter
|
|
4
|
+
import torch.nn.functional as F
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class APLU(nn.Module):
|
|
8
|
+
def __init__(self, max_input: float = 1.0):
|
|
9
|
+
super().__init__()
|
|
10
|
+
self.max_input = float(max_input)
|
|
11
|
+
self.alpha = UninitializedParameter()
|
|
12
|
+
self.beta = UninitializedParameter()
|
|
13
|
+
self.gamma = UninitializedParameter()
|
|
14
|
+
self.xi = UninitializedParameter()
|
|
15
|
+
self.psi = UninitializedParameter()
|
|
16
|
+
self.mu = UninitializedParameter()
|
|
17
|
+
self._num_channels = None
|
|
18
|
+
|
|
19
|
+
def _initialize_parameters(self, x: torch.Tensor):
|
|
20
|
+
if x.ndim < 2:
|
|
21
|
+
raise ValueError(
|
|
22
|
+
f"Input tensor must have at least 2 dimensions (N, C), but got shape {tuple(x.shape)}"
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
channels = int(x.shape[1])
|
|
26
|
+
self._num_channels = channels
|
|
27
|
+
param_shape = [1] * x.ndim
|
|
28
|
+
param_shape[1] = channels
|
|
29
|
+
|
|
30
|
+
with torch.no_grad():
|
|
31
|
+
self.alpha = Parameter(
|
|
32
|
+
torch.zeros(param_shape, dtype=x.dtype, device=x.device)
|
|
33
|
+
)
|
|
34
|
+
self.beta = Parameter(
|
|
35
|
+
torch.zeros(param_shape, dtype=x.dtype, device=x.device)
|
|
36
|
+
)
|
|
37
|
+
self.gamma = Parameter(
|
|
38
|
+
torch.zeros(param_shape, dtype=x.dtype, device=x.device)
|
|
39
|
+
)
|
|
40
|
+
self.xi = Parameter(
|
|
41
|
+
torch.empty(param_shape, dtype=x.dtype, device=x.device).uniform_(
|
|
42
|
+
0.0, self.max_input
|
|
43
|
+
)
|
|
44
|
+
)
|
|
45
|
+
self.psi = Parameter(
|
|
46
|
+
torch.empty(param_shape, dtype=x.dtype, device=x.device).uniform_(
|
|
47
|
+
0.0, self.max_input
|
|
48
|
+
)
|
|
49
|
+
)
|
|
50
|
+
self.mu = Parameter(
|
|
51
|
+
torch.empty(param_shape, dtype=x.dtype, device=x.device).uniform_(
|
|
52
|
+
0.0, self.max_input
|
|
53
|
+
)
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
def reset_parameters(self):
|
|
57
|
+
if isinstance(self.alpha, UninitializedParameter):
|
|
58
|
+
return
|
|
59
|
+
|
|
60
|
+
with torch.no_grad():
|
|
61
|
+
self.alpha.zero_()
|
|
62
|
+
self.beta.zero_()
|
|
63
|
+
self.gamma.zero_()
|
|
64
|
+
self.xi.uniform_(0.0, self.max_input)
|
|
65
|
+
self.psi.uniform_(0.0, self.max_input)
|
|
66
|
+
self.mu.uniform_(0.0, self.max_input)
|
|
67
|
+
|
|
68
|
+
def forward(self, x: torch.Tensor):
|
|
69
|
+
if isinstance(self.alpha, UninitializedParameter):
|
|
70
|
+
self._initialize_parameters(x)
|
|
71
|
+
|
|
72
|
+
if x.ndim < 2:
|
|
73
|
+
raise ValueError(
|
|
74
|
+
f"Input tensor must have at least 2 dimensions (N, C), but got shape {tuple(x.shape)}"
|
|
75
|
+
)
|
|
76
|
+
if self._num_channels is not None and x.shape[1] != self._num_channels:
|
|
77
|
+
raise RuntimeError(
|
|
78
|
+
f"APLU was initialized with C={self._num_channels} but got C={x.shape[1]}. "
|
|
79
|
+
"Create a new APLU for a different channel size."
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
a = F.relu(x)
|
|
83
|
+
b = self.alpha * F.relu(-x + self.xi)
|
|
84
|
+
c = self.beta * F.relu(-x + self.psi)
|
|
85
|
+
d = self.gamma * F.relu(-x + self.mu)
|
|
86
|
+
return a + b + c + d
|
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch import nn
|
|
3
|
+
from torch.nn.parameter import Parameter, UninitializedParameter
|
|
4
|
+
import torch.nn.functional as F
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class GALU(nn.Module):
|
|
8
|
+
def __init__(self, max_input: float = 1.0):
|
|
9
|
+
super().__init__()
|
|
10
|
+
if max_input <= 0:
|
|
11
|
+
raise ValueError("max_input must be positive.")
|
|
12
|
+
self.max_input = float(max_input)
|
|
13
|
+
self.alpha: torch.Tensor = UninitializedParameter()
|
|
14
|
+
self.beta: torch.Tensor = UninitializedParameter()
|
|
15
|
+
self.gamma: torch.Tensor = UninitializedParameter()
|
|
16
|
+
self.delta: torch.Tensor = UninitializedParameter()
|
|
17
|
+
|
|
18
|
+
def _initialize_parameters(self, x: torch.Tensor):
|
|
19
|
+
if x.ndim < 2:
|
|
20
|
+
raise ValueError(
|
|
21
|
+
f"Input tensor must have at least 2 dimensions (N, C), but got shape {tuple(x.shape)}"
|
|
22
|
+
)
|
|
23
|
+
param_shape = [1] * x.ndim
|
|
24
|
+
param_shape[1] = int(x.shape[1])
|
|
25
|
+
zeros = torch.zeros(param_shape, dtype=x.dtype, device=x.device)
|
|
26
|
+
with torch.no_grad():
|
|
27
|
+
for name in ("alpha", "beta", "gamma", "delta"):
|
|
28
|
+
setattr(self, name, Parameter(zeros.clone()))
|
|
29
|
+
|
|
30
|
+
def reset_parameters(self):
|
|
31
|
+
for name in ("alpha", "beta", "gamma", "delta"):
|
|
32
|
+
p = getattr(self, name)
|
|
33
|
+
if not isinstance(p, UninitializedParameter):
|
|
34
|
+
with torch.no_grad():
|
|
35
|
+
p.zero_()
|
|
36
|
+
|
|
37
|
+
def forward(self, x: torch.Tensor):
|
|
38
|
+
if isinstance(self.alpha, UninitializedParameter):
|
|
39
|
+
self._initialize_parameters(x)
|
|
40
|
+
|
|
41
|
+
if x.ndim < 2:
|
|
42
|
+
raise ValueError(
|
|
43
|
+
f"Input tensor must have at least 2 dimensions (N, C), but got shape {tuple(x.shape)}"
|
|
44
|
+
)
|
|
45
|
+
if not isinstance(self.alpha, UninitializedParameter) and x.shape[1] != self.alpha.shape[1]:
|
|
46
|
+
raise RuntimeError(
|
|
47
|
+
f"GALU was initialized with C={self.alpha.shape[1]} but got C={x.shape[1]}. "
|
|
48
|
+
"Create a new GALU for a different channel size."
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
x_norm = x / self.max_input
|
|
52
|
+
zero = x.new_zeros(1)
|
|
53
|
+
part_prelu = F.relu(x_norm) + self.alpha * torch.minimum(x_norm, zero)
|
|
54
|
+
part_beta = self.beta * (
|
|
55
|
+
F.relu(1.0 - torch.abs(x_norm - 1.0))
|
|
56
|
+
+ torch.minimum(torch.abs(x_norm - 3.0) - 1.0, zero)
|
|
57
|
+
)
|
|
58
|
+
part_gamma = self.gamma * (
|
|
59
|
+
F.relu(0.5 - torch.abs(x_norm - 0.5))
|
|
60
|
+
+ torch.minimum(torch.abs(x_norm - 1.5) - 0.5, zero)
|
|
61
|
+
)
|
|
62
|
+
part_delta = self.delta * (
|
|
63
|
+
F.relu(0.5 - torch.abs(x_norm - 2.5))
|
|
64
|
+
+ torch.minimum(torch.abs(x_norm - 3.5) - 0.5, zero)
|
|
65
|
+
)
|
|
66
|
+
z = part_prelu + part_beta + part_gamma + part_delta
|
|
67
|
+
return z * self.max_input
|
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch import nn
|
|
3
|
+
import torch.nn.functional as F
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class MELU(nn.Module):
|
|
7
|
+
def __init__(self, maxInput: float = 1.0):
|
|
8
|
+
super().__init__()
|
|
9
|
+
self.maxInput = float(maxInput)
|
|
10
|
+
self._num_channels = None
|
|
11
|
+
self.register_parameter("alpha", None)
|
|
12
|
+
self.register_parameter("beta", None)
|
|
13
|
+
self.register_parameter("gamma", None)
|
|
14
|
+
self.register_parameter("delta", None)
|
|
15
|
+
self.register_parameter("xi", None)
|
|
16
|
+
self.register_parameter("psi", None)
|
|
17
|
+
|
|
18
|
+
def _ensure_parameters(self, x: torch.Tensor):
|
|
19
|
+
if x.dim() != 4:
|
|
20
|
+
raise ValueError(
|
|
21
|
+
f"Expected 4D input (N, C, H, W), got {x.dim()}D with shape {tuple(x.shape)}"
|
|
22
|
+
)
|
|
23
|
+
c = int(x.shape[1])
|
|
24
|
+
if self._num_channels is None:
|
|
25
|
+
self._num_channels = c
|
|
26
|
+
elif c != self._num_channels:
|
|
27
|
+
raise RuntimeError(
|
|
28
|
+
f"MELU was initialized with C={self._num_channels} but got C={c}. "
|
|
29
|
+
"Create a new MELU for a different channel size."
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
if self.alpha is None:
|
|
33
|
+
shape = (1, c, 1, 1)
|
|
34
|
+
device, dtype = x.device, x.dtype
|
|
35
|
+
for name in ("alpha", "beta", "gamma", "delta", "xi", "psi"):
|
|
36
|
+
setattr(
|
|
37
|
+
self,
|
|
38
|
+
name,
|
|
39
|
+
nn.Parameter(torch.zeros(shape, dtype=dtype, device=device)),
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
def reset_parameters(self):
|
|
43
|
+
for p in (self.alpha, self.beta, self.gamma, self.delta, self.xi, self.psi):
|
|
44
|
+
if p is not None:
|
|
45
|
+
with torch.no_grad():
|
|
46
|
+
p.zero_()
|
|
47
|
+
|
|
48
|
+
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
|
49
|
+
self._ensure_parameters(X)
|
|
50
|
+
|
|
51
|
+
X_norm = X / self.maxInput
|
|
52
|
+
Y = torch.roll(X_norm, shifts=-1, dims=1)
|
|
53
|
+
|
|
54
|
+
term1 = F.relu(X_norm)
|
|
55
|
+
term2 = self.alpha * torch.clamp(X_norm, max=0)
|
|
56
|
+
|
|
57
|
+
dist_sq_beta = (X_norm - 2) ** 2 + (Y - 2) ** 2
|
|
58
|
+
dist_sq_gamma = (X_norm - 1) ** 2 + (Y - 1) ** 2
|
|
59
|
+
dist_sq_delta = (X_norm - 1) ** 2 + (Y - 3) ** 2
|
|
60
|
+
dist_sq_xi = (X_norm - 3) ** 2 + (Y - 1) ** 2
|
|
61
|
+
dist_sq_psi = (X_norm - 3) ** 2 + (Y - 3) ** 2
|
|
62
|
+
|
|
63
|
+
term3 = self.beta * torch.sqrt(F.relu(2 - dist_sq_beta))
|
|
64
|
+
term4 = self.gamma * torch.sqrt(F.relu(1 - dist_sq_gamma))
|
|
65
|
+
term5 = self.delta * torch.sqrt(F.relu(1 - dist_sq_delta))
|
|
66
|
+
term6 = self.xi * torch.sqrt(F.relu(1 - dist_sq_xi))
|
|
67
|
+
term7 = self.psi * torch.sqrt(F.relu(1 - dist_sq_psi))
|
|
68
|
+
|
|
69
|
+
Z_norm = term1 + term2 + term3 + term4 + term5 + term6 + term7
|
|
70
|
+
return Z_norm * self.maxInput
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch import nn
|
|
3
|
+
import torch.nn.functional as F
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class PDELU(nn.Module):
|
|
7
|
+
def __init__(self, theta: float = 0.5):
|
|
8
|
+
super().__init__()
|
|
9
|
+
if theta == 1.0:
|
|
10
|
+
raise ValueError(
|
|
11
|
+
"theta cannot be 1.0, as it would cause a division by zero."
|
|
12
|
+
)
|
|
13
|
+
self.theta = float(theta)
|
|
14
|
+
self._power_val = 1.0 / (1.0 - self.theta)
|
|
15
|
+
self.register_parameter("alpha", None)
|
|
16
|
+
self._num_channels = None
|
|
17
|
+
|
|
18
|
+
def _ensure_parameters(self, x: torch.Tensor):
|
|
19
|
+
if x.ndim < 2:
|
|
20
|
+
raise ValueError(
|
|
21
|
+
f"Input tensor must have at least 2 dimensions (N, C), but got shape {tuple(x.shape)}"
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
c = int(x.shape[1])
|
|
25
|
+
if self._num_channels is None:
|
|
26
|
+
self._num_channels = c
|
|
27
|
+
elif c != self._num_channels:
|
|
28
|
+
raise RuntimeError(
|
|
29
|
+
f"PDELU was initialized with C={self._num_channels} but got C={c}. "
|
|
30
|
+
"Create a new PDELU for a different channel size."
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
if self.alpha is None:
|
|
34
|
+
param_shape = [1] * x.ndim
|
|
35
|
+
param_shape[1] = c
|
|
36
|
+
self.alpha = nn.Parameter(
|
|
37
|
+
torch.full(param_shape, 0.1, dtype=x.dtype, device=x.device)
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
def reset_parameters(self):
|
|
41
|
+
if self.alpha is not None:
|
|
42
|
+
with torch.no_grad():
|
|
43
|
+
self.alpha.fill_(0.1)
|
|
44
|
+
|
|
45
|
+
def forward(self, x: torch.Tensor):
|
|
46
|
+
self._ensure_parameters(x)
|
|
47
|
+
|
|
48
|
+
positive_part = F.relu(x)
|
|
49
|
+
inner_term = F.relu(1.0 + (1.0 - self.theta) * x)
|
|
50
|
+
powered_term = torch.pow(inner_term, self._power_val)
|
|
51
|
+
subtracted_term = powered_term - 1.0
|
|
52
|
+
zero = torch.zeros(1, dtype=x.dtype, device=x.device)
|
|
53
|
+
negative_part = self.alpha * torch.minimum(subtracted_term, zero)
|
|
54
|
+
return positive_part + negative_part
|
|
@@ -0,0 +1,69 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch import nn
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class SReLU(nn.Module):
|
|
6
|
+
def __init__(
|
|
7
|
+
self,
|
|
8
|
+
alpha_init: float = 0.0,
|
|
9
|
+
beta_init: float = 0.0,
|
|
10
|
+
gamma_init: float = 1.0,
|
|
11
|
+
delta_init: float = 1.0,
|
|
12
|
+
):
|
|
13
|
+
super().__init__()
|
|
14
|
+
self.alpha_init_val = float(alpha_init)
|
|
15
|
+
self.beta_init_val = float(beta_init)
|
|
16
|
+
self.gamma_init_val = float(gamma_init)
|
|
17
|
+
self.delta_init_val = float(delta_init)
|
|
18
|
+
self._num_channels = None
|
|
19
|
+
self.register_parameter("alpha", None)
|
|
20
|
+
self.register_parameter("beta", None)
|
|
21
|
+
self.register_parameter("gamma", None)
|
|
22
|
+
self.register_parameter("delta", None)
|
|
23
|
+
|
|
24
|
+
def _ensure_parameters(self, x: torch.Tensor):
|
|
25
|
+
if x.dim() != 4:
|
|
26
|
+
raise ValueError(
|
|
27
|
+
f"Expected 4D input (N, C, H, W), got {x.dim()}D with shape {tuple(x.shape)}"
|
|
28
|
+
)
|
|
29
|
+
c = int(x.shape[1])
|
|
30
|
+
if self._num_channels is None:
|
|
31
|
+
self._num_channels = c
|
|
32
|
+
elif c != self._num_channels:
|
|
33
|
+
raise RuntimeError(
|
|
34
|
+
f"SReLU was initialized with C={self._num_channels} but got C={c}. "
|
|
35
|
+
"Create a new SReLU for different channel sizes."
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
if self.alpha is None:
|
|
39
|
+
shape = (1, c, 1, 1)
|
|
40
|
+
device, dtype = x.device, x.dtype
|
|
41
|
+
self.alpha = nn.Parameter(
|
|
42
|
+
torch.full(shape, self.alpha_init_val, dtype=dtype, device=device)
|
|
43
|
+
)
|
|
44
|
+
self.beta = nn.Parameter(
|
|
45
|
+
torch.full(shape, self.beta_init_val, dtype=dtype, device=device)
|
|
46
|
+
)
|
|
47
|
+
self.gamma = nn.Parameter(
|
|
48
|
+
torch.full(shape, self.gamma_init_val, dtype=dtype, device=device)
|
|
49
|
+
)
|
|
50
|
+
self.delta = nn.Parameter(
|
|
51
|
+
torch.full(shape, self.delta_init_val, dtype=dtype, device=device)
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
def reset_parameters(self):
|
|
55
|
+
if self.alpha is not None:
|
|
56
|
+
with torch.no_grad():
|
|
57
|
+
self.alpha.fill_(self.alpha_init_val)
|
|
58
|
+
self.beta.fill_(self.beta_init_val)
|
|
59
|
+
self.gamma.fill_(self.gamma_init_val)
|
|
60
|
+
self.delta.fill_(self.delta_init_val)
|
|
61
|
+
|
|
62
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
63
|
+
self._ensure_parameters(x)
|
|
64
|
+
|
|
65
|
+
start = self.beta + self.alpha * (x - self.beta)
|
|
66
|
+
finish = self.delta + self.gamma * (x - self.delta)
|
|
67
|
+
out = torch.where(x < self.beta, start, x)
|
|
68
|
+
out = torch.where(x > self.delta, finish, out)
|
|
69
|
+
return out
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch import nn
|
|
3
|
+
from torch.nn.parameter import Parameter
|
|
4
|
+
import torch.nn.functional as F
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class SmallGALU(nn.Module):
|
|
8
|
+
def __init__(self, max_input: float = 1.0):
|
|
9
|
+
super().__init__()
|
|
10
|
+
if max_input <= 0:
|
|
11
|
+
raise ValueError("max_input must be positive.")
|
|
12
|
+
self.max_input = float(max_input)
|
|
13
|
+
self.register_parameter("alpha", None)
|
|
14
|
+
self.register_parameter("beta", None)
|
|
15
|
+
self._num_channels = None
|
|
16
|
+
|
|
17
|
+
def _initialize_parameters(self, x: torch.Tensor):
|
|
18
|
+
if x.ndim < 2:
|
|
19
|
+
raise ValueError(
|
|
20
|
+
f"Input tensor must have at least 2 dimensions (N, C), but got shape {tuple(x.shape)}"
|
|
21
|
+
)
|
|
22
|
+
self._num_channels = int(x.shape[1])
|
|
23
|
+
param_shape = [1] * x.ndim
|
|
24
|
+
param_shape[1] = self._num_channels
|
|
25
|
+
device = x.device
|
|
26
|
+
dtype = x.dtype
|
|
27
|
+
self.alpha = Parameter(torch.zeros(param_shape, dtype=dtype, device=device))
|
|
28
|
+
self.beta = Parameter(torch.zeros(param_shape, dtype=dtype, device=device))
|
|
29
|
+
|
|
30
|
+
def reset_parameters(self):
|
|
31
|
+
if self.alpha is not None:
|
|
32
|
+
with torch.no_grad():
|
|
33
|
+
self.alpha.zero_()
|
|
34
|
+
self.beta.zero_()
|
|
35
|
+
|
|
36
|
+
def forward(self, x: torch.Tensor):
|
|
37
|
+
if self.alpha is None:
|
|
38
|
+
self._initialize_parameters(x)
|
|
39
|
+
else:
|
|
40
|
+
if x.ndim < 2:
|
|
41
|
+
raise ValueError(
|
|
42
|
+
f"Input tensor must have at least 2 dimensions (N, C), but got shape {tuple(x.shape)}"
|
|
43
|
+
)
|
|
44
|
+
if x.shape[1] != self._num_channels:
|
|
45
|
+
raise RuntimeError(
|
|
46
|
+
f"SmallGALU was initialized with C={self._num_channels} but got C={x.shape[1]}. "
|
|
47
|
+
"Create a new SmallGALU for a different channel size."
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
x_norm = x / self.max_input
|
|
51
|
+
zero = torch.zeros(1, dtype=x.dtype, device=x.device)
|
|
52
|
+
part_prelu = F.relu(x_norm) + self.alpha * torch.minimum(x_norm, zero)
|
|
53
|
+
part_beta = self.beta * (
|
|
54
|
+
F.relu(1.0 - torch.abs(x_norm - 1.0))
|
|
55
|
+
+ torch.minimum(torch.abs(x_norm - 3.0) - 1.0, zero)
|
|
56
|
+
)
|
|
57
|
+
z = part_prelu + part_beta
|
|
58
|
+
return z * self.max_input
|
|
@@ -0,0 +1,90 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch import nn
|
|
3
|
+
import torch.nn.functional as F
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class WideMELU(nn.Module):
|
|
7
|
+
def __init__(self, maxInput: float = 1.0):
|
|
8
|
+
super().__init__()
|
|
9
|
+
self.maxInput = float(maxInput)
|
|
10
|
+
self._num_channels = None
|
|
11
|
+
self.register_parameter("alpha", None)
|
|
12
|
+
self.register_parameter("beta", None)
|
|
13
|
+
self.register_parameter("gamma", None)
|
|
14
|
+
self.register_parameter("delta", None)
|
|
15
|
+
self.register_parameter("xi", None)
|
|
16
|
+
self.register_parameter("psi", None)
|
|
17
|
+
self.register_parameter("theta", None)
|
|
18
|
+
self.register_parameter("lam", None)
|
|
19
|
+
|
|
20
|
+
def _ensure_parameters(self, x: torch.Tensor):
|
|
21
|
+
if x.dim() != 4:
|
|
22
|
+
raise ValueError(
|
|
23
|
+
f"Expected 4D input (N, C, H, W), got {x.dim()}D with shape {tuple(x.shape)}"
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
c = int(x.shape[1])
|
|
27
|
+
if self._num_channels is None:
|
|
28
|
+
self._num_channels = c
|
|
29
|
+
elif c != self._num_channels:
|
|
30
|
+
raise RuntimeError(
|
|
31
|
+
f"WideMELU was initialized with C={self._num_channels} but got C={c}. "
|
|
32
|
+
"Create a new WideMELU for different channel sizes."
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
if self.alpha is None:
|
|
36
|
+
shape = (1, c, 1, 1)
|
|
37
|
+
device, dtype = x.device, x.dtype
|
|
38
|
+
for name in (
|
|
39
|
+
"alpha",
|
|
40
|
+
"beta",
|
|
41
|
+
"gamma",
|
|
42
|
+
"delta",
|
|
43
|
+
"xi",
|
|
44
|
+
"psi",
|
|
45
|
+
"theta",
|
|
46
|
+
"lam",
|
|
47
|
+
):
|
|
48
|
+
param = nn.Parameter(torch.zeros(shape, dtype=dtype, device=device))
|
|
49
|
+
setattr(self, name, param)
|
|
50
|
+
|
|
51
|
+
def reset_parameters(self):
|
|
52
|
+
params = (
|
|
53
|
+
self.alpha,
|
|
54
|
+
self.beta,
|
|
55
|
+
self.gamma,
|
|
56
|
+
self.delta,
|
|
57
|
+
self.xi,
|
|
58
|
+
self.psi,
|
|
59
|
+
self.theta,
|
|
60
|
+
self.lam,
|
|
61
|
+
)
|
|
62
|
+
for p in params:
|
|
63
|
+
if p is not None:
|
|
64
|
+
with torch.no_grad():
|
|
65
|
+
p.zero_()
|
|
66
|
+
|
|
67
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
68
|
+
self._ensure_parameters(x)
|
|
69
|
+
|
|
70
|
+
X_norm = x / self.maxInput
|
|
71
|
+
Y = torch.roll(X_norm, shifts=-1, dims=1)
|
|
72
|
+
|
|
73
|
+
term1 = F.relu(X_norm)
|
|
74
|
+
term2 = self.alpha * torch.clamp(X_norm, max=0)
|
|
75
|
+
dist_sq_beta = (X_norm - 2) ** 2 + (Y - 2) ** 2
|
|
76
|
+
dist_sq_gamma = (X_norm - 1) ** 2 + (Y - 1) ** 2
|
|
77
|
+
dist_sq_delta = (X_norm - 1) ** 2 + (Y - 3) ** 2
|
|
78
|
+
dist_sq_xi = (X_norm - 3) ** 2 + (Y - 1) ** 2
|
|
79
|
+
dist_sq_psi = (X_norm - 3) ** 2 + (Y - 3) ** 2
|
|
80
|
+
dist_sq_theta = (X_norm - 1) ** 2 + (Y - 2) ** 2
|
|
81
|
+
dist_sq_lambda = (X_norm - 3) ** 2 + (Y - 2) ** 2
|
|
82
|
+
term3 = self.beta * torch.sqrt(F.relu(2 - dist_sq_beta))
|
|
83
|
+
term4 = self.gamma * torch.sqrt(F.relu(1 - dist_sq_gamma))
|
|
84
|
+
term5 = self.delta * torch.sqrt(F.relu(1 - dist_sq_delta))
|
|
85
|
+
term6 = self.xi * torch.sqrt(F.relu(1 - dist_sq_xi))
|
|
86
|
+
term7 = self.psi * torch.sqrt(F.relu(1 - dist_sq_psi))
|
|
87
|
+
term8 = self.theta * torch.sqrt(F.relu(1 - dist_sq_theta))
|
|
88
|
+
term9 = self.lam * torch.sqrt(F.relu(1 - dist_sq_lambda))
|
|
89
|
+
Z_norm = term1 + term2 + term3 + term4 + term5 + term6 + term7 + term8 + term9
|
|
90
|
+
return Z_norm * self.maxInput
|
|
@@ -18,7 +18,7 @@ class CalculatesMetricNecessities:
|
|
|
18
18
|
model.eval()
|
|
19
19
|
logits = model(x)
|
|
20
20
|
sum_logits = logits if sum_logits is None else sum_logits + logits
|
|
21
|
-
|
|
22
|
-
predictions.extend(
|
|
21
|
+
batch_predictions = sum_logits.argmax(dim=1)
|
|
22
|
+
predictions.extend(batch_predictions.cpu().numpy())
|
|
23
23
|
labels.extend(y.cpu().numpy())
|
|
24
24
|
return predictions, labels
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from .Loss import Loss
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class LogitNormLoss(Loss):
|
|
6
|
+
def __init__(self, *args, **kwargs):
|
|
7
|
+
super().__init__(*args, **kwargs)
|
|
8
|
+
|
|
9
|
+
def forward(self, logits, target):
|
|
10
|
+
norms = torch.norm(logits, p=2, dim=-1, keepdim=True) + 1e-7
|
|
11
|
+
normalized_logits = torch.div(logits, norms)
|
|
12
|
+
return torch.nn.functional.cross_entropy(normalized_logits, target)
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
from .Resnet import Resnet
|
|
2
|
+
from .utils import replace_relu
|
|
3
|
+
from ..activations import StochasticActivation
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class StochasticResnet(Resnet):
|
|
7
|
+
def __init__(self, *args, **kwargs):
|
|
8
|
+
super().__init__(*args, **kwargs)
|
|
9
|
+
replace_relu(self.network, StochasticActivation)
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
from .Swin import Swin
|
|
2
|
+
from .utils import replace_gelu
|
|
3
|
+
from ..activations import StochasticActivation
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class StochasticSwin(Swin):
|
|
7
|
+
def __init__(self, *args, **kwargs):
|
|
8
|
+
super().__init__(*args, **kwargs)
|
|
9
|
+
replace_gelu(self.network.encoder, StochasticActivation)
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from .ClassificationModel import ClassificationModel
|
|
3
|
+
from .concerns import Trainable, ReportsMetrics
|
|
4
|
+
from .modules import SwinModule
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class Swin(ClassificationModel, Trainable, ReportsMetrics):
|
|
8
|
+
def __init__(self, num_classes: int, lr: float = 0.0001):
|
|
9
|
+
super().__init__()
|
|
10
|
+
self.network = SwinModule(num_classes=num_classes)
|
|
11
|
+
self.optimizer = torch.optim.AdamW(self.network.parameters(), lr=lr)
|
|
12
|
+
self.criterion = torch.nn.CrossEntropyLoss()
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torchvision.models import swin_v2_b
|
|
3
|
+
from torch.nn.init import kaiming_uniform_ as kaiming
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class SwinModule(torch.nn.Module):
|
|
7
|
+
def __init__(self, num_classes: int):
|
|
8
|
+
super().__init__()
|
|
9
|
+
self.num_classes = num_classes
|
|
10
|
+
self._create_encoder()
|
|
11
|
+
self._create_fc()
|
|
12
|
+
|
|
13
|
+
def _create_encoder(self):
|
|
14
|
+
self.encoder = swin_v2_b(weights="DEFAULT")
|
|
15
|
+
self.encoder.head = torch.nn.Identity()
|
|
16
|
+
|
|
17
|
+
def _create_fc(self):
|
|
18
|
+
self.fc = torch.nn.Linear(1024, self.num_classes)
|
|
19
|
+
kaiming(self.fc.weight, mode="fan_in", nonlinearity="relu")
|
|
20
|
+
|
|
21
|
+
def forward(self, images: torch.Tensor):
|
|
22
|
+
features = self.encoder(images)
|
|
23
|
+
return self.fc(features)
|
|
@@ -37,12 +37,17 @@ src/homa/ensemble/concerns/ReportsLogits.py
|
|
|
37
37
|
src/homa/ensemble/concerns/ReportsSize.py
|
|
38
38
|
src/homa/ensemble/concerns/StoresModels.py
|
|
39
39
|
src/homa/ensemble/concerns/__init__.py
|
|
40
|
+
src/homa/loss/LogitNormLoss.py
|
|
41
|
+
src/homa/loss/Loss.py
|
|
42
|
+
src/homa/loss/__init__.py
|
|
40
43
|
src/homa/torch/__init__.py
|
|
41
44
|
src/homa/torch/helpers.py
|
|
42
45
|
src/homa/vision/ClassificationModel.py
|
|
43
46
|
src/homa/vision/Model.py
|
|
44
47
|
src/homa/vision/Resnet.py
|
|
45
48
|
src/homa/vision/StochasticResnet.py
|
|
49
|
+
src/homa/vision/StochasticSwin.py
|
|
50
|
+
src/homa/vision/Swin.py
|
|
46
51
|
src/homa/vision/__init__.py
|
|
47
52
|
src/homa/vision/utils.py
|
|
48
53
|
src/homa/vision/concerns/HasLabels.py
|
|
@@ -53,5 +58,5 @@ src/homa/vision/concerns/ReportsMetrics.py
|
|
|
53
58
|
src/homa/vision/concerns/Trainable.py
|
|
54
59
|
src/homa/vision/concerns/__init__.py
|
|
55
60
|
src/homa/vision/modules/ResnetModule.py
|
|
56
|
-
src/homa/vision/modules/
|
|
61
|
+
src/homa/vision/modules/SwinModule.py
|
|
57
62
|
src/homa/vision/modules/__init__.py
|
|
@@ -1,48 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
class APLU(torch.nn.Module):
|
|
5
|
-
def __init__(self, max_input: float = 1.0):
|
|
6
|
-
super(APLU, self).__init__()
|
|
7
|
-
self.max_input = max_input
|
|
8
|
-
self.alpha = None
|
|
9
|
-
self.beta = None
|
|
10
|
-
self.gamma = None
|
|
11
|
-
self.xi = None
|
|
12
|
-
self.psi = None
|
|
13
|
-
self.mu = None
|
|
14
|
-
self._num_channels = None
|
|
15
|
-
|
|
16
|
-
def _initialize_parameters(self, x):
|
|
17
|
-
if x.ndim < 2:
|
|
18
|
-
raise ValueError(
|
|
19
|
-
f"Input tensor must have at least 2 dimensions (N, C), but got shape {x.shape}"
|
|
20
|
-
)
|
|
21
|
-
|
|
22
|
-
num_channels = x.shape[1]
|
|
23
|
-
self._num_channels = num_channels
|
|
24
|
-
|
|
25
|
-
param_shape = [1] * x.ndim
|
|
26
|
-
param_shape[1] = num_channels
|
|
27
|
-
|
|
28
|
-
self.alpha = torch.nn.Parameter(torch.zeros(param_shape))
|
|
29
|
-
self.beta = torch.nn.Parameter(torch.zeros(param_shape))
|
|
30
|
-
self.gamma = torch.nn.Parameter(torch.zeros(param_shape))
|
|
31
|
-
|
|
32
|
-
self.xi = torch.nn.Parameter(self.max_input * torch.rand(param_shape))
|
|
33
|
-
self.psi = torch.nn.Parameter(self.max_input * torch.rand(param_shape))
|
|
34
|
-
self.mu = torch.nn.Parameter(self.max_input * torch.rand(param_shape))
|
|
35
|
-
|
|
36
|
-
def forward(self, x):
|
|
37
|
-
if self.alpha is None:
|
|
38
|
-
self._initialize_parameters(x)
|
|
39
|
-
|
|
40
|
-
a = torch.relu(x)
|
|
41
|
-
|
|
42
|
-
# following are called hinges
|
|
43
|
-
b = self.alpha * torch.relu(-x + self.xi)
|
|
44
|
-
c = self.beta * torch.relu(-x + self.psi)
|
|
45
|
-
d = self.gamma * torch.relu(-x + self.mu)
|
|
46
|
-
z = a + b + c + d
|
|
47
|
-
|
|
48
|
-
return z
|
|
@@ -1,51 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
class GALU(torch.nn.Module):
|
|
5
|
-
def __init__(self, max_input: float = 1.0):
|
|
6
|
-
super(GALU, self).__init__()
|
|
7
|
-
if max_input <= 0:
|
|
8
|
-
raise ValueError("max_input must be positive.")
|
|
9
|
-
self.max_input = max_input
|
|
10
|
-
self.alpha = None
|
|
11
|
-
self.beta = None
|
|
12
|
-
self.gamma = None
|
|
13
|
-
self.delta = None
|
|
14
|
-
self._num_channels = None
|
|
15
|
-
|
|
16
|
-
def _initialize_parameters(self, x):
|
|
17
|
-
if x.ndim < 2:
|
|
18
|
-
raise ValueError(
|
|
19
|
-
f"Input tensor must have at least 2 dimensions (N, C), but got shape {x.shape}"
|
|
20
|
-
)
|
|
21
|
-
|
|
22
|
-
num_channels = x.shape[1]
|
|
23
|
-
self._num_channels = num_channels
|
|
24
|
-
param_shape = [1] * x.ndim
|
|
25
|
-
param_shape[1] = num_channels
|
|
26
|
-
self.alpha = torch.nn.Parameter(torch.zeros(param_shape))
|
|
27
|
-
self.beta = torch.nn.Parameter(torch.zeros(param_shape))
|
|
28
|
-
self.gamma = torch.nn.Parameter(torch.zeros(param_shape))
|
|
29
|
-
self.delta = torch.nn.Parameter(torch.zeros(param_shape))
|
|
30
|
-
|
|
31
|
-
def forward(self, x):
|
|
32
|
-
if self.alpha is None:
|
|
33
|
-
self._initialize_parameters(x)
|
|
34
|
-
|
|
35
|
-
zero = torch.tensor(0.0, device=x.device, dtype=x.dtype)
|
|
36
|
-
x_norm = x / self.max_input
|
|
37
|
-
part_prelu = torch.relu(x_norm) + self.alpha * torch.min(x_norm, zero)
|
|
38
|
-
part_beta = self.beta * (
|
|
39
|
-
torch.relu(1.0 - torch.abs(x_norm - 1.0))
|
|
40
|
-
+ torch.min(torch.abs(x_norm - 3.0) - 1.0, zero)
|
|
41
|
-
)
|
|
42
|
-
part_gamma = self.gamma * (
|
|
43
|
-
torch.relu(0.5 - torch.abs(x_norm - 0.5))
|
|
44
|
-
+ torch.min(torch.abs(x_norm - 1.5) - 0.5, zero)
|
|
45
|
-
)
|
|
46
|
-
part_delta = self.delta * (
|
|
47
|
-
torch.relu(0.5 - torch.abs(x_norm - 2.5))
|
|
48
|
-
+ torch.min(torch.abs(x_norm - 3.5) - 0.5, zero)
|
|
49
|
-
)
|
|
50
|
-
z = part_prelu + part_beta + part_gamma + part_delta
|
|
51
|
-
return z * self.max_input
|
|
@@ -1,50 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
class MELU(torch.nn.Module):
|
|
5
|
-
def __init__(self, maxInput: float = 1.0):
|
|
6
|
-
super().__init__()
|
|
7
|
-
self.maxInput = float(maxInput)
|
|
8
|
-
self.alpha = None
|
|
9
|
-
self.beta = None
|
|
10
|
-
self.gamma = None
|
|
11
|
-
self.delta = None
|
|
12
|
-
self.xi = None
|
|
13
|
-
self.psi = None
|
|
14
|
-
self._initialized = False
|
|
15
|
-
|
|
16
|
-
def _initialize_parameters(self, X: torch.Tensor):
|
|
17
|
-
if X.dim() != 4:
|
|
18
|
-
raise ValueError(
|
|
19
|
-
f"Expected 4D input (B, C, H, W), but got {X.dim()}D input."
|
|
20
|
-
)
|
|
21
|
-
num_channels = X.shape[1]
|
|
22
|
-
shape = (1, num_channels, 1, 1)
|
|
23
|
-
self.alpha = torch.nn.Parameter(torch.zeros(shape))
|
|
24
|
-
self.beta = torch.nn.Parameter(torch.zeros(shape))
|
|
25
|
-
self.gamma = torch.nn.Parameter(torch.zeros(shape))
|
|
26
|
-
self.delta = torch.nn.Parameter(torch.zeros(shape))
|
|
27
|
-
self.xi = torch.nn.Parameter(torch.zeros(shape))
|
|
28
|
-
self.psi = torch.nn.Parameter(torch.zeros(shape))
|
|
29
|
-
self._initialized = True
|
|
30
|
-
|
|
31
|
-
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
|
32
|
-
if not self._initialized:
|
|
33
|
-
self._initialize_parameters(X)
|
|
34
|
-
X_norm = X / self.maxInput
|
|
35
|
-
Y = torch.roll(X_norm, shifts=-1, dims=1)
|
|
36
|
-
term1 = torch.relu(X_norm)
|
|
37
|
-
term2 = self.alpha * torch.clamp(X_norm, max=0)
|
|
38
|
-
dist_sq_beta = (X_norm - 2) ** 2 + (Y - 2) ** 2
|
|
39
|
-
dist_sq_gamma = (X_norm - 1) ** 2 + (Y - 1) ** 2
|
|
40
|
-
dist_sq_delta = (X_norm - 1) ** 2 + (Y - 3) ** 2
|
|
41
|
-
dist_sq_xi = (X_norm - 3) ** 2 + (Y - 1) ** 2
|
|
42
|
-
dist_sq_psi = (X_norm - 3) ** 2 + (Y - 3) ** 2
|
|
43
|
-
term3 = self.beta * torch.sqrt(torch.relu(2 - dist_sq_beta))
|
|
44
|
-
term4 = self.gamma * torch.sqrt(torch.relu(1 - dist_sq_gamma))
|
|
45
|
-
term5 = self.delta * torch.sqrt(torch.relu(1 - dist_sq_delta))
|
|
46
|
-
term6 = self.xi * torch.sqrt(torch.relu(1 - dist_sq_xi))
|
|
47
|
-
term7 = self.psi * torch.sqrt(torch.relu(1 - dist_sq_psi))
|
|
48
|
-
Z_norm = term1 + term2 + term3 + term4 + term5 + term6 + term7
|
|
49
|
-
Z = Z_norm * self.maxInput
|
|
50
|
-
return Z
|
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
class PDELU(torch.nn.Module):
|
|
5
|
-
def __init__(self, theta: float = 0.5):
|
|
6
|
-
super(PDELU, self).__init__()
|
|
7
|
-
if theta == 1.0:
|
|
8
|
-
raise ValueError(
|
|
9
|
-
"theta cannot be 1.0, as it would cause a division by zero."
|
|
10
|
-
)
|
|
11
|
-
self.theta = theta
|
|
12
|
-
self._power_val = 1.0 / (1.0 - self.theta)
|
|
13
|
-
self.alpha = torch.nn.UninitializedParameter()
|
|
14
|
-
self._num_channels = None
|
|
15
|
-
|
|
16
|
-
def _initialize_parameters(self, x: torch.Tensor):
|
|
17
|
-
if x.ndim < 2:
|
|
18
|
-
raise ValueError(
|
|
19
|
-
f"Input tensor must have at least 2 dimensions (N, C), but got shape {x.shape}"
|
|
20
|
-
)
|
|
21
|
-
|
|
22
|
-
num_channels = x.shape[1]
|
|
23
|
-
self._num_channels = num_channels
|
|
24
|
-
param_shape = [1] * x.ndim
|
|
25
|
-
param_shape[1] = num_channels
|
|
26
|
-
init_tensor = torch.zeros(param_shape) + 0.1
|
|
27
|
-
self.alpha = torch.nn.Parameter(init_tensor)
|
|
28
|
-
|
|
29
|
-
def forward(self, x: torch.Tensor):
|
|
30
|
-
if self.alpha is None:
|
|
31
|
-
self._initialize_parameters(x)
|
|
32
|
-
|
|
33
|
-
zero = torch.tensor(0.0, device=x.device, dtype=x.dtype)
|
|
34
|
-
positive_part = torch.relu(x)
|
|
35
|
-
inner_term = torch.relu(1.0 + (1.0 - self.theta) * x)
|
|
36
|
-
powered_term = torch.pow(inner_term, self._power_val)
|
|
37
|
-
subtracted_term = powered_term - 1.0
|
|
38
|
-
negative_part = self.alpha * torch.min(subtracted_term, zero)
|
|
39
|
-
return positive_part + negative_part
|
|
@@ -1,49 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
class SReLU(torch.nn.Module):
|
|
5
|
-
def __init__(
|
|
6
|
-
self,
|
|
7
|
-
alpha_init: float = 0.0,
|
|
8
|
-
beta_init: float = 0.0,
|
|
9
|
-
gamma_init: float = 1.0,
|
|
10
|
-
delta_init: float = 1.0,
|
|
11
|
-
):
|
|
12
|
-
super().__init__()
|
|
13
|
-
self.alpha_init_val = alpha_init
|
|
14
|
-
self.beta_init_val = beta_init
|
|
15
|
-
self.gamma_init_val = gamma_init
|
|
16
|
-
self.delta_init_val = delta_init
|
|
17
|
-
self.alpha = torch.nn.UninitializedParameter()
|
|
18
|
-
self.beta = torch.nn.UninitializedParameter()
|
|
19
|
-
self.gamma = torch.nn.UninitializedParameter()
|
|
20
|
-
self.delta = torch.nn.UninitializedParameter()
|
|
21
|
-
|
|
22
|
-
def _initialize_parameters(self, x: torch.Tensor):
|
|
23
|
-
if isinstance(self.alpha, torch.nn.UninitializedParameter):
|
|
24
|
-
if x.dim() < 2:
|
|
25
|
-
raise ValueError(
|
|
26
|
-
f"Input tensor must have at least 2 dimensions (N, C), but got {x.dim()}"
|
|
27
|
-
)
|
|
28
|
-
|
|
29
|
-
num_channels = x.shape[1]
|
|
30
|
-
param_shape = [1] * x.dim()
|
|
31
|
-
param_shape[1] = num_channels
|
|
32
|
-
self.alpha = torch.nn.Parameter(
|
|
33
|
-
torch.full(param_shape, self.alpha_init_val)
|
|
34
|
-
)
|
|
35
|
-
self.beta = torch.nn.Parameter(torch.full(param_shape, self.beta_init_val))
|
|
36
|
-
self.gamma = torch.nn.Parameter(
|
|
37
|
-
torch.full(param_shape, self.gamma_init_val)
|
|
38
|
-
)
|
|
39
|
-
self.delta = torch.nn.Parameter(
|
|
40
|
-
torch.full(param_shape, self.delta_init_val)
|
|
41
|
-
)
|
|
42
|
-
|
|
43
|
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
44
|
-
self._initialize_parameters(x)
|
|
45
|
-
start = self.beta + self.alpha * (x - self.beta)
|
|
46
|
-
finish = self.delta + self.gamma * (x - self.delta)
|
|
47
|
-
out = torch.where(x < self.beta, start, x)
|
|
48
|
-
out = torch.where(x > self.delta, finish, out)
|
|
49
|
-
return out
|
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
class SmallGALU(torch.nn.Module):
|
|
5
|
-
def __init__(self, max_input: float = 1.0):
|
|
6
|
-
super(SmallGALU, self).__init__()
|
|
7
|
-
if max_input <= 0:
|
|
8
|
-
raise ValueError("max_input must be positive.")
|
|
9
|
-
self.max_input = max_input
|
|
10
|
-
self.alpha = None
|
|
11
|
-
self.beta = None
|
|
12
|
-
self._num_channels = None
|
|
13
|
-
|
|
14
|
-
def _initialize_parameters(self, x):
|
|
15
|
-
if x.ndim < 2:
|
|
16
|
-
raise ValueError(
|
|
17
|
-
f"Input tensor must have at least 2 dimensions (N, C), but got shape {x.shape}"
|
|
18
|
-
)
|
|
19
|
-
|
|
20
|
-
num_channels = x.shape[1]
|
|
21
|
-
self._num_channels = num_channels
|
|
22
|
-
param_shape = [1] * x.ndim
|
|
23
|
-
param_shape[1] = num_channels
|
|
24
|
-
self.alpha = torch.nn.Parameter(torch.zeros(param_shape))
|
|
25
|
-
self.beta = torch.nn.Parameter(torch.zeros(param_shape))
|
|
26
|
-
|
|
27
|
-
def forward(self, x):
|
|
28
|
-
if self.alpha is None:
|
|
29
|
-
self._initialize_parameters(x)
|
|
30
|
-
|
|
31
|
-
zero = torch.tensor(0.0, device=x.device, dtype=x.dtype)
|
|
32
|
-
x_norm = x / self.max_input
|
|
33
|
-
part_prelu = torch.relu(x_norm) + self.alpha * torch.min(x_norm, zero)
|
|
34
|
-
part_beta = self.beta * (
|
|
35
|
-
torch.relu(1.0 - torch.abs(x_norm - 1.0))
|
|
36
|
-
+ torch.min(torch.abs(x_norm - 3.0) - 1.0, zero)
|
|
37
|
-
)
|
|
38
|
-
z = part_prelu + part_beta
|
|
39
|
-
return z * self.max_input
|
|
@@ -1,61 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
class WideMELU(torch.nn.Module):
|
|
5
|
-
def __init__(self, maxInput: float = 1.0):
|
|
6
|
-
super().__init__()
|
|
7
|
-
self.maxInput = float(maxInput)
|
|
8
|
-
self.alpha = None
|
|
9
|
-
self.beta = None
|
|
10
|
-
self.gamma = None
|
|
11
|
-
self.delta = None
|
|
12
|
-
self.xi = None
|
|
13
|
-
self.psi = None
|
|
14
|
-
self.theta = None
|
|
15
|
-
self.lam = None
|
|
16
|
-
self._initialized = False
|
|
17
|
-
|
|
18
|
-
def _initialize_parameters(self, X: torch.Tensor):
|
|
19
|
-
if X.dim() != 4:
|
|
20
|
-
raise ValueError(
|
|
21
|
-
f"Expected 4D input (B, C, H, W), but got {X.dim()}D input."
|
|
22
|
-
)
|
|
23
|
-
|
|
24
|
-
num_channels = X.shape[1]
|
|
25
|
-
shape = (1, num_channels, 1, 1)
|
|
26
|
-
|
|
27
|
-
self.alpha = torch.nn.Parameter(torch.zeros(shape))
|
|
28
|
-
self.beta = torch.nn.Parameter(torch.zeros(shape))
|
|
29
|
-
self.gamma = torch.nn.Parameter(torch.zeros(shape))
|
|
30
|
-
self.delta = torch.nn.Parameter(torch.zeros(shape))
|
|
31
|
-
self.xi = torch.nn.Parameter(torch.zeros(shape))
|
|
32
|
-
self.psi = torch.nn.Parameter(torch.zeros(shape))
|
|
33
|
-
self.theta = torch.nn.Parameter(torch.zeros(shape))
|
|
34
|
-
self.lam = torch.nn.Parameter(torch.zeros(shape))
|
|
35
|
-
self._initialized = True
|
|
36
|
-
|
|
37
|
-
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
|
38
|
-
if not self._initialized:
|
|
39
|
-
self._initialize_parameters(X)
|
|
40
|
-
X_norm = X / self.maxInput
|
|
41
|
-
Y = torch.roll(X_norm, shifts=-1, dims=1)
|
|
42
|
-
term1 = torch.relu(X_norm)
|
|
43
|
-
term2 = self.alpha * torch.clamp(X_norm, max=0)
|
|
44
|
-
dist_sq_beta = (X_norm - 2) ** 2 + (Y - 2) ** 2
|
|
45
|
-
dist_sq_gamma = (X_norm - 1) ** 2 + (Y - 1) ** 2
|
|
46
|
-
dist_sq_delta = (X_norm - 1) ** 2 + (Y - 3) ** 2
|
|
47
|
-
dist_sq_xi = (X_norm - 3) ** 2 + (Y - 1) ** 2
|
|
48
|
-
dist_sq_psi = (X_norm - 3) ** 2 + (Y - 3) ** 2
|
|
49
|
-
dist_sq_theta = (X_norm - 1) ** 2 + (Y - 2) ** 2
|
|
50
|
-
dist_sq_lambda = (X_norm - 3) ** 2 + (Y - 2) ** 2
|
|
51
|
-
|
|
52
|
-
term3 = self.beta * torch.sqrt(torch.relu(2 - dist_sq_beta))
|
|
53
|
-
term4 = self.gamma * torch.sqrt(torch.relu(1 - dist_sq_gamma))
|
|
54
|
-
term5 = self.delta * torch.sqrt(torch.relu(1 - dist_sq_delta))
|
|
55
|
-
term6 = self.xi * torch.sqrt(torch.relu(1 - dist_sq_xi))
|
|
56
|
-
term7 = self.psi * torch.sqrt(torch.relu(1 - dist_sq_psi))
|
|
57
|
-
term8 = self.theta * torch.sqrt(torch.relu(1 - dist_sq_theta))
|
|
58
|
-
term9 = self.lam * torch.sqrt(torch.relu(1 - dist_sq_lambda))
|
|
59
|
-
Z_norm = term1 + term2 + term3 + term4 + term5 + term6 + term7 + term8 + term9
|
|
60
|
-
Z = Z_norm * self.maxInput
|
|
61
|
-
return Z
|
|
@@ -1,9 +0,0 @@
|
|
|
1
|
-
from .ResnetModule import ResnetModule
|
|
2
|
-
from ..utils import replace_relu
|
|
3
|
-
from ...activations import StochasticActivation
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
class StochasticResnetModule(ResnetModule):
|
|
7
|
-
def __init__(self, *args, **kwargs):
|
|
8
|
-
super().__init__(*args, **kwargs)
|
|
9
|
-
replace_relu(self, StochasticActivation)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|