hippoformer 0.0.1__tar.gz → 0.0.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: hippoformer
3
- Version: 0.0.1
3
+ Version: 0.0.2
4
4
  Summary: hippoformer
5
5
  Project-URL: Homepage, https://pypi.org/project/hippoformer/
6
6
  Project-URL: Repository, https://github.com/lucidrains/hippoformer
@@ -0,0 +1,4 @@
1
+ from hippoformer.hippoformer import (
2
+ PathIntegration,
3
+ mmTEM
4
+ )
@@ -104,13 +104,73 @@ class PathIntegration(Module):
104
104
  class mmTEM(Module):
105
105
  def __init__(
106
106
  self,
107
- dim
107
+ dim,
108
+ *,
109
+ sensory_encoder: Module,
110
+ sensory_decoder: Module,
111
+ dim_sensory,
112
+ dim_action,
113
+ dim_encoded_sensory,
114
+ dim_structure,
115
+ meta_mlp_depth = 2,
116
+ decoder_mlp_depth = 2,
117
+ structure_variance_pred_mlp_depth = 2,
118
+ path_integrate_kwargs: dict = dict(),
119
+ loss_weight_generative = 1.,
120
+ loss_weight_inference = 1.,
121
+ loss_weight_consistency = 1.,
122
+ loss_weight_relational = 1.,
108
123
  ):
109
124
  super().__init__()
110
125
 
126
+ dim_joint_rep = dim_encoded_sensory + dim_structure
127
+
128
+ # path integrator
129
+
130
+ self.path_integrator = PathIntegration(
131
+ dim_action = dim_action,
132
+ dim_structure = dim_structure,
133
+ **path_integrate_kwargs
134
+ )
135
+
136
+ # meta mlp related
137
+
138
+ self.to_queries = nn.Linear(dim_joint_rep, dim, bias = False)
139
+ self.to_keys = nn.Linear(dim_joint_rep, dim, bias = False)
140
+ self.to_values = nn.Linear(dim_joint_rep, dim, bias = False)
141
+
142
+ self.meta_mlp = create_mlp(
143
+ dim = dim * 2,
144
+ depth = meta_mlp_depth,
145
+ dim_in = dim,
146
+ dim_out = dim,
147
+ activation = nn.ReLU()
148
+ )
149
+
150
+ # mlp decoder (from meta mlp output to joint)
151
+
152
+ self.meta_mlp_output_decoder = create_mlp(
153
+ dim = dim * 2,
154
+ dim_in = dim,
155
+ dim_out = dim_joint_rep,
156
+ depth = decoder_mlp_depth,
157
+ activation = nn.ReLU()
158
+ )
159
+
160
+ # the mlp that predicts the variance for the structural code
161
+ # for correcting the generated structural code modeling the feedback from HC to MEC
162
+
163
+ self.structure_variance_pred_mlp_depth = create_mlp(
164
+ dim = dim_structure * 2,
165
+ dim_in = dim_structure * 2 + 1,
166
+ dim_out = dim_structure,
167
+ depth = structure_variance_pred_mlp_depth
168
+ )
111
169
 
112
170
  def forward(
113
171
  self,
114
- data
172
+ sensory,
173
+ actions
115
174
  ):
116
- raise NotImplementedError
175
+ structural_codes = self.path_integrator(actions)
176
+ return structural_codes.sum()
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "hippoformer"
3
- version = "0.0.1"
3
+ version = "0.0.2"
4
4
  description = "hippoformer"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -0,0 +1,37 @@
1
+ import pytest
2
+
3
+ import torch
4
+
5
+ def test_path_integrate():
6
+ from hippoformer.hippoformer import PathIntegration
7
+
8
+ path_integrator = PathIntegration(32, 64)
9
+
10
+ actions = torch.randn(2, 16, 32)
11
+
12
+ structure_codes = path_integrator(actions)
13
+ structure_codes = path_integrator(actions, structure_codes) # pass in previous structure codes, it will auto use the last one as hidden and pass it to the RNN
14
+
15
+ assert structure_codes.shape == (2, 16, 64)
16
+
17
+ def test_mm_tem():
18
+ import torch
19
+ from hippoformer.hippoformer import mmTEM
20
+
21
+ from torch.nn import Linear
22
+
23
+ model = mmTEM(
24
+ dim = 32,
25
+ sensory_encoder = Linear(11, 32),
26
+ sensory_decoder = Linear(32, 11),
27
+ dim_sensory = 11,
28
+ dim_action = 7,
29
+ dim_structure = 32,
30
+ dim_encoded_sensory = 32
31
+ )
32
+
33
+ actions = torch.randn(2, 16, 7)
34
+ sensory = torch.randn(2, 16, 11)
35
+
36
+ loss = model(sensory, actions)
37
+ loss.backward()
File without changes
@@ -1,15 +0,0 @@
1
- import pytest
2
-
3
- import torch
4
-
5
- def test_path_integrate():
6
- from hippoformer.hippoformer import PathIntegration
7
-
8
- path_integrator = PathIntegration(32, 64)
9
-
10
- actions = torch.randn(2, 16, 32)
11
-
12
- structure_codes = path_integrator(actions)
13
- structure_codes = path_integrator(actions, structure_codes) # pass in previous structure codes, it will auto use the last one as hidden and pass it to the RNN
14
-
15
- assert structure_codes.shape == (2, 16, 64)
File without changes
File without changes
File without changes