hkjc 0.3.24__tar.gz → 0.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: hkjc
3
- Version: 0.3.24
3
+ Version: 0.4.0
4
4
  Summary: Library for scrapping HKJC data and perform basic analysis
5
5
  Requires-Python: >=3.11
6
6
  Requires-Dist: beautifulsoup4>=4.14.2
@@ -0,0 +1,225 @@
1
+ from flask import Flask, jsonify, render_template, request, make_response
2
+ from flask_caching import Cache
3
+
4
+ import polars as pl
5
+ import numpy as np
6
+
7
+ from hkjc.live import live_odds, _fetch_live_races
8
+ from hkjc.harville_model import fit_harville_to_odds
9
+ from hkjc.historical import get_horse_data
10
+ from hkjc.speedpro import speedmap, speedpro_energy
11
+ from hkjc.strategy import qpbanker, place_only
12
+ from hkjc import generate_all_qp_trades, generate_all_pla_trades, pareto_filter
13
+
14
+
15
+ def arr_to_dict(arr: np.ndarray, dtype=float):
16
+ """Convert 0-indexed numpy array into 1-indexed nested dictionary
17
+
18
+ Args:
19
+ arr (np.ndarray): 0-indexed numpy array
20
+ dtype (type, optional): data type. Defaults to float.
21
+
22
+ Returns:
23
+ dict: 1-indexed nested dictionary
24
+ """
25
+ if arr.ndim == 1:
26
+ return {i+1: dtype(np.round(v, 1)) for i, v in enumerate(arr) if not (np.isnan(v) or np.isinf(v))}
27
+
28
+ return {i+1: arr_to_dict(v) for i, v in enumerate(arr)}
29
+
30
+
31
+ app = Flask(__name__)
32
+ config = {
33
+ "CACHE_TYPE": "RedisCache",
34
+ "CACHE_REDIS_HOST": "localhost",
35
+ "CACHE_REDIS_PORT": "6379"
36
+ }
37
+ app.config.from_mapping(config)
38
+ cache = Cache(app)
39
+
40
+
41
+ @app.route('/')
42
+ def disp_race_info():
43
+ race_info = _fetch_live_races('', '')
44
+
45
+ try:
46
+ df_speedpro = speedpro_energy(race_info['Date'])
47
+ for race_num, race in race_info['Races'].items():
48
+ for i, runner in enumerate(race['Runners']):
49
+ df = (df_speedpro
50
+ .filter(pl.col('RaceNo') == race_num)
51
+ .filter(pl.col('RunnerNumber') == int(runner['No']))
52
+ )
53
+ race_info['Races'][race_num]['Runners'][i]['SPEnergy'] = df['SpeedPRO_Energy_Difference'].item(
54
+ 0)
55
+ race_info['Races'][race_num]['Runners'][i]['Fitness'] = df['FitnessRatings'].item(
56
+ 0)
57
+ except: # fill with dummy value if SpeedPro not available
58
+ for race_num, race in race_info['Races'].items():
59
+ for i, runner in enumerate(race['Runners']):
60
+ race_info['Races'][race_num]['Runners'][i]['SPEnergy'] = 0
61
+ race_info['Races'][race_num]['Runners'][i]['Fitness'] = 0
62
+
63
+ return render_template('index.html',
64
+ race_info=race_info)
65
+
66
+
67
+ turf_going_dict = {'FIRM': 'F',
68
+ 'GOOD TO FIRM': 'GF',
69
+ 'GOOD': 'G',
70
+ 'GOOD TO YIELDING': 'GY',
71
+ 'YIELDING': 'Y',
72
+ 'YIELDING TO SOFT': 'YS',
73
+ 'SOFT': 'S',
74
+ 'HEAVY': 'H'}
75
+ aw_going_dict = {'WET FAST': 'WF',
76
+ 'FAST': 'FT',
77
+ 'GOOD': 'GD',
78
+ 'SLOW': 'SL',
79
+ 'WET SLOW': 'WS',
80
+ 'RAIN AFFECTED': 'RA',
81
+ 'NORMAL WATERING': 'NW'}
82
+ going_dict = {'TURF': turf_going_dict, 'ALL WEATHER TRACK': aw_going_dict}
83
+
84
+
85
+ @app.route('/horse_info/<horse_no>', methods=['GET'])
86
+ # cache horse history for 1 day
87
+ @cache.cached(timeout=86400, query_string=True)
88
+ def disp_horse_info(horse_no):
89
+ # read optional filters
90
+ dist = request.args.get('dist', type=int)
91
+ track = request.args.get('track')
92
+ going = request.args.get('going')
93
+ venue = request.args.get('venue')
94
+
95
+ if track not in going_dict.keys():
96
+ track = None
97
+ if venue not in ['HV', 'ST']:
98
+ venue = None
99
+ if (going is not None) and (track is not None) and (going in going_dict[track].keys()):
100
+ going = going_dict[track][going] # translate going to code
101
+ else:
102
+ going = None
103
+
104
+ df = get_horse_data(horse_no)
105
+
106
+ if df.height > 0:
107
+ if dist is not None:
108
+ df = df.filter(pl.col('Dist') == dist)
109
+ if track and track.upper() == 'TURF':
110
+ df = df.filter(pl.col('Track') == 'Turf')
111
+ elif track and track.upper() == 'ALL WEATHER TRACK':
112
+ df = df.filter(pl.col('Track') == 'AWT')
113
+ if going is not None:
114
+ df = df.filter(pl.col('G').str.starts_with(going[0]))
115
+ if venue is not None:
116
+ df = df.filter(pl.col('Venue') == venue)
117
+
118
+ return render_template('horse-info.html', df=df.head(5))
119
+
120
+
121
+ @app.route('/live_odds/<int:race_no>')
122
+ def disp_live_odds(race_no=1):
123
+ odds_dict = live_odds('', '', race_no)
124
+ fitted_odds = fit_harville_to_odds(odds_dict)['odds_fit']
125
+ odds_json = {'Raw': {k: arr_to_dict(v) for k, v in odds_dict.items()},
126
+ 'Fit': {k: arr_to_dict(v) for k, v in fitted_odds.items()}
127
+ }
128
+
129
+ return jsonify(odds_json)
130
+
131
+
132
+ @app.route('/speedmap/<int:race_no>')
133
+ def disp_speedmap(race_no=1):
134
+ return speedmap(race_no)
135
+
136
+
137
+ @app.route('/qp/<int:race_no>/<int:banker>/<cover>', methods=['GET'])
138
+ def disp_qp_metrics(race_no=1, banker=1, cover='2'):
139
+ use_filter = request.args.get('filter')
140
+ use_filter = use_filter and (use_filter.lower() == 'true')
141
+
142
+ odds = live_odds('', '', race_number=race_no)
143
+
144
+ if use_filter:
145
+ res = fit_harville_to_odds(odds)
146
+ if res['success']:
147
+ odds = res['odds_fit']
148
+ covered = [int(v) for v in cover.split(',')]
149
+ ev = qpbanker.expected_value(odds['PLA'], odds['QPL'], banker, covered)
150
+ win = qpbanker.win_probability(odds['PLA'], banker, covered)
151
+ avg_odds = qpbanker.average_odds(odds['QPL'], banker, covered)
152
+
153
+ return {'Banker': banker, 'Covered': covered, 'ExpValue': round(ev, 2), 'WinProb': round(win, 2), 'AvgOdds': round(avg_odds, 2)}
154
+
155
+ @app.route('/pla/<int:race_no>/<cover>', methods=['GET'])
156
+ def disp_pla_metrics(race_no=1, cover=[]):
157
+ odds = live_odds('', '', race_number=race_no)
158
+
159
+ res = fit_harville_to_odds(odds)
160
+ if not res['success']:
161
+ raise RuntimeError(
162
+ f"[ERROR] Harville model fitting failed: {res.get('message','')}")
163
+
164
+ covered = [int(v) for v in cover.split(',')]
165
+ ev = place_only.expected_value(odds['PLA'], res['prob_fit']['P'], covered)
166
+ win = place_only.win_probability(res['prob_fit']['P'], covered)
167
+ avg_odds = place_only.average_odds(odds['PLA'], covered)
168
+
169
+ return {'Covered': covered, 'ExpValue': round(ev, 2), 'WinProb': round(win, 2), 'AvgOdds': round(avg_odds, 2)}
170
+
171
+ def elimination(lst):
172
+ cond = [~pl.col('Covered').list.contains(l) for l in lst]
173
+ return pl.all_horizontal(cond)
174
+
175
+
176
+ def format_trade(trade):
177
+ return {'Banker': trade.get('Banker',None),
178
+ 'Covered': trade['Covered'],
179
+ 'WinProb': round(trade['WinProb'], 2),
180
+ 'ExpValue': round(trade['ExpValue'], 2),
181
+ 'AvgOdds': round(trade['AvgOdds'], 2)}
182
+
183
+
184
+ @app.route('/qprec/<int:race_no>/<int:banker>', methods=['GET'])
185
+ def disp_qp_recs(race_no=1, banker=1, exclude=[], maxC=None):
186
+ use_filter = request.args.get('filter')
187
+ use_filter = use_filter and (use_filter.lower() == 'true')
188
+ exclude = request.args.get('exclude')
189
+ if exclude:
190
+ excluded = [int(v) for v in exclude.split(',')]
191
+ maxC = request.args.get('maxC', type=int)
192
+
193
+ df_trades = generate_all_qp_trades(
194
+ '', '', race_no, fit_harville=use_filter)
195
+ df_trades = df_trades.filter(pl.col('Banker') == banker)
196
+ df_trades = df_trades.filter(pl.col('ExpValue') >= 0.05)
197
+ if exclude:
198
+ df_trades = df_trades.filter(elimination(excluded))
199
+ if maxC:
200
+ df_trades = df_trades.filter(pl.col('NumCovered') <= maxC)
201
+ pareto_trades = pareto_filter(df_trades, [], ['WinProb', 'ExpValue']).sort(
202
+ 'WinProb', descending=True)
203
+
204
+ return [format_trade(t) for t in pareto_trades.iter_rows(named=True)]
205
+
206
+
207
+
208
+
209
+ @app.route('/plarec/<int:race_no>', methods=['GET'])
210
+ def disp_pla_recs(race_no=1, exclude=[], maxC=None):
211
+ exclude = request.args.get('exclude')
212
+ if exclude:
213
+ excluded = [int(v) for v in exclude.split(',')]
214
+ maxC = request.args.get('maxC', type=int)
215
+
216
+ df_trades = generate_all_pla_trades('', '', race_no)
217
+ df_trades = df_trades.filter(pl.col('ExpValue') >= 0.05)
218
+ if exclude:
219
+ df_trades = df_trades.filter(elimination(excluded))
220
+ if maxC:
221
+ df_trades = df_trades.filter(pl.col('NumCovered') <= maxC)
222
+ pareto_trades = pareto_filter(df_trades, [], ['WinProb', 'ExpValue']).sort(
223
+ 'WinProb', descending=True)
224
+
225
+ return [format_trade(t) for t in pareto_trades.iter_rows(named=True)]