heavyball 1.7.0__tar.gz → 1.7.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. {heavyball-1.7.0 → heavyball-1.7.2}/PKG-INFO +1 -1
  2. {heavyball-1.7.0 → heavyball-1.7.2}/heavyball/__init__.py +20 -1
  3. {heavyball-1.7.0 → heavyball-1.7.2}/heavyball/chainable.py +50 -8
  4. {heavyball-1.7.0 → heavyball-1.7.2}/heavyball/utils.py +589 -180
  5. {heavyball-1.7.0 → heavyball-1.7.2}/heavyball.egg-info/PKG-INFO +1 -1
  6. {heavyball-1.7.0 → heavyball-1.7.2}/heavyball.egg-info/SOURCES.txt +1 -0
  7. {heavyball-1.7.0 → heavyball-1.7.2}/pyproject.toml +1 -1
  8. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_memory.py +12 -6
  9. heavyball-1.7.2/test/test_memory_leak.py +68 -0
  10. {heavyball-1.7.0 → heavyball-1.7.2}/LICENSE +0 -0
  11. {heavyball-1.7.0 → heavyball-1.7.2}/README.md +0 -0
  12. {heavyball-1.7.0 → heavyball-1.7.2}/heavyball.egg-info/dependency_links.txt +0 -0
  13. {heavyball-1.7.0 → heavyball-1.7.2}/heavyball.egg-info/requires.txt +0 -0
  14. {heavyball-1.7.0 → heavyball-1.7.2}/heavyball.egg-info/top_level.txt +0 -0
  15. {heavyball-1.7.0 → heavyball-1.7.2}/setup.cfg +0 -0
  16. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_bf16_params.py +0 -0
  17. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_bf16_q.py +0 -0
  18. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_bf16_storage.py +0 -0
  19. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_caution.py +0 -0
  20. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_channels_last.py +0 -0
  21. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_closure.py +0 -0
  22. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_ema.py +0 -0
  23. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_foreach.py +0 -0
  24. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_hook.py +0 -0
  25. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_mars.py +0 -0
  26. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_merge.py +0 -0
  27. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_no_grad.py +0 -0
  28. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_soap.py +0 -0
  29. {heavyball-1.7.0 → heavyball-1.7.2}/test/test_stochastic_updates.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: heavyball
3
- Version: 1.7.0
3
+ Version: 1.7.2
4
4
  Summary: Efficient Optimizers
5
5
  Author-email: HeavyBall Authors <github.heavyball@nestler.sh>
6
6
  Project-URL: source, https://github.com/HomebrewML/HeavyBall
@@ -1,4 +1,5 @@
1
1
  import functools
2
+ import math
2
3
  from typing import Optional
3
4
 
4
5
  from . import chainable as C
@@ -564,6 +565,10 @@ class ForeachCachedNewtonPSGD(ForeachCachedPSGDKron):
564
565
  hessian_approx = True
565
566
 
566
567
 
568
+ class NewtonHybrid2PSGDKron(ForeachCachedNewtonPSGD):
569
+ hvp_interval = 2
570
+
571
+
567
572
  class ForeachPSGDLRA(C.BaseOpt):
568
573
  """
569
574
  Originally from Evan Walters and Omead Pooladzandi, 2024
@@ -582,7 +587,7 @@ class ForeachPSGDLRA(C.BaseOpt):
582
587
  weight_decay=0.0,
583
588
  preconditioner_update_probability=None,
584
589
  momentum_into_precond_update=True,
585
- rank: int = 4,
590
+ rank: Optional[int] = None,
586
591
  warmup_steps: int = 0,
587
592
  foreach: bool = True,
588
593
  q_dtype="float32",
@@ -608,6 +613,14 @@ class ForeachPSGDLRA(C.BaseOpt):
608
613
  )
609
614
  params = defaults.pop("params")
610
615
 
616
+ if rank is None:
617
+ utils.warn_once(
618
+ f"{rank=}. It will be set to log2(param_count). This requires `params` to be of type list. Currently, {type(params)=}"
619
+ )
620
+ params = list(params)
621
+ defaults["rank"] = round(math.log2(sum(p.numel() for p in params)))
622
+ utils.warn_once(f"rank was set to {defaults['rank']}")
623
+
611
624
  delayed = C.default(delayed, self.delayed)
612
625
  exp_avg_input = C.default(exp_avg_input, self.exp_avg_input)
613
626
  update_clipping = C.default(update_clipping, utils.trust_region_clip_)
@@ -632,6 +645,10 @@ class ForeachNewtonPSGDLRA(ForeachPSGDLRA):
632
645
  hessian_approx = True
633
646
 
634
647
 
648
+ class NewtonHybrid2PSGDLRA(ForeachNewtonPSGDLRA):
649
+ hvp_interval = 2
650
+
651
+
635
652
  PalmForEachSoap = PaLMForeachSOAP
636
653
  PaLMSOAP = PaLMForeachSOAP
637
654
  PaLMSFAdamW = PaLMForeachSFAdamW
@@ -696,4 +713,6 @@ __all__ = [
696
713
  "DelayedPSGD",
697
714
  "PSGDLRA",
698
715
  "NewtonPSGDLRA",
716
+ "NewtonHybrid2PSGDLRA",
717
+ "NewtonHybrid2PSGDKron",
699
718
  ]
@@ -1,4 +1,5 @@
1
1
  import functools
2
+ import math
2
3
  import random
3
4
  from typing import List, Literal, Optional, Union
4
5
 
@@ -43,7 +44,7 @@ class FunctionTransform:
43
44
  raise NotImplementedError
44
45
 
45
46
  def get_fn(self):
46
- if hasattr(self.fn, "get_fn"):
47
+ if utils.hasattr_none(self.fn, "get_fn"):
47
48
  return self.fn.get_fn()
48
49
  return self.fn
49
50
 
@@ -426,7 +427,7 @@ def _store_std(state, group, update, grad, param):
426
427
  state["init_std"] = torch.std(grad, dim=0)
427
428
 
428
429
 
429
- @general_guard("init_std", init_fn=_store_std)
430
+ @general_guard("init_std", init_fn=_store_std, skip_first=False)
430
431
  @no_state
431
432
  def mup_approx(group, updates, grads, params, init_std):
432
433
  _updates = [(u, i) for u, i in zip(updates, init_std) if u.ndim > 1]
@@ -435,6 +436,40 @@ def mup_approx(group, updates, grads, params, init_std):
435
436
  return updates
436
437
 
437
438
 
439
+ def _init_delta(state, group, update, grad, param, log_space: bool):
440
+ val = group["initial_d"]
441
+ state["delta"] = torch.full((), math.log(val) if log_space else val, dtype=param.dtype, device=param.device)
442
+
443
+
444
+ def _init_full_delta(state, group, update, grad, param, log_space: bool):
445
+ val = group["initial_d"]
446
+ state["delta"] = torch.full_like(param, math.log(val) if log_space else val)
447
+
448
+
449
+ @zero_guard("state")
450
+ @general_guard("delta", init_fn=functools.partial(_init_delta, log_space=False), skip_first=False)
451
+ @no_state
452
+ def scale_by_d_adaptation(group, update, grad, param, state, delta):
453
+ utils.d_adaptation(grad, update, state, delta)
454
+ return update
455
+
456
+
457
+ @zero_guard("state")
458
+ @general_guard("delta", init_fn=functools.partial(_init_delta, log_space=True), skip_first=False)
459
+ @no_state
460
+ def scale_by_lr_adaptation(group, update, grad, param, state, delta):
461
+ utils.lr_adaptation(grad, update, state, delta, group["lr_lr"])
462
+ return update
463
+
464
+
465
+ @zero_guard("state")
466
+ @general_guard("delta", init_fn=functools.partial(_init_full_delta, log_space=True), skip_first=False)
467
+ @no_state
468
+ def scale_by_pointwise_lr_adaptation(group, update, grad, param, state, delta):
469
+ utils.pointwise_lr_adaptation(grad, update, state, delta, group["lr_lr"])
470
+ return update
471
+
472
+
438
473
  @zero_guard("momentum")
439
474
  @no_state
440
475
  def heavyball_momentum(group, updates, grads, params, momentum):
@@ -484,18 +519,22 @@ def _update_psgd_precond(cached, Q_cache, group, param, grad, Q_mat, Q, exprs, p
484
519
  if not group["is_preconditioning"]:
485
520
  return Q_mat
486
521
 
522
+ if utils.hasattr_none(param, "vector"):
523
+ vector, hessian_vector = param.vector, param.hessian_vector
524
+ del param.vector
525
+ del param.hessian_vector
526
+ else:
527
+ vector, hessian_vector = utils.dampen_grad(grad)
528
+
487
529
  utils.psgd_update_precond(
488
530
  Q_mat,
489
531
  exprs,
490
- getattr(param, "hessian_vector", grad),
532
+ hessian_vector,
491
533
  group["precond_lr"],
492
534
  Q,
493
535
  group["store_triu_as_line"],
494
- getattr(param, "vector", None),
536
+ vector,
495
537
  )
496
- if hasattr(param, "vector"):
497
- del param.vector
498
- del param.hessian_vector
499
538
 
500
539
  if grad.dim() > 1 and precond_schedule(group, balance_probability, f"balance_prob_{id(Q)}"):
501
540
  if group["store_triu_as_line"]:
@@ -566,9 +605,12 @@ def _update_lra(
566
605
  if not group["is_preconditioning"]:
567
606
  return utils.flatten(U, 1), utils.flatten(V, 1), utils.flatten(d)
568
607
 
569
- if hasattr(params[0], "hessian_vector") and params[0].hessian_vector is not None:
608
+ if utils.hasattr_none(params[0], "hessian_vector"):
570
609
  vector = utils.flatten([p.vector for p in params])
571
610
  hessian_vector = utils.flatten([p.hessian_vector for p in params])
611
+ for p in params:
612
+ del p.vector
613
+ del p.hessian_vector
572
614
  else:
573
615
  vector, hessian_vector = utils.dampen_multiple(grads)
574
616
  return utils.update_lra_precond_(U, V, d, vector, hessian_vector, group["eps"], group["precond_lr"], delayed)