hippoformer 0.0.12__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- hippoformer-0.0.12/.github/workflows/python-publish.yml +36 -0
- hippoformer-0.0.12/.github/workflows/test.yml +21 -0
- hippoformer-0.0.12/.gitignore +207 -0
- hippoformer-0.0.12/LICENSE +21 -0
- hippoformer-0.0.12/PKG-INFO +65 -0
- hippoformer-0.0.12/README.md +18 -0
- hippoformer-0.0.12/hippoformer/__init__.py +4 -0
- hippoformer-0.0.12/hippoformer/hippoformer.py +627 -0
- hippoformer-0.0.12/hippoformer-fig6.png +0 -0
- hippoformer-0.0.12/pyproject.toml +62 -0
- hippoformer-0.0.12/tests/test_hippoformer.py +79 -0
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# This workflow will upload a Python Package using Twine when a release is created
|
|
2
|
+
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
|
|
3
|
+
|
|
4
|
+
# This workflow uses actions that are not certified by GitHub.
|
|
5
|
+
# They are provided by a third-party and are governed by
|
|
6
|
+
# separate terms of service, privacy policy, and support
|
|
7
|
+
# documentation.
|
|
8
|
+
|
|
9
|
+
name: Upload Python Package
|
|
10
|
+
|
|
11
|
+
on:
|
|
12
|
+
release:
|
|
13
|
+
types: [published]
|
|
14
|
+
|
|
15
|
+
jobs:
|
|
16
|
+
deploy:
|
|
17
|
+
|
|
18
|
+
runs-on: ubuntu-latest
|
|
19
|
+
|
|
20
|
+
steps:
|
|
21
|
+
- uses: actions/checkout@v2
|
|
22
|
+
- name: Set up Python
|
|
23
|
+
uses: actions/setup-python@v2
|
|
24
|
+
with:
|
|
25
|
+
python-version: '3.x'
|
|
26
|
+
- name: Install dependencies
|
|
27
|
+
run: |
|
|
28
|
+
python -m pip install --upgrade pip
|
|
29
|
+
pip install build
|
|
30
|
+
- name: Build package
|
|
31
|
+
run: python -m build
|
|
32
|
+
- name: Publish package
|
|
33
|
+
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
|
|
34
|
+
with:
|
|
35
|
+
user: __token__
|
|
36
|
+
password: ${{ secrets.PYPI_API_TOKEN }}
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
name: Pytest
|
|
2
|
+
on: [push, pull_request]
|
|
3
|
+
|
|
4
|
+
jobs:
|
|
5
|
+
build:
|
|
6
|
+
|
|
7
|
+
runs-on: ubuntu-latest
|
|
8
|
+
|
|
9
|
+
steps:
|
|
10
|
+
- uses: actions/checkout@v4
|
|
11
|
+
- name: Set up Python 3.10
|
|
12
|
+
uses: actions/setup-python@v5
|
|
13
|
+
with:
|
|
14
|
+
python-version: "3.10"
|
|
15
|
+
- name: Install dependencies
|
|
16
|
+
run: |
|
|
17
|
+
python -m pip install --upgrade pip
|
|
18
|
+
python -m pip install -e .[test]
|
|
19
|
+
- name: Test with pytest
|
|
20
|
+
run: |
|
|
21
|
+
python -m pytest tests/
|
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
# Byte-compiled / optimized / DLL files
|
|
2
|
+
__pycache__/
|
|
3
|
+
*.py[codz]
|
|
4
|
+
*$py.class
|
|
5
|
+
|
|
6
|
+
# C extensions
|
|
7
|
+
*.so
|
|
8
|
+
|
|
9
|
+
# Distribution / packaging
|
|
10
|
+
.Python
|
|
11
|
+
build/
|
|
12
|
+
develop-eggs/
|
|
13
|
+
dist/
|
|
14
|
+
downloads/
|
|
15
|
+
eggs/
|
|
16
|
+
.eggs/
|
|
17
|
+
lib/
|
|
18
|
+
lib64/
|
|
19
|
+
parts/
|
|
20
|
+
sdist/
|
|
21
|
+
var/
|
|
22
|
+
wheels/
|
|
23
|
+
share/python-wheels/
|
|
24
|
+
*.egg-info/
|
|
25
|
+
.installed.cfg
|
|
26
|
+
*.egg
|
|
27
|
+
MANIFEST
|
|
28
|
+
|
|
29
|
+
# PyInstaller
|
|
30
|
+
# Usually these files are written by a python script from a template
|
|
31
|
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
32
|
+
*.manifest
|
|
33
|
+
*.spec
|
|
34
|
+
|
|
35
|
+
# Installer logs
|
|
36
|
+
pip-log.txt
|
|
37
|
+
pip-delete-this-directory.txt
|
|
38
|
+
|
|
39
|
+
# Unit test / coverage reports
|
|
40
|
+
htmlcov/
|
|
41
|
+
.tox/
|
|
42
|
+
.nox/
|
|
43
|
+
.coverage
|
|
44
|
+
.coverage.*
|
|
45
|
+
.cache
|
|
46
|
+
nosetests.xml
|
|
47
|
+
coverage.xml
|
|
48
|
+
*.cover
|
|
49
|
+
*.py.cover
|
|
50
|
+
.hypothesis/
|
|
51
|
+
.pytest_cache/
|
|
52
|
+
cover/
|
|
53
|
+
|
|
54
|
+
# Translations
|
|
55
|
+
*.mo
|
|
56
|
+
*.pot
|
|
57
|
+
|
|
58
|
+
# Django stuff:
|
|
59
|
+
*.log
|
|
60
|
+
local_settings.py
|
|
61
|
+
db.sqlite3
|
|
62
|
+
db.sqlite3-journal
|
|
63
|
+
|
|
64
|
+
# Flask stuff:
|
|
65
|
+
instance/
|
|
66
|
+
.webassets-cache
|
|
67
|
+
|
|
68
|
+
# Scrapy stuff:
|
|
69
|
+
.scrapy
|
|
70
|
+
|
|
71
|
+
# Sphinx documentation
|
|
72
|
+
docs/_build/
|
|
73
|
+
|
|
74
|
+
# PyBuilder
|
|
75
|
+
.pybuilder/
|
|
76
|
+
target/
|
|
77
|
+
|
|
78
|
+
# Jupyter Notebook
|
|
79
|
+
.ipynb_checkpoints
|
|
80
|
+
|
|
81
|
+
# IPython
|
|
82
|
+
profile_default/
|
|
83
|
+
ipython_config.py
|
|
84
|
+
|
|
85
|
+
# pyenv
|
|
86
|
+
# For a library or package, you might want to ignore these files since the code is
|
|
87
|
+
# intended to run in multiple environments; otherwise, check them in:
|
|
88
|
+
# .python-version
|
|
89
|
+
|
|
90
|
+
# pipenv
|
|
91
|
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
|
92
|
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
|
93
|
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
|
94
|
+
# install all needed dependencies.
|
|
95
|
+
#Pipfile.lock
|
|
96
|
+
|
|
97
|
+
# UV
|
|
98
|
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
|
99
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
100
|
+
# commonly ignored for libraries.
|
|
101
|
+
#uv.lock
|
|
102
|
+
|
|
103
|
+
# poetry
|
|
104
|
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
|
105
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
106
|
+
# commonly ignored for libraries.
|
|
107
|
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
|
108
|
+
#poetry.lock
|
|
109
|
+
#poetry.toml
|
|
110
|
+
|
|
111
|
+
# pdm
|
|
112
|
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
|
113
|
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
|
114
|
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
|
115
|
+
#pdm.lock
|
|
116
|
+
#pdm.toml
|
|
117
|
+
.pdm-python
|
|
118
|
+
.pdm-build/
|
|
119
|
+
|
|
120
|
+
# pixi
|
|
121
|
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
|
122
|
+
#pixi.lock
|
|
123
|
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
|
124
|
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
|
125
|
+
.pixi
|
|
126
|
+
|
|
127
|
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
|
128
|
+
__pypackages__/
|
|
129
|
+
|
|
130
|
+
# Celery stuff
|
|
131
|
+
celerybeat-schedule
|
|
132
|
+
celerybeat.pid
|
|
133
|
+
|
|
134
|
+
# SageMath parsed files
|
|
135
|
+
*.sage.py
|
|
136
|
+
|
|
137
|
+
# Environments
|
|
138
|
+
.env
|
|
139
|
+
.envrc
|
|
140
|
+
.venv
|
|
141
|
+
env/
|
|
142
|
+
venv/
|
|
143
|
+
ENV/
|
|
144
|
+
env.bak/
|
|
145
|
+
venv.bak/
|
|
146
|
+
|
|
147
|
+
# Spyder project settings
|
|
148
|
+
.spyderproject
|
|
149
|
+
.spyproject
|
|
150
|
+
|
|
151
|
+
# Rope project settings
|
|
152
|
+
.ropeproject
|
|
153
|
+
|
|
154
|
+
# mkdocs documentation
|
|
155
|
+
/site
|
|
156
|
+
|
|
157
|
+
# mypy
|
|
158
|
+
.mypy_cache/
|
|
159
|
+
.dmypy.json
|
|
160
|
+
dmypy.json
|
|
161
|
+
|
|
162
|
+
# Pyre type checker
|
|
163
|
+
.pyre/
|
|
164
|
+
|
|
165
|
+
# pytype static type analyzer
|
|
166
|
+
.pytype/
|
|
167
|
+
|
|
168
|
+
# Cython debug symbols
|
|
169
|
+
cython_debug/
|
|
170
|
+
|
|
171
|
+
# PyCharm
|
|
172
|
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
|
173
|
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
|
174
|
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
|
175
|
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
|
176
|
+
#.idea/
|
|
177
|
+
|
|
178
|
+
# Abstra
|
|
179
|
+
# Abstra is an AI-powered process automation framework.
|
|
180
|
+
# Ignore directories containing user credentials, local state, and settings.
|
|
181
|
+
# Learn more at https://abstra.io/docs
|
|
182
|
+
.abstra/
|
|
183
|
+
|
|
184
|
+
# Visual Studio Code
|
|
185
|
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
|
186
|
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
|
187
|
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
|
188
|
+
# you could uncomment the following to ignore the entire vscode folder
|
|
189
|
+
# .vscode/
|
|
190
|
+
|
|
191
|
+
# Ruff stuff:
|
|
192
|
+
.ruff_cache/
|
|
193
|
+
|
|
194
|
+
# PyPI configuration file
|
|
195
|
+
.pypirc
|
|
196
|
+
|
|
197
|
+
# Cursor
|
|
198
|
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
|
199
|
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
|
200
|
+
# refer to https://docs.cursor.com/context/ignore-files
|
|
201
|
+
.cursorignore
|
|
202
|
+
.cursorindexingignore
|
|
203
|
+
|
|
204
|
+
# Marimo
|
|
205
|
+
marimo/_static/
|
|
206
|
+
marimo/_lsp/
|
|
207
|
+
__marimo__/
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Phil Wang
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: hippoformer
|
|
3
|
+
Version: 0.0.12
|
|
4
|
+
Summary: hippoformer
|
|
5
|
+
Project-URL: Homepage, https://pypi.org/project/hippoformer/
|
|
6
|
+
Project-URL: Repository, https://github.com/lucidrains/hippoformer
|
|
7
|
+
Author-email: Phil Wang <lucidrains@gmail.com>
|
|
8
|
+
License: MIT License
|
|
9
|
+
|
|
10
|
+
Copyright (c) 2025 Phil Wang
|
|
11
|
+
|
|
12
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
13
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
14
|
+
in the Software without restriction, including without limitation the rights
|
|
15
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
16
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
17
|
+
furnished to do so, subject to the following conditions:
|
|
18
|
+
|
|
19
|
+
The above copyright notice and this permission notice shall be included in all
|
|
20
|
+
copies or substantial portions of the Software.
|
|
21
|
+
|
|
22
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
23
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
24
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
25
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
26
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
27
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
28
|
+
SOFTWARE.
|
|
29
|
+
License-File: LICENSE
|
|
30
|
+
Keywords: artificial intelligence,deep learning,hippocampus,memory
|
|
31
|
+
Classifier: Development Status :: 4 - Beta
|
|
32
|
+
Classifier: Intended Audience :: Developers
|
|
33
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
34
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
35
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
36
|
+
Requires-Python: >=3.9
|
|
37
|
+
Requires-Dist: assoc-scan
|
|
38
|
+
Requires-Dist: beartype
|
|
39
|
+
Requires-Dist: einops>=0.8.1
|
|
40
|
+
Requires-Dist: einx>=0.3.0
|
|
41
|
+
Requires-Dist: torch>=2.4
|
|
42
|
+
Requires-Dist: x-mlps-pytorch
|
|
43
|
+
Provides-Extra: examples
|
|
44
|
+
Provides-Extra: test
|
|
45
|
+
Requires-Dist: pytest; extra == 'test'
|
|
46
|
+
Description-Content-Type: text/markdown
|
|
47
|
+
|
|
48
|
+
<img src="./hippoformer-fig6.png" width="400px"></img>
|
|
49
|
+
|
|
50
|
+
## Hippoformer (wip)
|
|
51
|
+
|
|
52
|
+
Implementation of [Hippoformer](https://openreview.net/forum?id=hxwV5EubAw), Integrating Hippocampus-inspired Spatial Memory with Transformers
|
|
53
|
+
|
|
54
|
+
## Citations
|
|
55
|
+
|
|
56
|
+
```bibtex
|
|
57
|
+
@inproceedings{anonymous2025hippoformer,
|
|
58
|
+
title = {Hippoformer: Integrating Hippocampus-inspired Spatial Memory with Transformers},
|
|
59
|
+
author = {Anonymous},
|
|
60
|
+
booktitle = {Submitted to The Fourteenth International Conference on Learning Representations},
|
|
61
|
+
year = {2025},
|
|
62
|
+
url = {https://openreview.net/forum?id=hxwV5EubAw},
|
|
63
|
+
note = {under review}
|
|
64
|
+
}
|
|
65
|
+
```
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
<img src="./hippoformer-fig6.png" width="400px"></img>
|
|
2
|
+
|
|
3
|
+
## Hippoformer (wip)
|
|
4
|
+
|
|
5
|
+
Implementation of [Hippoformer](https://openreview.net/forum?id=hxwV5EubAw), Integrating Hippocampus-inspired Spatial Memory with Transformers
|
|
6
|
+
|
|
7
|
+
## Citations
|
|
8
|
+
|
|
9
|
+
```bibtex
|
|
10
|
+
@inproceedings{anonymous2025hippoformer,
|
|
11
|
+
title = {Hippoformer: Integrating Hippocampus-inspired Spatial Memory with Transformers},
|
|
12
|
+
author = {Anonymous},
|
|
13
|
+
booktitle = {Submitted to The Fourteenth International Conference on Learning Representations},
|
|
14
|
+
year = {2025},
|
|
15
|
+
url = {https://openreview.net/forum?id=hxwV5EubAw},
|
|
16
|
+
note = {under review}
|
|
17
|
+
}
|
|
18
|
+
```
|
|
@@ -0,0 +1,627 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch import nn, Tensor, cat, stack, arange, zeros_like, einsum, tensor
|
|
5
|
+
import torch.nn.functional as F
|
|
6
|
+
from torch.nn import Module
|
|
7
|
+
from torch.jit import ScriptModule, script_method
|
|
8
|
+
from torch.func import vmap, grad, functional_call
|
|
9
|
+
|
|
10
|
+
from beartype import beartype
|
|
11
|
+
|
|
12
|
+
from einx import multiply
|
|
13
|
+
from einops import repeat, rearrange, pack, unpack
|
|
14
|
+
from einops.layers.torch import Rearrange
|
|
15
|
+
|
|
16
|
+
from x_mlps_pytorch import create_mlp
|
|
17
|
+
|
|
18
|
+
from assoc_scan import AssocScan
|
|
19
|
+
|
|
20
|
+
# helpers
|
|
21
|
+
|
|
22
|
+
def exists(v):
|
|
23
|
+
return v is not None
|
|
24
|
+
|
|
25
|
+
def default(v, d):
|
|
26
|
+
return v if exists(v) else d
|
|
27
|
+
|
|
28
|
+
def pack_with_inverse(t, pattern):
|
|
29
|
+
packed, packed_shape = pack([t], pattern)
|
|
30
|
+
|
|
31
|
+
def inverse(out, inv_pattern = None):
|
|
32
|
+
inv_pattern = default(inv_pattern, pattern)
|
|
33
|
+
unpacked, = unpack(out, packed_shape, inv_pattern)
|
|
34
|
+
return unpacked
|
|
35
|
+
|
|
36
|
+
return packed, inverse
|
|
37
|
+
|
|
38
|
+
def l2norm(t):
|
|
39
|
+
return F.normalize(t, dim = -1)
|
|
40
|
+
|
|
41
|
+
# Muon - Jordan et al from oss community - applied to the latest version of titans
|
|
42
|
+
|
|
43
|
+
def newtonschulz5(
|
|
44
|
+
t,
|
|
45
|
+
steps = 5,
|
|
46
|
+
eps = 1e-7,
|
|
47
|
+
coefs = (3.4445, -4.7750, 2.0315)
|
|
48
|
+
):
|
|
49
|
+
not_weights = t.ndim <= 3
|
|
50
|
+
|
|
51
|
+
if not_weights:
|
|
52
|
+
return t
|
|
53
|
+
|
|
54
|
+
shape = t.shape
|
|
55
|
+
should_transpose = shape[-2] > shape[-1]
|
|
56
|
+
|
|
57
|
+
if should_transpose:
|
|
58
|
+
t = t.transpose(-1, -2)
|
|
59
|
+
|
|
60
|
+
t, inv_pack = pack_with_inverse(t, '* i j')
|
|
61
|
+
t = t / t.norm(dim = (-1, -2), keepdim = True).clamp(min = eps)
|
|
62
|
+
|
|
63
|
+
a, b, c = coefs
|
|
64
|
+
|
|
65
|
+
for _ in range(steps):
|
|
66
|
+
A = t @ t.transpose(-1, -2)
|
|
67
|
+
B = b * A + c * A @ A
|
|
68
|
+
t = a * t + B @ t
|
|
69
|
+
|
|
70
|
+
if should_transpose:
|
|
71
|
+
t = t.transpose(-1, -2)
|
|
72
|
+
|
|
73
|
+
return inv_pack(t)
|
|
74
|
+
|
|
75
|
+
# sensory encoder decoder for 2d
|
|
76
|
+
|
|
77
|
+
grid_sensory_enc_dec = (
|
|
78
|
+
create_mlp(
|
|
79
|
+
dim = 32 * 2,
|
|
80
|
+
dim_in = 9,
|
|
81
|
+
dim_out = 32,
|
|
82
|
+
depth = 3,
|
|
83
|
+
),
|
|
84
|
+
create_mlp(
|
|
85
|
+
dim = 32 * 2,
|
|
86
|
+
dim_in = 32,
|
|
87
|
+
dim_out = 9,
|
|
88
|
+
depth = 3,
|
|
89
|
+
),
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
# sensory encoder decoder for 3d maze
|
|
93
|
+
|
|
94
|
+
class EncoderPackTime(Module):
|
|
95
|
+
def __init__(self, fn: Module):
|
|
96
|
+
super().__init__()
|
|
97
|
+
self.fn = fn
|
|
98
|
+
|
|
99
|
+
def forward(self, x):
|
|
100
|
+
x = rearrange(x, 'b c t h w -> b t c h w')
|
|
101
|
+
x, packed_shape = pack([x], '* c h w')
|
|
102
|
+
|
|
103
|
+
x = self.fn(x)
|
|
104
|
+
|
|
105
|
+
x, = unpack(x, packed_shape, '* d')
|
|
106
|
+
print(x.shape)
|
|
107
|
+
return x
|
|
108
|
+
|
|
109
|
+
class DecoderPackTime(Module):
|
|
110
|
+
def __init__(self, fn: Module):
|
|
111
|
+
super().__init__()
|
|
112
|
+
self.fn = fn
|
|
113
|
+
|
|
114
|
+
def forward(self, x):
|
|
115
|
+
x, packed_shape = pack(x, '* d')
|
|
116
|
+
|
|
117
|
+
x = self.fn(x)
|
|
118
|
+
|
|
119
|
+
x = unpack(x, packed_shape, '* c h w')
|
|
120
|
+
x = rearrange(x, 'b t c h w -> b c t h w')
|
|
121
|
+
return x
|
|
122
|
+
|
|
123
|
+
maze_sensory_enc_dec = (
|
|
124
|
+
EncoderPackTime(nn.Sequential(
|
|
125
|
+
nn.Conv2d(3, 16, 7, 2, padding = 3),
|
|
126
|
+
nn.ReLU(),
|
|
127
|
+
nn.Conv2d(16, 32, 3, 2, 1),
|
|
128
|
+
nn.ReLU(),
|
|
129
|
+
nn.Conv2d(32, 64, 3, 2, 1),
|
|
130
|
+
nn.ReLU(),
|
|
131
|
+
nn.Conv2d(64, 128, 3, 2, 1),
|
|
132
|
+
nn.ReLU(),
|
|
133
|
+
Rearrange('b ... -> b (...)'),
|
|
134
|
+
nn.Linear(2048, 32)
|
|
135
|
+
)),
|
|
136
|
+
DecoderPackTime(nn.Sequential(
|
|
137
|
+
nn.Linear(32, 2048),
|
|
138
|
+
Rearrange('b (c h w) -> b c h w', c = 128, h = 4),
|
|
139
|
+
nn.ConvTranspose2d(128, 64, 3, 2, 1, output_padding = (1, 1)),
|
|
140
|
+
nn.ReLU(),
|
|
141
|
+
nn.ConvTranspose2d(64, 32, 3, 2, 1, output_padding = (1, 1)),
|
|
142
|
+
nn.ReLU(),
|
|
143
|
+
nn.ConvTranspose2d(32, 16, 3, 2, 1, output_padding = (1, 1)),
|
|
144
|
+
nn.ReLU(),
|
|
145
|
+
nn.ConvTranspose2d(16, 3, 3, 2, 1, output_padding = (1, 1))
|
|
146
|
+
))
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
# path integration
|
|
150
|
+
|
|
151
|
+
class RNN(ScriptModule):
|
|
152
|
+
def __init__(
|
|
153
|
+
self,
|
|
154
|
+
dim,
|
|
155
|
+
):
|
|
156
|
+
super().__init__()
|
|
157
|
+
self.init_hidden = nn.Parameter(torch.randn(1, dim) * 1e-2)
|
|
158
|
+
|
|
159
|
+
@script_method
|
|
160
|
+
def forward(
|
|
161
|
+
self,
|
|
162
|
+
transitions: Tensor,
|
|
163
|
+
hidden: Tensor | None = None
|
|
164
|
+
) -> Tensor:
|
|
165
|
+
|
|
166
|
+
batch, seq_len = transitions.shape[:2]
|
|
167
|
+
|
|
168
|
+
if hidden is None:
|
|
169
|
+
hidden = l2norm(self.init_hidden)
|
|
170
|
+
hidden = hidden.expand(batch, -1)
|
|
171
|
+
|
|
172
|
+
hiddens: list[Tensor] = []
|
|
173
|
+
|
|
174
|
+
for i in range(seq_len):
|
|
175
|
+
transition = transitions[:, i]
|
|
176
|
+
|
|
177
|
+
hidden = einsum('b i, b i j -> b j', hidden, transition)
|
|
178
|
+
hidden = F.relu(hidden)
|
|
179
|
+
hidden = l2norm(hidden)
|
|
180
|
+
|
|
181
|
+
hiddens.append(hidden)
|
|
182
|
+
|
|
183
|
+
return stack(hiddens, dim = 1)
|
|
184
|
+
|
|
185
|
+
class PathIntegration(Module):
|
|
186
|
+
def __init__(
|
|
187
|
+
self,
|
|
188
|
+
dim_action,
|
|
189
|
+
dim_structure,
|
|
190
|
+
mlp_hidden_dim = None,
|
|
191
|
+
mlp_depth = 2
|
|
192
|
+
):
|
|
193
|
+
# they use the same approach from Ruiqi Gao's paper from 2021
|
|
194
|
+
super().__init__()
|
|
195
|
+
|
|
196
|
+
self.init_structure = nn.Parameter(torch.randn(dim_structure))
|
|
197
|
+
|
|
198
|
+
self.to_transitions = create_mlp(
|
|
199
|
+
default(mlp_hidden_dim, dim_action * 4),
|
|
200
|
+
dim_in = dim_action,
|
|
201
|
+
dim_out = dim_structure * dim_structure,
|
|
202
|
+
depth = mlp_depth
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
self.mlp_out_to_weights = Rearrange('... (i j) -> ... i j', j = dim_structure)
|
|
206
|
+
|
|
207
|
+
self.rnn = RNN(dim_structure)
|
|
208
|
+
|
|
209
|
+
def forward(
|
|
210
|
+
self,
|
|
211
|
+
actions, # (b n d)
|
|
212
|
+
prev_structural = None # (b n d) | (b d)
|
|
213
|
+
):
|
|
214
|
+
batch = actions.shape[0]
|
|
215
|
+
|
|
216
|
+
transitions = self.to_transitions(actions)
|
|
217
|
+
transitions = self.mlp_out_to_weights(transitions)
|
|
218
|
+
|
|
219
|
+
if exists(prev_structural) and prev_structural.ndim == 3:
|
|
220
|
+
prev_structural = prev_structural[:, -1]
|
|
221
|
+
|
|
222
|
+
return self.rnn(transitions, prev_structural)
|
|
223
|
+
|
|
224
|
+
# custom transformer proposed by James Whittington that bridges to hippocampal models with a few twists
|
|
225
|
+
|
|
226
|
+
# the mmTEM can be seen as a linear attention / TTT variant of what he proposed
|
|
227
|
+
# needed for the baseline as well as the parallel block to bolster local time prediction
|
|
228
|
+
|
|
229
|
+
# https://arxiv.org/abs/2112.04035
|
|
230
|
+
|
|
231
|
+
def FeedForward(dim, mult = 4.):
|
|
232
|
+
dim_inner = int(dim * mult)
|
|
233
|
+
return nn.Sequential(
|
|
234
|
+
nn.Linear(dim, dim_inner),
|
|
235
|
+
nn.GELU(),
|
|
236
|
+
nn.Linear(dim_inner, dim)
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
class Attention(Module):
|
|
240
|
+
def __init__(
|
|
241
|
+
self,
|
|
242
|
+
dim_q,
|
|
243
|
+
dim_kv,
|
|
244
|
+
window_size,
|
|
245
|
+
dim_head = 64,
|
|
246
|
+
heads = 8,
|
|
247
|
+
):
|
|
248
|
+
super().__init__()
|
|
249
|
+
dim_inner = dim_head * heads
|
|
250
|
+
self.scale = dim_head ** -0.5
|
|
251
|
+
|
|
252
|
+
self.to_queries = nn.Linear(dim_q, dim_inner, bias = False)
|
|
253
|
+
self.to_key_values = nn.Linear(dim_kv, dim_inner * 2, bias = False)
|
|
254
|
+
|
|
255
|
+
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
|
|
256
|
+
self.merge_heads = Rearrange('b h n d -> b n (h d)')
|
|
257
|
+
|
|
258
|
+
self.window_size = window_size
|
|
259
|
+
|
|
260
|
+
self.to_out = nn.Linear(dim_inner, dim_q, bias = False)
|
|
261
|
+
self.attn_head_sink = nn.Parameter(torch.randn(heads) * 1e-2) # needed as the diagonal is masked out, and for attention sink
|
|
262
|
+
|
|
263
|
+
def forward(
|
|
264
|
+
self,
|
|
265
|
+
queries_input,
|
|
266
|
+
key_values_input,
|
|
267
|
+
kv_cache = None
|
|
268
|
+
):
|
|
269
|
+
batch, seq_len, device = *queries_input.shape[:2], queries_input.device
|
|
270
|
+
|
|
271
|
+
q = self.to_queries(queries_input)
|
|
272
|
+
|
|
273
|
+
k, v = self.to_key_values(key_values_input).chunk(2, dim = -1)
|
|
274
|
+
|
|
275
|
+
q, k, v = tuple(self.split_heads(t) for t in (q, k, v))
|
|
276
|
+
|
|
277
|
+
if exists(kv_cache):
|
|
278
|
+
ck, cv = kv_cache
|
|
279
|
+
k = cat((ck, k), dim = -2)
|
|
280
|
+
v = cat((cv, v), dim = -2)
|
|
281
|
+
|
|
282
|
+
q = q * self.scale
|
|
283
|
+
|
|
284
|
+
sim = einsum('b h i d, b h j d -> b h i j', q, k)
|
|
285
|
+
|
|
286
|
+
# the diagonal is masked out
|
|
287
|
+
|
|
288
|
+
i, j = sim.shape[-2:]
|
|
289
|
+
|
|
290
|
+
j_seq = arange(j, device = device)[:, None]
|
|
291
|
+
i_seq = arange(i, device = device)[None, :] + (j - i)
|
|
292
|
+
|
|
293
|
+
windowed_causal_mask_without_diagonal = (i_seq > j_seq) & ((i_seq - j_seq) <= self.window_size)
|
|
294
|
+
|
|
295
|
+
sim = sim.masked_fill(windowed_causal_mask_without_diagonal, -torch.finfo(sim.dtype).max)
|
|
296
|
+
|
|
297
|
+
# attention sink, for token as well as for attention sinking - from gpt-oss
|
|
298
|
+
|
|
299
|
+
attn_sink = repeat(self.attn_head_sink, 'h -> b h i 1', b = batch, i = seq_len)
|
|
300
|
+
|
|
301
|
+
sim = cat((attn_sink, sim), dim = -1)
|
|
302
|
+
|
|
303
|
+
attn = sim.softmax(dim = -1)
|
|
304
|
+
|
|
305
|
+
attn = attn[..., 1:] # remove sink
|
|
306
|
+
|
|
307
|
+
# aggregate
|
|
308
|
+
|
|
309
|
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
|
310
|
+
|
|
311
|
+
out = self.merge_heads(out)
|
|
312
|
+
|
|
313
|
+
return self.to_out(out), stack((k, v))
|
|
314
|
+
|
|
315
|
+
class TEMTransformerBlock(Module):
|
|
316
|
+
def __init__(
|
|
317
|
+
self,
|
|
318
|
+
dim_structure,
|
|
319
|
+
dim_encoded_sensory,
|
|
320
|
+
dim_head = 64,
|
|
321
|
+
heads = 8,
|
|
322
|
+
ff_expansion_factor = 4.,
|
|
323
|
+
window_size = 64
|
|
324
|
+
):
|
|
325
|
+
super().__init__()
|
|
326
|
+
|
|
327
|
+
self.attn = Attention(dim_structure, dim_structure + dim_encoded_sensory, window_size, dim_head = dim_head, heads = heads)
|
|
328
|
+
self.ff = FeedForward(dim_structure, ff_expansion_factor)
|
|
329
|
+
|
|
330
|
+
self.window_size = window_size
|
|
331
|
+
|
|
332
|
+
def forward(
|
|
333
|
+
self,
|
|
334
|
+
structural_codes,
|
|
335
|
+
encoded_sensory,
|
|
336
|
+
kv_cache = None
|
|
337
|
+
):
|
|
338
|
+
structure_and_sensory = cat((structural_codes, encoded_sensory), dim = -1)
|
|
339
|
+
|
|
340
|
+
retrieved, next_kv_cache = self.attn(structural_codes, structure_and_sensory, kv_cache = kv_cache)
|
|
341
|
+
|
|
342
|
+
x = retrieved + structural_codes
|
|
343
|
+
|
|
344
|
+
x = self.ff(x) + x
|
|
345
|
+
|
|
346
|
+
next_kv_cache = next_kv_cache[:, -self.window_size:]
|
|
347
|
+
|
|
348
|
+
return x, next_kv_cache
|
|
349
|
+
|
|
350
|
+
# proposed mmTEM
|
|
351
|
+
|
|
352
|
+
class mmTEM(Module):
|
|
353
|
+
@beartype
|
|
354
|
+
def __init__(
|
|
355
|
+
self,
|
|
356
|
+
dim,
|
|
357
|
+
*,
|
|
358
|
+
sensory_encoder_decoder: tuple[Module, Module],
|
|
359
|
+
dim_sensory,
|
|
360
|
+
dim_action,
|
|
361
|
+
dim_encoded_sensory,
|
|
362
|
+
dim_structure,
|
|
363
|
+
meta_mlp_depth = 2,
|
|
364
|
+
decoder_mlp_depth = 2,
|
|
365
|
+
structure_variance_pred_mlp_depth = 2,
|
|
366
|
+
path_integrate_kwargs: dict = dict(),
|
|
367
|
+
loss_weight_generative = 1.,
|
|
368
|
+
loss_weight_inference = 1.,
|
|
369
|
+
loss_weight_consistency = 1.,
|
|
370
|
+
loss_weight_relational = 1.,
|
|
371
|
+
integration_ratio_learned = True,
|
|
372
|
+
muon_update = False,
|
|
373
|
+
assoc_scan_kwargs: dict = dict()
|
|
374
|
+
):
|
|
375
|
+
super().__init__()
|
|
376
|
+
|
|
377
|
+
# sensory
|
|
378
|
+
|
|
379
|
+
sensory_encoder, sensory_decoder = sensory_encoder_decoder
|
|
380
|
+
|
|
381
|
+
self.sensory_encoder = sensory_encoder
|
|
382
|
+
self.sensory_decoder = sensory_decoder
|
|
383
|
+
|
|
384
|
+
dim_joint_rep = dim_encoded_sensory + dim_structure
|
|
385
|
+
|
|
386
|
+
self.dim_encoded_sensory = dim_encoded_sensory
|
|
387
|
+
self.dim_structure = dim_structure
|
|
388
|
+
self.joint_dims = (dim_structure, dim_encoded_sensory)
|
|
389
|
+
|
|
390
|
+
# path integrator
|
|
391
|
+
|
|
392
|
+
self.path_integrator = PathIntegration(
|
|
393
|
+
dim_action = dim_action,
|
|
394
|
+
dim_structure = dim_structure,
|
|
395
|
+
**path_integrate_kwargs
|
|
396
|
+
)
|
|
397
|
+
|
|
398
|
+
# meta mlp related
|
|
399
|
+
|
|
400
|
+
self.to_queries = nn.Linear(dim_joint_rep, dim, bias = False)
|
|
401
|
+
self.to_keys = nn.Linear(dim_joint_rep, dim, bias = False)
|
|
402
|
+
self.to_values = nn.Linear(dim_joint_rep, dim, bias = False)
|
|
403
|
+
|
|
404
|
+
self.to_learned_optim_hparams = nn.Linear(dim_joint_rep, 3, bias = False) # for learning rate, forget gate, and momentum
|
|
405
|
+
self.assoc_scan = AssocScan(*assoc_scan_kwargs)
|
|
406
|
+
|
|
407
|
+
self.meta_memory_mlp = create_mlp(
|
|
408
|
+
dim = dim * 2,
|
|
409
|
+
depth = meta_mlp_depth,
|
|
410
|
+
dim_in = dim,
|
|
411
|
+
dim_out = dim,
|
|
412
|
+
activation = nn.ReLU()
|
|
413
|
+
)
|
|
414
|
+
|
|
415
|
+
def forward_with_mse_loss(params, keys, values):
|
|
416
|
+
pred = functional_call(self.meta_memory_mlp, params, keys)
|
|
417
|
+
return F.mse_loss(pred, values)
|
|
418
|
+
|
|
419
|
+
grad_fn = grad(forward_with_mse_loss)
|
|
420
|
+
|
|
421
|
+
self.per_sample_grad_fn = vmap(vmap(grad_fn, in_dims = (None, 0, 0)), in_dims = (0, 0, 0))
|
|
422
|
+
|
|
423
|
+
# mlp decoder (from meta mlp output to joint)
|
|
424
|
+
|
|
425
|
+
self.memory_output_decoder = create_mlp(
|
|
426
|
+
dim = dim * 2,
|
|
427
|
+
dim_in = dim,
|
|
428
|
+
dim_out = dim_joint_rep,
|
|
429
|
+
depth = decoder_mlp_depth,
|
|
430
|
+
activation = nn.ReLU()
|
|
431
|
+
)
|
|
432
|
+
|
|
433
|
+
# the mlp that predicts the variance for the structural code
|
|
434
|
+
# for correcting the generated structural code modeling the feedback from HC to MEC
|
|
435
|
+
|
|
436
|
+
self.structure_variance_pred_mlp = create_mlp(
|
|
437
|
+
dim = dim_structure * 2,
|
|
438
|
+
dim_in = dim_structure * 2 + 1,
|
|
439
|
+
dim_out = dim_structure,
|
|
440
|
+
depth = structure_variance_pred_mlp_depth
|
|
441
|
+
)
|
|
442
|
+
|
|
443
|
+
# loss related
|
|
444
|
+
|
|
445
|
+
self.loss_weight_generative = loss_weight_generative
|
|
446
|
+
self.loss_weight_inference = loss_weight_inference
|
|
447
|
+
self.loss_weight_relational = loss_weight_relational
|
|
448
|
+
self.loss_weight_consistency = loss_weight_consistency
|
|
449
|
+
self.register_buffer('zero', tensor(0.), persistent = False)
|
|
450
|
+
|
|
451
|
+
# update with muon
|
|
452
|
+
|
|
453
|
+
self.muon_update = muon_update
|
|
454
|
+
|
|
455
|
+
# there is an integration ratio for error correction, but unclear what value this is fixed to or whether it is learned
|
|
456
|
+
|
|
457
|
+
self.integration_ratio = nn.Parameter(tensor(0.), requires_grad = integration_ratio_learned)
|
|
458
|
+
|
|
459
|
+
def init_params_and_momentum(
|
|
460
|
+
self,
|
|
461
|
+
batch_size
|
|
462
|
+
):
|
|
463
|
+
|
|
464
|
+
params_dict = dict(self.meta_memory_mlp.named_parameters())
|
|
465
|
+
|
|
466
|
+
params = {name: repeat(param, '... -> b ...', b = batch_size) for name, param in params_dict.items()}
|
|
467
|
+
|
|
468
|
+
momentums = {name: zeros_like(param) for name, param in params.items()}
|
|
469
|
+
|
|
470
|
+
return params, momentums
|
|
471
|
+
|
|
472
|
+
def retrieve(
|
|
473
|
+
self,
|
|
474
|
+
structural_codes,
|
|
475
|
+
encoded_sensory
|
|
476
|
+
):
|
|
477
|
+
joint = cat((structural_codes, encoded_sensory), dim = -1)
|
|
478
|
+
|
|
479
|
+
queries = self.to_queries(joint)
|
|
480
|
+
|
|
481
|
+
retrieved = self.meta_memory_mlp(queries)
|
|
482
|
+
|
|
483
|
+
return self.memory_output_decoder(retrieved).split(self.joint_dims, dim = -1)
|
|
484
|
+
|
|
485
|
+
def forward(
|
|
486
|
+
self,
|
|
487
|
+
sensory,
|
|
488
|
+
actions,
|
|
489
|
+
memory_mlp_params = None,
|
|
490
|
+
return_losses = False,
|
|
491
|
+
return_memory_mlp_params = False
|
|
492
|
+
):
|
|
493
|
+
batch = actions.shape[0]
|
|
494
|
+
|
|
495
|
+
structural_codes = self.path_integrator(actions)
|
|
496
|
+
|
|
497
|
+
encoded_sensory = self.sensory_encoder(sensory)
|
|
498
|
+
|
|
499
|
+
# 1. first have the structure code be able to fetch from the meta memory mlp
|
|
500
|
+
|
|
501
|
+
decoded_gen_structure, decoded_encoded_sensory = self.retrieve(structural_codes, zeros_like(encoded_sensory))
|
|
502
|
+
|
|
503
|
+
decoded_sensory = self.sensory_decoder(decoded_encoded_sensory)
|
|
504
|
+
|
|
505
|
+
generative_pred_loss = F.mse_loss(sensory, decoded_sensory)
|
|
506
|
+
|
|
507
|
+
# 2. relational
|
|
508
|
+
|
|
509
|
+
# 2a. structure from content
|
|
510
|
+
|
|
511
|
+
decoded_structure, decoded_encoded_sensory = self.retrieve(zeros_like(structural_codes), encoded_sensory)
|
|
512
|
+
|
|
513
|
+
structure_from_content_loss = F.mse_loss(decoded_structure, structural_codes)
|
|
514
|
+
|
|
515
|
+
# 2b. structure from structure
|
|
516
|
+
|
|
517
|
+
decoded_structure, decoded_encoded_sensory = self.retrieve(zeros_like(structural_codes), encoded_sensory)
|
|
518
|
+
|
|
519
|
+
structure_from_structure_loss = F.mse_loss(decoded_structure, structural_codes)
|
|
520
|
+
|
|
521
|
+
relational_loss = structure_from_content_loss + structure_from_structure_loss
|
|
522
|
+
|
|
523
|
+
# 3. consistency - modeling a feedback system from hippocampus to path integration
|
|
524
|
+
|
|
525
|
+
corrected_structural_code, corrected_encoded_sensory = self.retrieve(decoded_gen_structure, encoded_sensory)
|
|
526
|
+
|
|
527
|
+
sensory_sse = (corrected_encoded_sensory - encoded_sensory).norm(dim = -1, keepdim = True).pow(2)
|
|
528
|
+
|
|
529
|
+
pred_variance = self.structure_variance_pred_mlp(cat((corrected_structural_code, decoded_gen_structure, sensory_sse), dim = -1))
|
|
530
|
+
|
|
531
|
+
inf_structural_code = decoded_gen_structure + (corrected_structural_code - decoded_gen_structure) * self.integration_ratio.sigmoid() * pred_variance
|
|
532
|
+
|
|
533
|
+
consistency_loss = F.mse_loss(decoded_gen_structure, inf_structural_code)
|
|
534
|
+
|
|
535
|
+
# 4. final inference loss
|
|
536
|
+
|
|
537
|
+
final_structural_code, inf_encoded_sensory = self.retrieve(inf_structural_code, zeros_like(encoded_sensory))
|
|
538
|
+
|
|
539
|
+
decoded_inf_sensory = self.sensory_decoder(inf_encoded_sensory)
|
|
540
|
+
|
|
541
|
+
inference_pred_loss = F.mse_loss(sensory, decoded_inf_sensory)
|
|
542
|
+
|
|
543
|
+
# 5. store the final structural code from step 4 + encoded sensory
|
|
544
|
+
|
|
545
|
+
joint_code_to_store = cat((final_structural_code, encoded_sensory), dim = -1)
|
|
546
|
+
|
|
547
|
+
keys = self.to_keys(joint_code_to_store)
|
|
548
|
+
values = self.to_values(joint_code_to_store)
|
|
549
|
+
|
|
550
|
+
lr, forget, beta = self.to_learned_optim_hparams(joint_code_to_store).unbind(dim = -1)
|
|
551
|
+
|
|
552
|
+
if exists(memory_mlp_params):
|
|
553
|
+
params, momentums = memory_mlp_params
|
|
554
|
+
else:
|
|
555
|
+
params, momentums = self.init_params_and_momentum(batch)
|
|
556
|
+
|
|
557
|
+
# store by getting gradients of mse loss of keys and values
|
|
558
|
+
|
|
559
|
+
grads = self.per_sample_grad_fn(params, keys, values)
|
|
560
|
+
|
|
561
|
+
# update the meta mlp parameters and momentums
|
|
562
|
+
|
|
563
|
+
next_params = dict()
|
|
564
|
+
next_momentum = dict()
|
|
565
|
+
|
|
566
|
+
for (
|
|
567
|
+
(key, param),
|
|
568
|
+
(_, grad),
|
|
569
|
+
(_, momentum)
|
|
570
|
+
) in zip(
|
|
571
|
+
params.items(),
|
|
572
|
+
grads.items(),
|
|
573
|
+
momentums.items()
|
|
574
|
+
):
|
|
575
|
+
|
|
576
|
+
grad, inverse_pack = pack_with_inverse(grad, 'b t *')
|
|
577
|
+
|
|
578
|
+
grad = multiply('b t ..., b t', grad, lr)
|
|
579
|
+
|
|
580
|
+
expanded_beta = repeat(beta, 'b t -> b t w', w = grad.shape[-1])
|
|
581
|
+
|
|
582
|
+
update = self.assoc_scan(grad, expanded_beta.sigmoid(), momentum)
|
|
583
|
+
|
|
584
|
+
# store next momentum
|
|
585
|
+
|
|
586
|
+
next_momentum[key] = update[:, -1]
|
|
587
|
+
|
|
588
|
+
# maybe muon
|
|
589
|
+
|
|
590
|
+
if self.muon_update:
|
|
591
|
+
update = newtonschulz5(update)
|
|
592
|
+
|
|
593
|
+
# with forget gating
|
|
594
|
+
|
|
595
|
+
expanded_forget = repeat(forget, 'b t -> b t w', w = grad.shape[-1])
|
|
596
|
+
|
|
597
|
+
acc_update = self.assoc_scan(-update, expanded_forget.sigmoid(), param)
|
|
598
|
+
|
|
599
|
+
acc_update = inverse_pack(acc_update)
|
|
600
|
+
|
|
601
|
+
# set the next params and momentum, which can be passed back in
|
|
602
|
+
|
|
603
|
+
next_params[key] = acc_update[:, -1]
|
|
604
|
+
|
|
605
|
+
# losses
|
|
606
|
+
|
|
607
|
+
total_loss = (
|
|
608
|
+
generative_pred_loss * self.loss_weight_generative +
|
|
609
|
+
relational_loss * self.loss_weight_relational +
|
|
610
|
+
consistency_loss * self.loss_weight_consistency +
|
|
611
|
+
inference_pred_loss * self.loss_weight_inference
|
|
612
|
+
)
|
|
613
|
+
|
|
614
|
+
losses = (
|
|
615
|
+
generative_pred_loss,
|
|
616
|
+
relational_loss,
|
|
617
|
+
consistency_loss,
|
|
618
|
+
inference_pred_loss
|
|
619
|
+
)
|
|
620
|
+
|
|
621
|
+
if return_memory_mlp_params:
|
|
622
|
+
return next_params, next_momentum
|
|
623
|
+
|
|
624
|
+
if not return_losses:
|
|
625
|
+
return total_loss
|
|
626
|
+
|
|
627
|
+
return total_loss, losses
|
|
Binary file
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
[project]
|
|
2
|
+
name = "hippoformer"
|
|
3
|
+
version = "0.0.12"
|
|
4
|
+
description = "hippoformer"
|
|
5
|
+
authors = [
|
|
6
|
+
{ name = "Phil Wang", email = "lucidrains@gmail.com" }
|
|
7
|
+
]
|
|
8
|
+
readme = "README.md"
|
|
9
|
+
requires-python = ">= 3.9"
|
|
10
|
+
license = { file = "LICENSE" }
|
|
11
|
+
keywords = [
|
|
12
|
+
'artificial intelligence',
|
|
13
|
+
'deep learning',
|
|
14
|
+
'memory',
|
|
15
|
+
'hippocampus'
|
|
16
|
+
]
|
|
17
|
+
|
|
18
|
+
classifiers=[
|
|
19
|
+
'Development Status :: 4 - Beta',
|
|
20
|
+
'Intended Audience :: Developers',
|
|
21
|
+
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
|
22
|
+
'License :: OSI Approved :: MIT License',
|
|
23
|
+
'Programming Language :: Python :: 3.9',
|
|
24
|
+
]
|
|
25
|
+
|
|
26
|
+
dependencies = [
|
|
27
|
+
"assoc-scan",
|
|
28
|
+
"beartype",
|
|
29
|
+
"einx>=0.3.0",
|
|
30
|
+
"einops>=0.8.1",
|
|
31
|
+
"torch>=2.4",
|
|
32
|
+
"x-mlps-pytorch",
|
|
33
|
+
]
|
|
34
|
+
|
|
35
|
+
[project.urls]
|
|
36
|
+
Homepage = "https://pypi.org/project/hippoformer/"
|
|
37
|
+
Repository = "https://github.com/lucidrains/hippoformer"
|
|
38
|
+
|
|
39
|
+
[project.optional-dependencies]
|
|
40
|
+
examples = []
|
|
41
|
+
test = [
|
|
42
|
+
"pytest"
|
|
43
|
+
]
|
|
44
|
+
|
|
45
|
+
[tool.pytest.ini_options]
|
|
46
|
+
pythonpath = [
|
|
47
|
+
"."
|
|
48
|
+
]
|
|
49
|
+
|
|
50
|
+
[build-system]
|
|
51
|
+
requires = ["hatchling"]
|
|
52
|
+
build-backend = "hatchling.build"
|
|
53
|
+
|
|
54
|
+
[tool.rye]
|
|
55
|
+
managed = true
|
|
56
|
+
dev-dependencies = []
|
|
57
|
+
|
|
58
|
+
[tool.hatch.metadata]
|
|
59
|
+
allow-direct-references = true
|
|
60
|
+
|
|
61
|
+
[tool.hatch.build.targets.wheel]
|
|
62
|
+
packages = ["hippoformer"]
|
|
@@ -0,0 +1,79 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
param = pytest.mark.parametrize
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
def test_path_integrate():
|
|
7
|
+
from hippoformer.hippoformer import PathIntegration
|
|
8
|
+
|
|
9
|
+
path_integrator = PathIntegration(32, 64)
|
|
10
|
+
|
|
11
|
+
actions = torch.randn(2, 16, 32)
|
|
12
|
+
|
|
13
|
+
structure_codes = path_integrator(actions)
|
|
14
|
+
structure_codes = path_integrator(actions, structure_codes) # pass in previous structure codes, it will auto use the last one as hidden and pass it to the RNN
|
|
15
|
+
|
|
16
|
+
assert structure_codes.shape == (2, 16, 64)
|
|
17
|
+
|
|
18
|
+
@param('sensory_type', ('naive', '2d', '3d'))
|
|
19
|
+
@param('muon_update', (True, False))
|
|
20
|
+
def test_mm_tem(
|
|
21
|
+
sensory_type,
|
|
22
|
+
muon_update
|
|
23
|
+
):
|
|
24
|
+
import torch
|
|
25
|
+
from hippoformer.hippoformer import mmTEM
|
|
26
|
+
|
|
27
|
+
from torch.nn import Linear
|
|
28
|
+
|
|
29
|
+
if sensory_type == 'naive':
|
|
30
|
+
enc_dec = (
|
|
31
|
+
Linear(11, 32),
|
|
32
|
+
Linear(32, 11)
|
|
33
|
+
)
|
|
34
|
+
sensory = torch.randn(2, 16, 11)
|
|
35
|
+
|
|
36
|
+
elif sensory_type == '2d':
|
|
37
|
+
|
|
38
|
+
from hippoformer.hippoformer import grid_sensory_enc_dec
|
|
39
|
+
|
|
40
|
+
enc_dec = grid_sensory_enc_dec
|
|
41
|
+
sensory = torch.randn(2, 16, 9)
|
|
42
|
+
|
|
43
|
+
elif sensory_type == '3d':
|
|
44
|
+
|
|
45
|
+
from hippoformer.hippoformer import maze_sensory_enc_dec
|
|
46
|
+
|
|
47
|
+
enc_dec = maze_sensory_enc_dec
|
|
48
|
+
|
|
49
|
+
sensory = torch.randn(2, 3, 16, 64, 64)
|
|
50
|
+
|
|
51
|
+
model = mmTEM(
|
|
52
|
+
dim = 32,
|
|
53
|
+
sensory_encoder_decoder = enc_dec,
|
|
54
|
+
dim_sensory = 11,
|
|
55
|
+
dim_action = 7,
|
|
56
|
+
dim_structure = 32,
|
|
57
|
+
dim_encoded_sensory = 32,
|
|
58
|
+
muon_update = muon_update
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
actions = torch.randn(2, 16, 7)
|
|
62
|
+
|
|
63
|
+
next_params = model(sensory, actions, return_memory_mlp_params = True)
|
|
64
|
+
next_params = model(sensory, actions, memory_mlp_params = next_params, return_memory_mlp_params = True)
|
|
65
|
+
|
|
66
|
+
loss = model(sensory, actions, memory_mlp_params = next_params)
|
|
67
|
+
loss.backward()
|
|
68
|
+
|
|
69
|
+
def test_tem_t():
|
|
70
|
+
from hippoformer.hippoformer import TEMTransformerBlock
|
|
71
|
+
|
|
72
|
+
block = TEMTransformerBlock(32, 16, window_size = 3)
|
|
73
|
+
|
|
74
|
+
structural_codes = torch.randn(1, 7, 32)
|
|
75
|
+
encoded_sensory = torch.randn(1, 7, 16)
|
|
76
|
+
|
|
77
|
+
pred, kv_cache = block(structural_codes, encoded_sensory)
|
|
78
|
+
|
|
79
|
+
assert pred.shape == (1, 7, 32)
|