heavyedge-dataset 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- heavyedge_dataset-0.1.0/LICENSE +21 -0
- heavyedge_dataset-0.1.0/PKG-INFO +39 -0
- heavyedge_dataset-0.1.0/README.md +1 -0
- heavyedge_dataset-0.1.0/pyproject.toml +69 -0
- heavyedge_dataset-0.1.0/setup.cfg +4 -0
- heavyedge_dataset-0.1.0/src/heavyedge_dataset/__init__.py +15 -0
- heavyedge_dataset-0.1.0/src/heavyedge_dataset/datasets.py +293 -0
- heavyedge_dataset-0.1.0/src/heavyedge_dataset/landmarks.py +41 -0
- heavyedge_dataset-0.1.0/src/heavyedge_dataset.egg-info/PKG-INFO +39 -0
- heavyedge_dataset-0.1.0/src/heavyedge_dataset.egg-info/SOURCES.txt +11 -0
- heavyedge_dataset-0.1.0/src/heavyedge_dataset.egg-info/dependency_links.txt +1 -0
- heavyedge_dataset-0.1.0/src/heavyedge_dataset.egg-info/requires.txt +17 -0
- heavyedge_dataset-0.1.0/src/heavyedge_dataset.egg-info/top_level.txt +1 -0
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2025 heavyedge
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
@@ -0,0 +1,39 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: heavyedge-dataset
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: PyTorch-compatible edge profile dataset API
|
5
|
+
Author-email: Jisoo Song <jeesoo9595@snu.ac.kr>
|
6
|
+
License-Expression: MIT
|
7
|
+
Project-URL: homepage, https://pypi.python.org/pypi/heavyedge-dataset/
|
8
|
+
Project-URL: source, https://github.com/heavyedge/heavyedge-dataset
|
9
|
+
Project-URL: documentation, https://heavyedge-dataset.readthedocs.io
|
10
|
+
Classifier: Development Status :: 5 - Production/Stable
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
12
|
+
Classifier: Programming Language :: Python
|
13
|
+
Classifier: Programming Language :: Python :: 3
|
14
|
+
Classifier: Programming Language :: Python :: 3.10
|
15
|
+
Classifier: Programming Language :: Python :: 3.11
|
16
|
+
Classifier: Programming Language :: Python :: 3.12
|
17
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
18
|
+
Classifier: Topic :: Scientific/Engineering
|
19
|
+
Classifier: Operating System :: OS Independent
|
20
|
+
Requires-Python: >=3.10
|
21
|
+
Description-Content-Type: text/markdown
|
22
|
+
License-File: LICENSE
|
23
|
+
Requires-Dist: heavyedge>=1.1.2
|
24
|
+
Requires-Dist: torch
|
25
|
+
Provides-Extra: test
|
26
|
+
Requires-Dist: pytest; extra == "test"
|
27
|
+
Provides-Extra: doc
|
28
|
+
Requires-Dist: sphinx; extra == "doc"
|
29
|
+
Requires-Dist: numpydoc; extra == "doc"
|
30
|
+
Requires-Dist: pydata_sphinx_theme; extra == "doc"
|
31
|
+
Requires-Dist: matplotlib; extra == "doc"
|
32
|
+
Provides-Extra: dev
|
33
|
+
Requires-Dist: flake8; extra == "dev"
|
34
|
+
Requires-Dist: black; extra == "dev"
|
35
|
+
Requires-Dist: isort; extra == "dev"
|
36
|
+
Requires-Dist: heavyedge-dataset[doc,test]; extra == "dev"
|
37
|
+
Dynamic: license-file
|
38
|
+
|
39
|
+
# HeavyEdge-Dataset
|
@@ -0,0 +1 @@
|
|
1
|
+
# HeavyEdge-Dataset
|
@@ -0,0 +1,69 @@
|
|
1
|
+
[build-system]
|
2
|
+
requires = ["setuptools"]
|
3
|
+
build-backend = "setuptools.build_meta"
|
4
|
+
|
5
|
+
[project]
|
6
|
+
name = "heavyedge-dataset"
|
7
|
+
version = "0.1.0"
|
8
|
+
authors = [
|
9
|
+
{name = "Jisoo Song", email = "jeesoo9595@snu.ac.kr"}
|
10
|
+
]
|
11
|
+
description = "PyTorch-compatible edge profile dataset API"
|
12
|
+
readme = "README.md"
|
13
|
+
requires-python = ">=3.10"
|
14
|
+
license = "MIT"
|
15
|
+
license-files = [
|
16
|
+
"LICENSE",
|
17
|
+
]
|
18
|
+
classifiers = [
|
19
|
+
"Development Status :: 5 - Production/Stable",
|
20
|
+
"Intended Audience :: Science/Research",
|
21
|
+
"Programming Language :: Python",
|
22
|
+
"Programming Language :: Python :: 3",
|
23
|
+
"Programming Language :: Python :: 3.10",
|
24
|
+
"Programming Language :: Python :: 3.11",
|
25
|
+
"Programming Language :: Python :: 3.12",
|
26
|
+
"Programming Language :: Python :: 3 :: Only",
|
27
|
+
"Topic :: Scientific/Engineering",
|
28
|
+
"Operating System :: OS Independent",
|
29
|
+
]
|
30
|
+
dependencies = [
|
31
|
+
"heavyedge>=1.1.2",
|
32
|
+
"torch",
|
33
|
+
]
|
34
|
+
|
35
|
+
[project.urls]
|
36
|
+
homepage = "https://pypi.python.org/pypi/heavyedge-dataset/"
|
37
|
+
source = "https://github.com/heavyedge/heavyedge-dataset"
|
38
|
+
documentation = "https://heavyedge-dataset.readthedocs.io"
|
39
|
+
|
40
|
+
[project.optional-dependencies]
|
41
|
+
test = [
|
42
|
+
"pytest",
|
43
|
+
]
|
44
|
+
doc = [
|
45
|
+
"sphinx",
|
46
|
+
"numpydoc",
|
47
|
+
"pydata_sphinx_theme",
|
48
|
+
"matplotlib",
|
49
|
+
]
|
50
|
+
dev = [
|
51
|
+
"flake8",
|
52
|
+
"black",
|
53
|
+
"isort",
|
54
|
+
"heavyedge-dataset[test,doc]"
|
55
|
+
]
|
56
|
+
|
57
|
+
[tool.setuptools.packages.find]
|
58
|
+
where = ["src"]
|
59
|
+
|
60
|
+
[tool.isort]
|
61
|
+
profile = "black"
|
62
|
+
|
63
|
+
[tool.pytest.ini_options]
|
64
|
+
doctest_optionflags = [
|
65
|
+
"NORMALIZE_WHITESPACE",
|
66
|
+
"IGNORE_EXCEPTION_DETAIL",
|
67
|
+
"ELLIPSIS",
|
68
|
+
]
|
69
|
+
addopts = "--ignore=doc --doctest-modules --import-mode=importlib"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
"""PyTorch-compatiable dataset API for edge profiles."""
|
2
|
+
|
3
|
+
__all__ = [
|
4
|
+
"ProfileDataset",
|
5
|
+
"PseudoLmDataset",
|
6
|
+
"MathLm1dDataset",
|
7
|
+
"MathLm2dDataset",
|
8
|
+
]
|
9
|
+
|
10
|
+
from .datasets import (
|
11
|
+
MathLm1dDataset,
|
12
|
+
MathLm2dDataset,
|
13
|
+
ProfileDataset,
|
14
|
+
PseudoLmDataset,
|
15
|
+
)
|
@@ -0,0 +1,293 @@
|
|
1
|
+
"""
|
2
|
+
Dataset classes
|
3
|
+
---------------
|
4
|
+
|
5
|
+
PyTorch dataset classes for edge profiles.
|
6
|
+
"""
|
7
|
+
|
8
|
+
import abc
|
9
|
+
import numbers
|
10
|
+
from collections.abc import Sequence
|
11
|
+
|
12
|
+
import numpy as np
|
13
|
+
from heavyedge.api import landmarks_type3
|
14
|
+
from torch.utils.data import Dataset
|
15
|
+
|
16
|
+
from .landmarks import math_landmarks_1d, pseudo_landmarks_1d, pseudo_landmarks_2d
|
17
|
+
|
18
|
+
__all__ = [
|
19
|
+
"ProfileDataset",
|
20
|
+
"PseudoLmDataset",
|
21
|
+
"MathLm1dDataset",
|
22
|
+
"MathLm2dDataset",
|
23
|
+
]
|
24
|
+
|
25
|
+
|
26
|
+
class ProfileDatasetBase(abc.ABC):
|
27
|
+
"""Abstract base class for profile dataset."""
|
28
|
+
|
29
|
+
@property
|
30
|
+
@abc.abstractmethod
|
31
|
+
def file(self):
|
32
|
+
"""Profile data file.
|
33
|
+
|
34
|
+
Returns
|
35
|
+
-------
|
36
|
+
heavyedge.ProfileData
|
37
|
+
"""
|
38
|
+
|
39
|
+
@abc.abstractmethod
|
40
|
+
def default_transform(self, profiles, lengths):
|
41
|
+
"""Default transform by the dataset class.
|
42
|
+
|
43
|
+
Parameters
|
44
|
+
----------
|
45
|
+
profiles : (N, M) array
|
46
|
+
Profile data.
|
47
|
+
lengths : (N,) array
|
48
|
+
Length of each profile.
|
49
|
+
"""
|
50
|
+
pass
|
51
|
+
|
52
|
+
@property
|
53
|
+
@abc.abstractmethod
|
54
|
+
def transform(self):
|
55
|
+
"""Optional transformation passed to the dataset instance.
|
56
|
+
|
57
|
+
Returns
|
58
|
+
-------
|
59
|
+
Callable
|
60
|
+
"""
|
61
|
+
|
62
|
+
def __len__(self):
|
63
|
+
return len(self.file)
|
64
|
+
|
65
|
+
def __getitem__(self, idx):
|
66
|
+
if isinstance(idx, numbers.Integral):
|
67
|
+
Y, L, _ = self.file[idx]
|
68
|
+
ret = self.default_transform([Y], [L])
|
69
|
+
if self.transform:
|
70
|
+
ret = self.transform(ret)
|
71
|
+
ret = ret[0]
|
72
|
+
else:
|
73
|
+
ret = self.__getitems__(idx)
|
74
|
+
return ret
|
75
|
+
|
76
|
+
def __getitems__(self, idxs):
|
77
|
+
# PyTorch API
|
78
|
+
needs_sort = isinstance(idxs, (Sequence, np.ndarray))
|
79
|
+
if needs_sort:
|
80
|
+
# idxs must be sorted for h5py
|
81
|
+
idxs = np.array(idxs)
|
82
|
+
sort_idx = np.argsort(idxs)
|
83
|
+
idxs = idxs[sort_idx]
|
84
|
+
else:
|
85
|
+
pass
|
86
|
+
Ys, Ls, _ = self.file[idxs]
|
87
|
+
if needs_sort:
|
88
|
+
reverse_idx = np.argsort(sort_idx)
|
89
|
+
Ys = Ys[reverse_idx]
|
90
|
+
Ls = Ls[reverse_idx]
|
91
|
+
ret = self.default_transform(Ys, Ls)
|
92
|
+
if self.transform:
|
93
|
+
ret = self.transform(ret)
|
94
|
+
return ret
|
95
|
+
|
96
|
+
|
97
|
+
class ProfileDataset(ProfileDatasetBase, Dataset):
|
98
|
+
"""Full profile dataset.
|
99
|
+
|
100
|
+
Parameters
|
101
|
+
----------
|
102
|
+
file : heavyedge.ProfileData
|
103
|
+
Open hdf5 file.
|
104
|
+
m : {1, 2}
|
105
|
+
Profile data dimension.
|
106
|
+
1 means only y coordinates, and 2 means both x and y coordinates.
|
107
|
+
transform : callable, optional
|
108
|
+
Optional transform to be applied on a sample.
|
109
|
+
|
110
|
+
Examples
|
111
|
+
--------
|
112
|
+
>>> from heavyedge import get_sample_path, ProfileData
|
113
|
+
>>> from heavyedge_dataset import ProfileDataset
|
114
|
+
>>> with ProfileData(get_sample_path("Prep-Type2.h5")) as file:
|
115
|
+
... data = ProfileDataset(file, 2)[:]
|
116
|
+
>>> import matplotlib.pyplot as plt # doctest: +SKIP
|
117
|
+
... for coords in data:
|
118
|
+
... plt.plot(*coords, color="gray")
|
119
|
+
"""
|
120
|
+
|
121
|
+
def __init__(self, file, m, transform=None):
|
122
|
+
self._file = file
|
123
|
+
self.m = m
|
124
|
+
self._transform = transform
|
125
|
+
|
126
|
+
self.x = file.x()
|
127
|
+
|
128
|
+
@property
|
129
|
+
def file(self):
|
130
|
+
return self._file
|
131
|
+
|
132
|
+
def default_transform(self, profiles, lengths):
|
133
|
+
if self.m == 1:
|
134
|
+
ret = [Y[:L].reshape(1, -1) for Y, L in zip(profiles, lengths)]
|
135
|
+
elif self.m == 2:
|
136
|
+
ret = [np.stack([self.x[:L], Y[:L]]) for Y, L in zip(profiles, lengths)]
|
137
|
+
else:
|
138
|
+
raise ValueError(f"Invalid dimension: {self.m}")
|
139
|
+
return ret
|
140
|
+
|
141
|
+
@property
|
142
|
+
def transform(self):
|
143
|
+
return self._transform
|
144
|
+
|
145
|
+
|
146
|
+
class PseudoLmDataset(ProfileDatasetBase, Dataset):
|
147
|
+
"""Pseudo-landmark dataset.
|
148
|
+
|
149
|
+
Parameters
|
150
|
+
----------
|
151
|
+
file : heavyedge.ProfileData
|
152
|
+
Open hdf5 file.
|
153
|
+
k : int
|
154
|
+
Number of landmarks to sample.
|
155
|
+
m : {1, 2}
|
156
|
+
Profile data dimension.
|
157
|
+
1 means only y coordinates, and 2 means both x and y coordinates.
|
158
|
+
transform : callable, optional
|
159
|
+
Optional transform to be applied on a sample.
|
160
|
+
|
161
|
+
Examples
|
162
|
+
--------
|
163
|
+
>>> from heavyedge import get_sample_path, ProfileData
|
164
|
+
>>> from heavyedge_dataset import PseudoLmDataset
|
165
|
+
>>> with ProfileData(get_sample_path("Prep-Type2.h5")) as file:
|
166
|
+
... data = PseudoLmDataset(file, 10, 2)[:]
|
167
|
+
>>> import matplotlib.pyplot as plt # doctest: +SKIP
|
168
|
+
... plt.plot(*data.transpose(1, 2, 0), color="gray")
|
169
|
+
"""
|
170
|
+
|
171
|
+
def __init__(self, file, k, m, transform=None):
|
172
|
+
self._file = file
|
173
|
+
self.k = k
|
174
|
+
self.m = m
|
175
|
+
self._transform = transform
|
176
|
+
|
177
|
+
self.x = file.x()
|
178
|
+
|
179
|
+
@property
|
180
|
+
def file(self):
|
181
|
+
return self._file
|
182
|
+
|
183
|
+
def default_transform(self, profiles, lengths):
|
184
|
+
if self.m == 1:
|
185
|
+
ret = pseudo_landmarks_1d(profiles, lengths, self.k)
|
186
|
+
elif self.m == 2:
|
187
|
+
ret = pseudo_landmarks_2d(self.x, profiles, lengths, self.k)
|
188
|
+
else:
|
189
|
+
raise ValueError(f"Invalid dimension: {self.m}")
|
190
|
+
return ret
|
191
|
+
|
192
|
+
@property
|
193
|
+
def transform(self):
|
194
|
+
return self._transform
|
195
|
+
|
196
|
+
|
197
|
+
class MathLm1dDataset(ProfileDatasetBase, Dataset):
|
198
|
+
"""1-D mathematical landmarks dataset.
|
199
|
+
|
200
|
+
Parameters
|
201
|
+
----------
|
202
|
+
file : heavyedge.ProfileData
|
203
|
+
Open hdf5 file.
|
204
|
+
sigma : scalar
|
205
|
+
Standard deviation of Gaussian kernel for landmark detection.
|
206
|
+
transform : callable, optional
|
207
|
+
Optional transform to be applied on a sample.
|
208
|
+
|
209
|
+
Examples
|
210
|
+
--------
|
211
|
+
>>> from heavyedge import get_sample_path, ProfileData
|
212
|
+
>>> from heavyedge_dataset import MathLm1dDataset
|
213
|
+
>>> with ProfileData(get_sample_path("Prep-Type2.h5")) as file:
|
214
|
+
... data = MathLm1dDataset(file, 32)[:]
|
215
|
+
>>> import matplotlib.pyplot as plt # doctest: +SKIP
|
216
|
+
... plt.plot(*data.transpose(1, 2, 0), color="gray")
|
217
|
+
"""
|
218
|
+
|
219
|
+
def __init__(self, file, sigma, transform=None):
|
220
|
+
self._file = file
|
221
|
+
self.sigma = sigma
|
222
|
+
self._transform = transform
|
223
|
+
|
224
|
+
@property
|
225
|
+
def file(self):
|
226
|
+
return self._file
|
227
|
+
|
228
|
+
def default_transform(self, profiles, lengths):
|
229
|
+
return math_landmarks_1d(profiles, lengths, self.sigma)
|
230
|
+
|
231
|
+
@property
|
232
|
+
def transform(self):
|
233
|
+
return self._transform
|
234
|
+
|
235
|
+
|
236
|
+
class MathLm2dDataset(ProfileDatasetBase, Dataset):
|
237
|
+
"""2-D mathematical landmarks dataset.
|
238
|
+
|
239
|
+
Parameters
|
240
|
+
----------
|
241
|
+
file : heavyedge.ProfileData
|
242
|
+
Open hdf5 file.
|
243
|
+
sigma : scalar
|
244
|
+
Standard deviation of Gaussian kernel for landmark detection.
|
245
|
+
transform : callable, optional
|
246
|
+
Optional transform to be applied on a sample.
|
247
|
+
|
248
|
+
Examples
|
249
|
+
--------
|
250
|
+
>>> from heavyedge import get_sample_path, ProfileData
|
251
|
+
>>> from heavyedge_dataset import MathLm2dDataset
|
252
|
+
>>> with ProfileData(get_sample_path("Prep-Type2.h5")) as file:
|
253
|
+
... lm, _ = MathLm2dDataset(file, 32)[:]
|
254
|
+
>>> import matplotlib.pyplot as plt # doctest: +SKIP
|
255
|
+
... plt.plot(*lm.transpose(1, 2, 0), color="gray")
|
256
|
+
"""
|
257
|
+
|
258
|
+
def __init__(self, file, sigma, transform=None):
|
259
|
+
self._file = file
|
260
|
+
self.sigma = sigma
|
261
|
+
self._transform = transform
|
262
|
+
|
263
|
+
self.x = file.x()
|
264
|
+
|
265
|
+
@property
|
266
|
+
def file(self):
|
267
|
+
return self._file
|
268
|
+
|
269
|
+
def default_transform(self, profiles, lengths):
|
270
|
+
# Todo: cythonize this method to avoid python loop.
|
271
|
+
# This will require cythonizing landmarks_type3().
|
272
|
+
lm, center_height = [], []
|
273
|
+
for Y, L in zip(profiles, lengths):
|
274
|
+
Y = Y[:L]
|
275
|
+
indices = np.flip(landmarks_type3(Y, self.sigma))
|
276
|
+
lm.append(np.stack([self.x[indices], Y[indices]]))
|
277
|
+
center_height.append(np.mean(Y[: indices[0]]))
|
278
|
+
return np.array(lm), np.array(center_height)
|
279
|
+
|
280
|
+
def __getitem__(self, idx):
|
281
|
+
if isinstance(idx, numbers.Integral):
|
282
|
+
Y, L, _ = self.file[idx]
|
283
|
+
lm, ch = self.default_transform([Y], [L])
|
284
|
+
if self.transform:
|
285
|
+
lm, ch = self.transform(lm, ch)
|
286
|
+
lm, ch = lm[0], ch[0]
|
287
|
+
else:
|
288
|
+
lm, ch = self.__getitems__(idx)
|
289
|
+
return (lm, ch)
|
290
|
+
|
291
|
+
@property
|
292
|
+
def transform(self):
|
293
|
+
return self._transform
|
@@ -0,0 +1,41 @@
|
|
1
|
+
"""
|
2
|
+
Landmark locators
|
3
|
+
-----------------
|
4
|
+
|
5
|
+
Functions to locate landmarks from edge profiles.
|
6
|
+
"""
|
7
|
+
|
8
|
+
import numpy as np
|
9
|
+
from heavyedge.api import landmarks_type3
|
10
|
+
|
11
|
+
__all__ = [
|
12
|
+
"pseudo_landmarks_1d",
|
13
|
+
"pseudo_landmarks_2d",
|
14
|
+
"math_landmarks_1d",
|
15
|
+
]
|
16
|
+
|
17
|
+
|
18
|
+
def pseudo_landmarks_1d(Ys, Ls, k):
|
19
|
+
ret = []
|
20
|
+
for Y, L in zip(Ys, Ls):
|
21
|
+
idxs = np.linspace(0, L - 1, k, dtype=int)
|
22
|
+
ret.append(Y[idxs].reshape(1, -1))
|
23
|
+
return np.array(ret)
|
24
|
+
|
25
|
+
|
26
|
+
def pseudo_landmarks_2d(x, Ys, Ls, k):
|
27
|
+
ret = []
|
28
|
+
for Y, L in zip(Ys, Ls):
|
29
|
+
idxs = np.linspace(0, L - 1, k, dtype=int)
|
30
|
+
ret.append(np.stack([x[idxs], Y[idxs]]))
|
31
|
+
return np.array(ret)
|
32
|
+
|
33
|
+
|
34
|
+
def math_landmarks_1d(Ys, Ls, sigma):
|
35
|
+
ret = []
|
36
|
+
for Y, L in zip(Ys, Ls):
|
37
|
+
Y = Y[:L]
|
38
|
+
indices = np.flip(landmarks_type3(Y, sigma))
|
39
|
+
y = np.concat([[np.mean(Y[: indices[0]])], Y[indices]])
|
40
|
+
ret.append(y.reshape(1, -1))
|
41
|
+
return np.array(ret)
|
@@ -0,0 +1,39 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: heavyedge-dataset
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: PyTorch-compatible edge profile dataset API
|
5
|
+
Author-email: Jisoo Song <jeesoo9595@snu.ac.kr>
|
6
|
+
License-Expression: MIT
|
7
|
+
Project-URL: homepage, https://pypi.python.org/pypi/heavyedge-dataset/
|
8
|
+
Project-URL: source, https://github.com/heavyedge/heavyedge-dataset
|
9
|
+
Project-URL: documentation, https://heavyedge-dataset.readthedocs.io
|
10
|
+
Classifier: Development Status :: 5 - Production/Stable
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
12
|
+
Classifier: Programming Language :: Python
|
13
|
+
Classifier: Programming Language :: Python :: 3
|
14
|
+
Classifier: Programming Language :: Python :: 3.10
|
15
|
+
Classifier: Programming Language :: Python :: 3.11
|
16
|
+
Classifier: Programming Language :: Python :: 3.12
|
17
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
18
|
+
Classifier: Topic :: Scientific/Engineering
|
19
|
+
Classifier: Operating System :: OS Independent
|
20
|
+
Requires-Python: >=3.10
|
21
|
+
Description-Content-Type: text/markdown
|
22
|
+
License-File: LICENSE
|
23
|
+
Requires-Dist: heavyedge>=1.1.2
|
24
|
+
Requires-Dist: torch
|
25
|
+
Provides-Extra: test
|
26
|
+
Requires-Dist: pytest; extra == "test"
|
27
|
+
Provides-Extra: doc
|
28
|
+
Requires-Dist: sphinx; extra == "doc"
|
29
|
+
Requires-Dist: numpydoc; extra == "doc"
|
30
|
+
Requires-Dist: pydata_sphinx_theme; extra == "doc"
|
31
|
+
Requires-Dist: matplotlib; extra == "doc"
|
32
|
+
Provides-Extra: dev
|
33
|
+
Requires-Dist: flake8; extra == "dev"
|
34
|
+
Requires-Dist: black; extra == "dev"
|
35
|
+
Requires-Dist: isort; extra == "dev"
|
36
|
+
Requires-Dist: heavyedge-dataset[doc,test]; extra == "dev"
|
37
|
+
Dynamic: license-file
|
38
|
+
|
39
|
+
# HeavyEdge-Dataset
|
@@ -0,0 +1,11 @@
|
|
1
|
+
LICENSE
|
2
|
+
README.md
|
3
|
+
pyproject.toml
|
4
|
+
src/heavyedge_dataset/__init__.py
|
5
|
+
src/heavyedge_dataset/datasets.py
|
6
|
+
src/heavyedge_dataset/landmarks.py
|
7
|
+
src/heavyedge_dataset.egg-info/PKG-INFO
|
8
|
+
src/heavyedge_dataset.egg-info/SOURCES.txt
|
9
|
+
src/heavyedge_dataset.egg-info/dependency_links.txt
|
10
|
+
src/heavyedge_dataset.egg-info/requires.txt
|
11
|
+
src/heavyedge_dataset.egg-info/top_level.txt
|
@@ -0,0 +1 @@
|
|
1
|
+
|
@@ -0,0 +1 @@
|
|
1
|
+
heavyedge_dataset
|