heavyball 1.6.3__tar.gz → 1.7.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {heavyball-1.6.3 → heavyball-1.7.0}/LICENSE +1 -1
- {heavyball-1.6.3 → heavyball-1.7.0}/PKG-INFO +3 -2
- heavyball-1.7.0/heavyball/__init__.py +699 -0
- {heavyball-1.6.3 → heavyball-1.7.0}/heavyball/chainable.py +444 -155
- {heavyball-1.6.3 → heavyball-1.7.0}/heavyball/utils.py +326 -143
- {heavyball-1.6.3 → heavyball-1.7.0}/heavyball.egg-info/PKG-INFO +3 -2
- {heavyball-1.6.3 → heavyball-1.7.0}/heavyball.egg-info/SOURCES.txt +0 -1
- {heavyball-1.6.3 → heavyball-1.7.0}/pyproject.toml +1 -1
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_bf16_params.py +8 -7
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_bf16_q.py +4 -4
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_bf16_storage.py +5 -6
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_caution.py +7 -6
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_channels_last.py +8 -7
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_closure.py +12 -8
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_ema.py +2 -2
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_foreach.py +7 -6
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_hook.py +7 -6
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_mars.py +6 -5
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_memory.py +16 -12
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_merge.py +25 -10
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_no_grad.py +11 -5
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_soap.py +124 -70
- {heavyball-1.6.3 → heavyball-1.7.0}/test/test_stochastic_updates.py +8 -7
- heavyball-1.6.3/heavyball/__init__.py +0 -303
- heavyball-1.6.3/test/test_psgd.py +0 -66
- {heavyball-1.6.3 → heavyball-1.7.0}/README.md +0 -0
- {heavyball-1.6.3 → heavyball-1.7.0}/heavyball.egg-info/dependency_links.txt +0 -0
- {heavyball-1.6.3 → heavyball-1.7.0}/heavyball.egg-info/requires.txt +0 -0
- {heavyball-1.6.3 → heavyball-1.7.0}/heavyball.egg-info/top_level.txt +0 -0
- {heavyball-1.6.3 → heavyball-1.7.0}/setup.cfg +0 -0
@@ -22,4 +22,4 @@ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
22
22
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
23
23
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
24
24
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
25
|
-
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
25
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.4
|
2
2
|
Name: heavyball
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.7.0
|
4
4
|
Summary: Efficient Optimizers
|
5
5
|
Author-email: HeavyBall Authors <github.heavyball@nestler.sh>
|
6
6
|
Project-URL: source, https://github.com/HomebrewML/HeavyBall
|
@@ -27,6 +27,7 @@ Requires-Dist: seaborn; extra == "dev"
|
|
27
27
|
Requires-Dist: hyperopt; extra == "dev"
|
28
28
|
Requires-Dist: pandas; extra == "dev"
|
29
29
|
Requires-Dist: typer; extra == "dev"
|
30
|
+
Dynamic: license-file
|
30
31
|
|
31
32
|
# `heavyball`: Efficient Optimizers
|
32
33
|
|
@@ -0,0 +1,699 @@
|
|
1
|
+
import functools
|
2
|
+
from typing import Optional
|
3
|
+
|
4
|
+
from . import chainable as C
|
5
|
+
from . import utils
|
6
|
+
|
7
|
+
|
8
|
+
class ForeachAdamW(C.BaseOpt):
|
9
|
+
def __init__(
|
10
|
+
self,
|
11
|
+
params,
|
12
|
+
lr=0.0025,
|
13
|
+
betas=(0.9, 0.99),
|
14
|
+
eps=1e-8,
|
15
|
+
weight_decay=0,
|
16
|
+
warmup_steps=0,
|
17
|
+
foreach: bool = True,
|
18
|
+
storage_dtype: str = "float32",
|
19
|
+
mars: bool = False,
|
20
|
+
caution: bool = False,
|
21
|
+
mars_gamma: float = 0.0025,
|
22
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
23
|
+
update_clipping: C.str_or_fn = C.use_default,
|
24
|
+
palm: bool = C.use_default,
|
25
|
+
beta2_scale: float = 0.8,
|
26
|
+
):
|
27
|
+
defaults = locals()
|
28
|
+
defaults.pop("self")
|
29
|
+
params = defaults.pop("params")
|
30
|
+
super().__init__(params, defaults, foreach, gradient_clipping, update_clipping, palm, C.update_by_adam)
|
31
|
+
|
32
|
+
|
33
|
+
class ForeachRMSprop(C.BaseOpt):
|
34
|
+
"""
|
35
|
+
Debiased RMSprop (not torch.optim.RMSprop)
|
36
|
+
"""
|
37
|
+
|
38
|
+
def __init__(
|
39
|
+
self,
|
40
|
+
params,
|
41
|
+
lr=0.0025,
|
42
|
+
betas=(0.9, 0.99),
|
43
|
+
eps=1e-6,
|
44
|
+
weight_decay=0,
|
45
|
+
warmup_steps=0,
|
46
|
+
r=0.0,
|
47
|
+
weight_lr_power=2.0,
|
48
|
+
foreach: bool = True,
|
49
|
+
storage_dtype: str = "float32",
|
50
|
+
mars: bool = False,
|
51
|
+
caution: bool = False,
|
52
|
+
mars_gamma: float = 0.0025,
|
53
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
54
|
+
update_clipping: C.str_or_fn = C.use_default,
|
55
|
+
palm: bool = C.use_default,
|
56
|
+
beta2_scale: float = 0.8,
|
57
|
+
):
|
58
|
+
defaults = locals()
|
59
|
+
defaults.pop("self")
|
60
|
+
params = defaults.pop("params")
|
61
|
+
super().__init__(
|
62
|
+
params,
|
63
|
+
defaults,
|
64
|
+
foreach,
|
65
|
+
gradient_clipping,
|
66
|
+
update_clipping,
|
67
|
+
palm,
|
68
|
+
C.scale_by_exp_avg_sq,
|
69
|
+
)
|
70
|
+
|
71
|
+
|
72
|
+
class ForeachSFAdamW(C.ScheduleFree):
|
73
|
+
def __init__(
|
74
|
+
self,
|
75
|
+
params,
|
76
|
+
lr=0.0025,
|
77
|
+
betas=(0.9, 0.99),
|
78
|
+
eps=1e-6,
|
79
|
+
weight_decay=0,
|
80
|
+
warmup_steps=0,
|
81
|
+
r=0.0,
|
82
|
+
weight_lr_power=2.0,
|
83
|
+
foreach: bool = True,
|
84
|
+
storage_dtype: str = "float32",
|
85
|
+
mars: bool = False,
|
86
|
+
caution: bool = False,
|
87
|
+
mars_gamma: float = 0.0025,
|
88
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
89
|
+
update_clipping: C.str_or_fn = C.use_default,
|
90
|
+
palm: bool = C.use_default,
|
91
|
+
beta2_scale: float = 0.8,
|
92
|
+
):
|
93
|
+
defaults = locals()
|
94
|
+
defaults.pop("self")
|
95
|
+
params = defaults.pop("params")
|
96
|
+
super().__init__(
|
97
|
+
params,
|
98
|
+
defaults,
|
99
|
+
foreach,
|
100
|
+
gradient_clipping,
|
101
|
+
update_clipping,
|
102
|
+
palm,
|
103
|
+
C.scale_by_exp_avg_sq,
|
104
|
+
C.update_by_schedule_free,
|
105
|
+
)
|
106
|
+
|
107
|
+
|
108
|
+
class PaLMForeachSFAdamW(ForeachSFAdamW):
|
109
|
+
palm: bool = True
|
110
|
+
|
111
|
+
|
112
|
+
class ForeachADOPT(C.BaseOpt):
|
113
|
+
def __init__(
|
114
|
+
self,
|
115
|
+
params,
|
116
|
+
lr=0.0025,
|
117
|
+
betas=(0.9, 0.99),
|
118
|
+
eps=1e-8,
|
119
|
+
weight_decay=0,
|
120
|
+
warmup_steps=0,
|
121
|
+
foreach: bool = True,
|
122
|
+
storage_dtype: str = "float32",
|
123
|
+
mars: bool = False,
|
124
|
+
caution: bool = False,
|
125
|
+
mars_gamma: float = 0.0025,
|
126
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
127
|
+
update_clipping: C.str_or_fn = C.use_default,
|
128
|
+
palm: bool = C.use_default,
|
129
|
+
beta2_scale: float = 0.8,
|
130
|
+
):
|
131
|
+
defaults = locals()
|
132
|
+
defaults.pop("self")
|
133
|
+
params = defaults.pop("params")
|
134
|
+
super().__init__(params, defaults, foreach, gradient_clipping, update_clipping, palm, C.update_by_adopt)
|
135
|
+
|
136
|
+
|
137
|
+
class ForeachMuon(C.BaseOpt):
|
138
|
+
def __init__(
|
139
|
+
self,
|
140
|
+
params,
|
141
|
+
lr=0.0025,
|
142
|
+
betas=(0.9, 0.99),
|
143
|
+
eps=1e-8,
|
144
|
+
weight_decay=0,
|
145
|
+
warmup_steps=0,
|
146
|
+
foreach: bool = True,
|
147
|
+
storage_dtype: str = "float32",
|
148
|
+
mars: bool = False,
|
149
|
+
caution: bool = False,
|
150
|
+
mars_gamma: float = 0.0025,
|
151
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
152
|
+
update_clipping: C.str_or_fn = C.use_default,
|
153
|
+
palm: bool = C.use_default,
|
154
|
+
beta2_scale: float = 0.8,
|
155
|
+
nesterov: bool = True,
|
156
|
+
):
|
157
|
+
defaults = locals()
|
158
|
+
defaults.pop("self")
|
159
|
+
params = defaults.pop("params")
|
160
|
+
super().__init__(
|
161
|
+
params,
|
162
|
+
defaults,
|
163
|
+
foreach,
|
164
|
+
gradient_clipping,
|
165
|
+
update_clipping,
|
166
|
+
palm,
|
167
|
+
C.nesterov_momentum if nesterov else C.heavyball_momentum,
|
168
|
+
C.orthogonalize_update,
|
169
|
+
)
|
170
|
+
|
171
|
+
|
172
|
+
class ForeachLaProp(C.BaseOpt):
|
173
|
+
def __init__(
|
174
|
+
self,
|
175
|
+
params,
|
176
|
+
lr=0.0025,
|
177
|
+
betas=(0.9, 0.99),
|
178
|
+
eps=1e-8,
|
179
|
+
weight_decay=0,
|
180
|
+
warmup_steps=0,
|
181
|
+
foreach: bool = True,
|
182
|
+
storage_dtype: str = "float32",
|
183
|
+
mars: bool = False,
|
184
|
+
caution: bool = False,
|
185
|
+
mars_gamma: float = 0.0025,
|
186
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
187
|
+
update_clipping: C.str_or_fn = C.use_default,
|
188
|
+
palm: bool = C.use_default,
|
189
|
+
beta2_scale: float = 0.8,
|
190
|
+
):
|
191
|
+
defaults = locals()
|
192
|
+
defaults.pop("self")
|
193
|
+
params = defaults.pop("params")
|
194
|
+
super().__init__(params, defaults, foreach, gradient_clipping, update_clipping, palm, C.update_by_laprop)
|
195
|
+
|
196
|
+
|
197
|
+
class MuonLaProp(C.BaseOpt):
|
198
|
+
def __init__(
|
199
|
+
self,
|
200
|
+
params,
|
201
|
+
lr=0.0025,
|
202
|
+
betas=(0.9, 0.99),
|
203
|
+
eps=1e-8,
|
204
|
+
weight_decay=0,
|
205
|
+
warmup_steps=0,
|
206
|
+
foreach: bool = True,
|
207
|
+
storage_dtype: str = "float32",
|
208
|
+
mars: bool = False,
|
209
|
+
caution: bool = False,
|
210
|
+
mars_gamma: float = 0.0025,
|
211
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
212
|
+
update_clipping: C.str_or_fn = C.use_default,
|
213
|
+
palm: bool = C.use_default,
|
214
|
+
beta2_scale: float = 0.8,
|
215
|
+
):
|
216
|
+
defaults = locals()
|
217
|
+
defaults.pop("self")
|
218
|
+
params = defaults.pop("params")
|
219
|
+
super().__init__(
|
220
|
+
params,
|
221
|
+
defaults,
|
222
|
+
foreach,
|
223
|
+
gradient_clipping,
|
224
|
+
update_clipping,
|
225
|
+
palm,
|
226
|
+
C.scale_by_laprop,
|
227
|
+
C.orthogonalize_update,
|
228
|
+
)
|
229
|
+
|
230
|
+
|
231
|
+
class ForeachSOAP(C.BaseOpt):
|
232
|
+
"""
|
233
|
+
ForeachSOAP
|
234
|
+
|
235
|
+
Sources:
|
236
|
+
Baseline SOAP:
|
237
|
+
SOAP: Improving and Stabilizing Shampoo using Adam
|
238
|
+
Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, Sham Kakade
|
239
|
+
https://arxiv.org/abs/2409.11321
|
240
|
+
https://github.com/nikhilvyas/SOAP
|
241
|
+
"""
|
242
|
+
|
243
|
+
use_precond_schedule: bool = False
|
244
|
+
|
245
|
+
def __init__(
|
246
|
+
self,
|
247
|
+
params,
|
248
|
+
lr: float = 3e-3,
|
249
|
+
betas=(0.9, 0.95),
|
250
|
+
shampoo_beta: float = 0.95,
|
251
|
+
eps: float = 1e-8,
|
252
|
+
weight_decay: float = 0.01,
|
253
|
+
precondition_frequency: int = 2,
|
254
|
+
max_precond_dim: int = 2048, #
|
255
|
+
merge_dims: bool = True,
|
256
|
+
precondition_1d: bool = False,
|
257
|
+
normalize_grads: bool = False,
|
258
|
+
correct_bias: bool = True,
|
259
|
+
warmup_steps: int = 0,
|
260
|
+
split: bool = False,
|
261
|
+
foreach: bool = True,
|
262
|
+
mars: bool = False,
|
263
|
+
caution: bool = False,
|
264
|
+
mars_gamma: float = 0.0025,
|
265
|
+
palm: bool = C.use_default,
|
266
|
+
precond_scheduler=(1 / 3, 9),
|
267
|
+
beta2_scale: float = 0.8,
|
268
|
+
use_precond_schedule: bool = C.use_default,
|
269
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
270
|
+
update_clipping: C.str_or_fn = C.use_default,
|
271
|
+
storage_dtype: str = "float32",
|
272
|
+
stochastic_schedule: bool = False,
|
273
|
+
):
|
274
|
+
use_precond_schedule = C.default(use_precond_schedule, self.use_precond_schedule)
|
275
|
+
|
276
|
+
defaults = locals()
|
277
|
+
defaults.pop("self")
|
278
|
+
params = defaults.pop("params")
|
279
|
+
|
280
|
+
if use_precond_schedule:
|
281
|
+
del defaults["precondition_frequency"]
|
282
|
+
self.precond_schedule = utils.get_soap_precond_schedule(defaults.pop("precond_scheduler"))
|
283
|
+
else:
|
284
|
+
del defaults["precond_scheduler"]
|
285
|
+
self.precond_schedule = 1 / defaults.pop("precondition_frequency")
|
286
|
+
super().__init__(
|
287
|
+
params,
|
288
|
+
defaults,
|
289
|
+
foreach,
|
290
|
+
gradient_clipping,
|
291
|
+
update_clipping,
|
292
|
+
palm, #
|
293
|
+
C.scale_by_soap,
|
294
|
+
)
|
295
|
+
|
296
|
+
|
297
|
+
class ForeachSignLaProp(C.BaseOpt):
|
298
|
+
def __init__(
|
299
|
+
self,
|
300
|
+
params,
|
301
|
+
lr=0.0025,
|
302
|
+
betas=(0.9, 0.99),
|
303
|
+
eps=1e-8,
|
304
|
+
weight_decay=0,
|
305
|
+
warmup_steps=0,
|
306
|
+
foreach: bool = True,
|
307
|
+
storage_dtype: str = "float32",
|
308
|
+
mars: bool = False,
|
309
|
+
caution: bool = False,
|
310
|
+
mars_gamma: float = 0.0025,
|
311
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
312
|
+
update_clipping: C.str_or_fn = C.use_default,
|
313
|
+
palm: bool = C.use_default,
|
314
|
+
beta2_scale: float = 0.8,
|
315
|
+
):
|
316
|
+
defaults = locals()
|
317
|
+
defaults.pop("self")
|
318
|
+
params = defaults.pop("params")
|
319
|
+
super().__init__(
|
320
|
+
params,
|
321
|
+
defaults,
|
322
|
+
foreach,
|
323
|
+
gradient_clipping,
|
324
|
+
update_clipping,
|
325
|
+
palm,
|
326
|
+
C.scale_by_laprop,
|
327
|
+
C.sign,
|
328
|
+
)
|
329
|
+
|
330
|
+
|
331
|
+
class ForeachSOLP(C.BaseOpt):
|
332
|
+
"""
|
333
|
+
ForeachSOLP
|
334
|
+
|
335
|
+
Sources:
|
336
|
+
Baseline SOAP:
|
337
|
+
SOAP: Improving and Stabilizing Shampoo using Adam
|
338
|
+
Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, Sham Kakade
|
339
|
+
https://arxiv.org/abs/2409.11321
|
340
|
+
https://github.com/nikhilvyas/SOAP
|
341
|
+
"""
|
342
|
+
|
343
|
+
use_precond_schedule: bool = False
|
344
|
+
|
345
|
+
def __init__(
|
346
|
+
self,
|
347
|
+
params,
|
348
|
+
lr: float = 3e-3,
|
349
|
+
betas=(0.9, 0.95),
|
350
|
+
shampoo_beta: float = 0.95,
|
351
|
+
eps: float = 1e-8,
|
352
|
+
weight_decay: float = 0.01,
|
353
|
+
precondition_frequency: int = 2,
|
354
|
+
max_precond_dim: int = 2048, #
|
355
|
+
merge_dims: bool = True,
|
356
|
+
precondition_1d: bool = False,
|
357
|
+
normalize_grads: bool = False,
|
358
|
+
correct_bias: bool = True,
|
359
|
+
warmup_steps: int = 0,
|
360
|
+
split: bool = False,
|
361
|
+
foreach: bool = True,
|
362
|
+
mars: bool = False,
|
363
|
+
caution: bool = False,
|
364
|
+
mars_gamma: float = 0.0025,
|
365
|
+
palm: bool = C.use_default,
|
366
|
+
precond_scheduler=(1 / 3, 9),
|
367
|
+
beta2_scale: float = 0.8,
|
368
|
+
use_precond_schedule: bool = C.use_default,
|
369
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
370
|
+
update_clipping: C.str_or_fn = C.use_default,
|
371
|
+
storage_dtype: str = "float32",
|
372
|
+
stochastic_schedule: bool = False,
|
373
|
+
):
|
374
|
+
use_precond_schedule = C.default(use_precond_schedule, self.use_precond_schedule)
|
375
|
+
|
376
|
+
defaults = locals()
|
377
|
+
defaults.pop("self")
|
378
|
+
params = defaults.pop("params")
|
379
|
+
|
380
|
+
if use_precond_schedule:
|
381
|
+
del defaults["precondition_frequency"]
|
382
|
+
self.precond_schedule = utils.get_soap_precond_schedule(defaults.pop("precond_scheduler"))
|
383
|
+
else:
|
384
|
+
del defaults["precond_scheduler"]
|
385
|
+
self.precond_schedule = 1 / defaults.pop("precondition_frequency")
|
386
|
+
super().__init__(
|
387
|
+
params,
|
388
|
+
defaults,
|
389
|
+
foreach,
|
390
|
+
gradient_clipping,
|
391
|
+
update_clipping,
|
392
|
+
palm, #
|
393
|
+
functools.partial(C.scale_by_soap, inner="laprop"),
|
394
|
+
)
|
395
|
+
|
396
|
+
|
397
|
+
class PaLMForeachSOAP(ForeachSOAP):
|
398
|
+
use_precond_schedule: bool = False
|
399
|
+
palm: bool = True
|
400
|
+
|
401
|
+
|
402
|
+
class PrecondScheduleForeachSOAP(ForeachSOAP):
|
403
|
+
use_precond_schedule: bool = True
|
404
|
+
|
405
|
+
|
406
|
+
class PrecondSchedulePaLMForeachSOAP(ForeachSOAP):
|
407
|
+
use_precond_schedule: bool = True
|
408
|
+
palm: bool = True
|
409
|
+
|
410
|
+
|
411
|
+
class OrthoLaProp(C.BaseOpt):
|
412
|
+
def __init__(
|
413
|
+
self,
|
414
|
+
params,
|
415
|
+
lr=0.0025,
|
416
|
+
betas=(0.9, 0.99),
|
417
|
+
eps=1e-8,
|
418
|
+
weight_decay=0,
|
419
|
+
warmup_steps=0,
|
420
|
+
foreach: bool = True,
|
421
|
+
storage_dtype: str = "float32",
|
422
|
+
mars: bool = False,
|
423
|
+
caution: bool = False,
|
424
|
+
mars_gamma: float = 0.0025,
|
425
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
426
|
+
update_clipping: C.str_or_fn = C.use_default,
|
427
|
+
palm: bool = C.use_default,
|
428
|
+
beta2_scale: float = 0.8,
|
429
|
+
):
|
430
|
+
defaults = locals()
|
431
|
+
defaults.pop("self")
|
432
|
+
params = defaults.pop("params")
|
433
|
+
super().__init__(
|
434
|
+
params,
|
435
|
+
defaults,
|
436
|
+
foreach,
|
437
|
+
gradient_clipping,
|
438
|
+
update_clipping,
|
439
|
+
palm,
|
440
|
+
C.orthogonalize_grad_to_param,
|
441
|
+
C.scale_by_laprop,
|
442
|
+
)
|
443
|
+
|
444
|
+
|
445
|
+
class LaPropOrtho(C.BaseOpt):
|
446
|
+
def __init__(
|
447
|
+
self,
|
448
|
+
params,
|
449
|
+
lr=0.0025,
|
450
|
+
betas=(0.9, 0.99),
|
451
|
+
eps=1e-8,
|
452
|
+
weight_decay=0,
|
453
|
+
warmup_steps=0,
|
454
|
+
foreach: bool = True,
|
455
|
+
storage_dtype: str = "float32",
|
456
|
+
mars: bool = False,
|
457
|
+
caution: bool = False,
|
458
|
+
mars_gamma: float = 0.0025,
|
459
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
460
|
+
update_clipping: C.str_or_fn = C.use_default,
|
461
|
+
palm: bool = C.use_default,
|
462
|
+
beta2_scale: float = 0.8,
|
463
|
+
):
|
464
|
+
defaults = locals()
|
465
|
+
defaults.pop("self")
|
466
|
+
params = defaults.pop("params")
|
467
|
+
super().__init__(
|
468
|
+
params,
|
469
|
+
defaults,
|
470
|
+
foreach,
|
471
|
+
gradient_clipping,
|
472
|
+
update_clipping,
|
473
|
+
palm,
|
474
|
+
C.scale_by_laprop,
|
475
|
+
C.orthogonalize_grad_to_param,
|
476
|
+
)
|
477
|
+
|
478
|
+
|
479
|
+
class ForeachPSGDKron(C.BaseOpt):
|
480
|
+
"""
|
481
|
+
Originally from Evan Walters and Omead Pooladzandi, 2024
|
482
|
+
Modified under Creative Commons Attribution 4.0 International
|
483
|
+
Source available at https://github.com/evanatyourservice/kron_torch/blob/97a2b5ee8a1a4c29e4780bbf6c521e545189eff9/kron_torch/kron.py
|
484
|
+
"""
|
485
|
+
|
486
|
+
delayed: bool = False
|
487
|
+
cached: bool = False
|
488
|
+
exp_avg_input: bool = True
|
489
|
+
|
490
|
+
def __init__(
|
491
|
+
self,
|
492
|
+
params,
|
493
|
+
lr=0.001,
|
494
|
+
beta=0.9,
|
495
|
+
weight_decay=0.0,
|
496
|
+
preconditioner_update_probability=None,
|
497
|
+
max_size_triangular=2048,
|
498
|
+
min_ndim_triangular=2,
|
499
|
+
memory_save_mode=None,
|
500
|
+
momentum_into_precond_update=True,
|
501
|
+
warmup_steps: int = 0,
|
502
|
+
merge_dims: bool = False,
|
503
|
+
split: bool = False,
|
504
|
+
store_triu_as_line: bool = True,
|
505
|
+
foreach: bool = True,
|
506
|
+
q_dtype="float32",
|
507
|
+
stochastic_schedule: bool = False,
|
508
|
+
storage_dtype: str = "float32",
|
509
|
+
mars: bool = False,
|
510
|
+
caution: bool = False,
|
511
|
+
mars_gamma: float = 0.0025,
|
512
|
+
delayed: Optional[bool] = C.use_default,
|
513
|
+
cached: Optional[bool] = C.use_default,
|
514
|
+
exp_avg_input: Optional[bool] = C.use_default,
|
515
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
516
|
+
update_clipping: C.str_or_fn = C.use_default, #
|
517
|
+
# expert parameters
|
518
|
+
precond_init_scale=None,
|
519
|
+
precond_init_scale_scale=1,
|
520
|
+
precond_lr=0.1,
|
521
|
+
):
|
522
|
+
defaults = locals()
|
523
|
+
defaults.pop("self")
|
524
|
+
self.precond_schedule = (
|
525
|
+
defaults.pop("preconditioner_update_probability") or utils.precond_update_prob_schedule()
|
526
|
+
)
|
527
|
+
params = defaults.pop("params")
|
528
|
+
|
529
|
+
delayed = C.default(delayed, self.delayed)
|
530
|
+
cached = C.default(cached, self.cached)
|
531
|
+
exp_avg_input = C.default(exp_avg_input, self.exp_avg_input)
|
532
|
+
update_clipping = C.default(update_clipping, utils.trust_region_clip_)
|
533
|
+
|
534
|
+
super().__init__(
|
535
|
+
params,
|
536
|
+
defaults,
|
537
|
+
foreach,
|
538
|
+
gradient_clipping,
|
539
|
+
update_clipping,
|
540
|
+
False, #
|
541
|
+
*(C.exp_avg,) * exp_avg_input, #
|
542
|
+
functools.partial(C.scale_by_delayed_psgd if delayed else C.scale_by_psgd, cached=cached),
|
543
|
+
)
|
544
|
+
|
545
|
+
|
546
|
+
class ForeachPurePSGD(ForeachPSGDKron):
|
547
|
+
exp_avg_input: bool = False
|
548
|
+
|
549
|
+
|
550
|
+
class ForeachCachedDelayedPSGDKron(ForeachPSGDKron):
|
551
|
+
delayed: bool = True
|
552
|
+
cached: bool = True
|
553
|
+
|
554
|
+
|
555
|
+
class ForeachCachedPSGDKron(ForeachPSGDKron):
|
556
|
+
cached: bool = True
|
557
|
+
|
558
|
+
|
559
|
+
class ForeachDelayedPSGD(ForeachPSGDKron):
|
560
|
+
delayed: bool = True
|
561
|
+
|
562
|
+
|
563
|
+
class ForeachCachedNewtonPSGD(ForeachCachedPSGDKron):
|
564
|
+
hessian_approx = True
|
565
|
+
|
566
|
+
|
567
|
+
class ForeachPSGDLRA(C.BaseOpt):
|
568
|
+
"""
|
569
|
+
Originally from Evan Walters and Omead Pooladzandi, 2024
|
570
|
+
Modified under Creative Commons Attribution 4.0 International
|
571
|
+
Source available at https://github.com/evanatyourservice/kron_torch/blob/97a2b5ee8a1a4c29e4780bbf6c521e545189eff9/kron_torch/kron.py
|
572
|
+
"""
|
573
|
+
|
574
|
+
delayed: bool = False
|
575
|
+
exp_avg_input: bool = True
|
576
|
+
|
577
|
+
def __init__(
|
578
|
+
self,
|
579
|
+
params,
|
580
|
+
lr=0.001,
|
581
|
+
beta=0.9,
|
582
|
+
weight_decay=0.0,
|
583
|
+
preconditioner_update_probability=None,
|
584
|
+
momentum_into_precond_update=True,
|
585
|
+
rank: int = 4,
|
586
|
+
warmup_steps: int = 0,
|
587
|
+
foreach: bool = True,
|
588
|
+
q_dtype="float32",
|
589
|
+
stochastic_schedule: bool = False,
|
590
|
+
storage_dtype: str = "float32",
|
591
|
+
mars: bool = False,
|
592
|
+
caution: bool = False,
|
593
|
+
mars_gamma: float = 0.0025,
|
594
|
+
delayed: Optional[bool] = C.use_default,
|
595
|
+
exp_avg_input: Optional[bool] = C.use_default,
|
596
|
+
gradient_clipping: C.str_or_fn = C.use_default,
|
597
|
+
update_clipping: C.str_or_fn = C.use_default,
|
598
|
+
eps: float = 1e-8, #
|
599
|
+
# expert parameters
|
600
|
+
precond_init_scale=None,
|
601
|
+
precond_init_scale_scale=1,
|
602
|
+
precond_lr=0.1,
|
603
|
+
):
|
604
|
+
defaults = locals()
|
605
|
+
defaults.pop("self")
|
606
|
+
self.precond_schedule = (
|
607
|
+
defaults.pop("preconditioner_update_probability") or utils.precond_update_prob_schedule()
|
608
|
+
)
|
609
|
+
params = defaults.pop("params")
|
610
|
+
|
611
|
+
delayed = C.default(delayed, self.delayed)
|
612
|
+
exp_avg_input = C.default(exp_avg_input, self.exp_avg_input)
|
613
|
+
update_clipping = C.default(update_clipping, utils.trust_region_clip_)
|
614
|
+
|
615
|
+
super().__init__(
|
616
|
+
params,
|
617
|
+
defaults,
|
618
|
+
foreach,
|
619
|
+
gradient_clipping,
|
620
|
+
update_clipping,
|
621
|
+
False, #
|
622
|
+
*(C.exp_avg,) * exp_avg_input, #
|
623
|
+
C.scale_by_delayed_psgd_lra if delayed else C.scale_by_psgd_lra,
|
624
|
+
)
|
625
|
+
|
626
|
+
|
627
|
+
class ForeachDelayedPSGDLRA(ForeachPSGDLRA):
|
628
|
+
delayed: bool = True
|
629
|
+
|
630
|
+
|
631
|
+
class ForeachNewtonPSGDLRA(ForeachPSGDLRA):
|
632
|
+
hessian_approx = True
|
633
|
+
|
634
|
+
|
635
|
+
PalmForEachSoap = PaLMForeachSOAP
|
636
|
+
PaLMSOAP = PaLMForeachSOAP
|
637
|
+
PaLMSFAdamW = PaLMForeachSFAdamW
|
638
|
+
SOAP = ForeachSOAP
|
639
|
+
SFAdamW = ForeachSFAdamW
|
640
|
+
LaProp = ForeachLaProp
|
641
|
+
ADOPT = ForeachADOPT
|
642
|
+
RMSprop = ForeachRMSprop
|
643
|
+
PrecondScheduleSOAP = PrecondScheduleForeachSOAP
|
644
|
+
PrecondSchedulePaLMSOAP = PrecondSchedulePaLMForeachSOAP
|
645
|
+
PSGDKron = ForeachPSGDKron
|
646
|
+
AdamW = ForeachAdamW
|
647
|
+
PurePSGD = ForeachPurePSGD
|
648
|
+
DelayedPSGD = ForeachDelayedPSGD
|
649
|
+
CachedPSGDKron = ForeachCachedPSGDKron
|
650
|
+
CachedDelayedPSGDKron = ForeachCachedDelayedPSGDKron
|
651
|
+
Muon = ForeachMuon
|
652
|
+
SignLaProp = ForeachSignLaProp
|
653
|
+
DelayedPSGDLRA = ForeachDelayedPSGDLRA
|
654
|
+
PSGDLRA = ForeachPSGDLRA
|
655
|
+
NewtonPSGDLRA = ForeachNewtonPSGDLRA
|
656
|
+
|
657
|
+
__all__ = [
|
658
|
+
"Muon",
|
659
|
+
"RMSprop",
|
660
|
+
"PrecondSchedulePaLMSOAP",
|
661
|
+
"PSGDKron",
|
662
|
+
"PurePSGD",
|
663
|
+
"DelayedPSGD",
|
664
|
+
"CachedPSGDKron",
|
665
|
+
"CachedDelayedPSGDKron",
|
666
|
+
"PalmForEachSoap",
|
667
|
+
"PaLMSOAP",
|
668
|
+
"PaLMSFAdamW",
|
669
|
+
"LaProp",
|
670
|
+
"ADOPT",
|
671
|
+
"PrecondScheduleSOAP",
|
672
|
+
"PrecondSchedulePaLMSOAP",
|
673
|
+
"RMSprop",
|
674
|
+
"MuonLaProp",
|
675
|
+
"ForeachSignLaProp",
|
676
|
+
"ForeachDelayedPSGDLRA",
|
677
|
+
"ForeachPSGDLRA",
|
678
|
+
"ForeachPSGDLRA",
|
679
|
+
"ForeachNewtonPSGDLRA", #
|
680
|
+
"ForeachAdamW",
|
681
|
+
"ForeachSFAdamW",
|
682
|
+
"ForeachLaProp",
|
683
|
+
"ForeachADOPT",
|
684
|
+
"ForeachSOAP",
|
685
|
+
"ForeachPSGDKron",
|
686
|
+
"ForeachPurePSGD",
|
687
|
+
"ForeachDelayedPSGD",
|
688
|
+
"ForeachCachedPSGDKron",
|
689
|
+
"ForeachCachedDelayedPSGDKron",
|
690
|
+
"ForeachRMSprop",
|
691
|
+
"ForeachMuon",
|
692
|
+
"ForeachCachedNewtonPSGD",
|
693
|
+
"OrthoLaProp",
|
694
|
+
"LaPropOrtho",
|
695
|
+
"SignLaProp",
|
696
|
+
"DelayedPSGD",
|
697
|
+
"PSGDLRA",
|
698
|
+
"NewtonPSGDLRA",
|
699
|
+
]
|