heavyball 0.23.3__tar.gz → 0.24.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. {heavyball-0.23.3 → heavyball-0.24.0}/PKG-INFO +1 -1
  2. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/cached_delayed_psgd_kron.py +1 -1
  3. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/cached_psgd_kron.py +1 -1
  4. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/delayed_psgd.py +1 -1
  5. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/foreach_adamw.py +2 -2
  6. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/foreach_adopt.py +2 -2
  7. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/foreach_laprop.py +2 -2
  8. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/foreach_sfadamw.py +2 -2
  9. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/foreach_soap.py +2 -2
  10. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/p_adam.py +2 -2
  11. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/palm_foreach_sfadamw.py +2 -2
  12. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/palm_foreach_soap.py +2 -2
  13. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/precond_schedule_foreach_soap.py +2 -2
  14. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/precond_schedule_palm_foreach_soap.py +2 -2
  15. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/precond_schedule_sfpsoap.py +2 -2
  16. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/psgd_kron.py +1 -1
  17. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/schedule_free_palm_foreach_soap.py +1 -1
  18. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/utils.py +13 -11
  19. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball.egg-info/PKG-INFO +1 -1
  20. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball.egg-info/SOURCES.txt +1 -0
  21. {heavyball-0.23.3 → heavyball-0.24.0}/setup.py +1 -1
  22. heavyball-0.24.0/test/test_channels_last.py +50 -0
  23. {heavyball-0.23.3 → heavyball-0.24.0}/LICENSE +0 -0
  24. {heavyball-0.23.3 → heavyball-0.24.0}/README.md +0 -0
  25. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/__init__.py +0 -0
  26. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball/pure_psgd.py +0 -0
  27. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball.egg-info/dependency_links.txt +0 -0
  28. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball.egg-info/requires.txt +0 -0
  29. {heavyball-0.23.3 → heavyball-0.24.0}/heavyball.egg-info/top_level.txt +0 -0
  30. {heavyball-0.23.3 → heavyball-0.24.0}/setup.cfg +0 -0
  31. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_bf16_params.py +0 -0
  32. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_bf16_q.py +0 -0
  33. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_bf16_storage.py +0 -0
  34. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_caution.py +0 -0
  35. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_closure.py +0 -0
  36. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_ema.py +0 -0
  37. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_foreach.py +0 -0
  38. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_mars.py +0 -0
  39. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_memory.py +0 -0
  40. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_merge.py +0 -0
  41. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_no_grad.py +0 -0
  42. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_psgd.py +0 -0
  43. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_soap.py +0 -0
  44. {heavyball-0.23.3 → heavyball-0.24.0}/test/test_stochastic_updates.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: heavyball
3
- Version: 0.23.3
3
+ Version: 0.24.0
4
4
  Summary: Efficient optimizers
5
5
  Home-page: https://github.com/clashluke/heavyball
6
6
  Author: Lucas Nestler
@@ -86,7 +86,7 @@ class ForeachCachedDelayedPSGDKron(PSGDBase):
86
86
  state = self.state_(p)
87
87
 
88
88
  if 'Q' not in state:
89
- state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype)
89
+ state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype, memory_format=torch.preserve_format)
90
90
  Q, state["exprs"] = init_Q_exprs(p, precond_init_scale, max_size_triangular, min_ndim_triangular,
91
91
  memory_save_mode, dtype=q_dtype)
92
92
  state['Q'] = triu_to_line(Q) if store_triu_as_line else Q
@@ -83,7 +83,7 @@ class ForeachCachedPSGDKron(PSGDBase):
83
83
  state = self.state_(p)
84
84
 
85
85
  if 'Q' not in state:
86
- state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype)
86
+ state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype, memory_format=torch.preserve_format)
87
87
  Q, state["exprs"] = init_Q_exprs(p, precond_init_scale, max_size_triangular, min_ndim_triangular,
88
88
  memory_save_mode, dtype=q_dtype)
89
89
  state['Q'] = triu_to_line(Q) if store_triu_as_line else Q
@@ -89,7 +89,7 @@ class ForeachDelayedPSGD(PSGDBase):
89
89
  state = self.state_(p)
90
90
 
91
91
  if 'Q' not in state:
92
- state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype)
92
+ state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype, memory_format=torch.preserve_format)
93
93
  Q, state["exprs"] = init_Q_exprs(p, precond_init_scale, max_size_triangular, min_ndim_triangular,
94
94
  memory_save_mode, dtype=q_dtype)
95
95
  state["Q"] = triu_to_line(Q) if store_triu_as_line else Q
@@ -45,8 +45,8 @@ class ForeachAdamW(StatefulOptimizer):
45
45
 
46
46
  for p in active_p:
47
47
  if 'exp_avg' not in self.state_(p):
48
- self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype)
49
- self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
48
+ self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype, memory_format=torch.preserve_format)
49
+ self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype, memory_format=torch.preserve_format)
50
50
 
51
51
  y, grad, exp_avg_sq, exp_avg = zip(
52
52
  *[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['exp_avg']) for p in active_p])
@@ -51,8 +51,8 @@ class ForeachADOPT(StatefulOptimizer):
51
51
 
52
52
  for p in active_p:
53
53
  if 'exp_avg' not in self.state_(p):
54
- self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype)
55
- self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
54
+ self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype, memory_format=torch.preserve_format)
55
+ self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype, memory_format=torch.preserve_format)
56
56
 
57
57
  y, grad, exp_avg_sq, exp_avg = zip(
58
58
  *[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['exp_avg']) for p in active_p])
@@ -47,8 +47,8 @@ class ForeachLaProp(StatefulOptimizer):
47
47
 
48
48
  for p in active_p:
49
49
  if 'exp_avg' not in self.state_(p):
50
- self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype)
51
- self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
50
+ self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype, memory_format=torch.preserve_format)
51
+ self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype, memory_format=torch.preserve_format)
52
52
 
53
53
  y, grad, exp_avg_sq, exp_avg = zip(
54
54
  *[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['exp_avg']) #
@@ -50,8 +50,8 @@ class ForeachSFAdamW(ScheduleFree):
50
50
 
51
51
  for p in active_p:
52
52
  if 'z' not in self.state_(p):
53
- self.state_(p)['z'] = torch.clone(p.data)
54
- self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
53
+ self.state_(p)['z'] = torch.clone(p.data, memory_format=torch.preserve_format)
54
+ self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype, memory_format=torch.preserve_format)
55
55
 
56
56
  y, grad, exp_avg_sq, z = zip(*[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['z']) #
57
57
  for p in active_p])
@@ -48,8 +48,8 @@ class ForeachSOAP(StatefulOptimizer):
48
48
  step = state['step'] = state.get("step", -1) + 1
49
49
 
50
50
  if "exp_avg" not in state:
51
- state["exp_avg"] = torch.zeros_like(g, dtype=torch.float32)
52
- state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32)
51
+ state["exp_avg"] = torch.zeros_like(g, dtype=torch.float32, memory_format=torch.preserve_format)
52
+ state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32, memory_format=torch.preserve_format)
53
53
  init_preconditioner(g, state, max_precond_dim, precondition_1d)
54
54
  update_preconditioner(g, state, max_precond_dim, precondition_1d, 0, True)
55
55
  continue # first step is skipped so that we never use the current gradients in the projection.
@@ -81,8 +81,8 @@ class ForeachPaLMPAdam(PSGDBase):
81
81
  state = self.state_(p)
82
82
 
83
83
  if 'Q' not in state:
84
- state['exp_avg'] = torch.zeros_like(g, dtype=storage_dtype)
85
- state['exp_avg_sq'] = torch.zeros_like(g, dtype=storage_dtype)
84
+ state['exp_avg'] = torch.zeros_like(g, dtype=storage_dtype, memory_format=torch.preserve_format)
85
+ state['exp_avg_sq'] = torch.zeros_like(g, dtype=storage_dtype, memory_format=torch.preserve_format)
86
86
  Q, state["exprs"] = init_Q_exprs(p, precond_init_scale, max_size_triangular, min_ndim_triangular,
87
87
  memory_save_mode, dtype=q_dtype)
88
88
  state['Q'] = triu_to_line(Q) if store_triu_as_line else Q
@@ -54,8 +54,8 @@ class PaLMForeachSFAdamW(ScheduleFree):
54
54
 
55
55
  for p in active_p:
56
56
  if 'z' not in self.state_(p):
57
- self.state_(p)['z'] = torch.clone(p.data)
58
- self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
57
+ self.state_(p)['z'] = torch.clone(p.data, memory_format=torch.preserve_format)
58
+ self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype, memory_format=torch.preserve_format)
59
59
 
60
60
  # Decay the first moment running average coefficient
61
61
  beta2 = 1 - (k + 1) ** -group['beta2_scale']
@@ -56,8 +56,8 @@ class PaLMForeachSOAP(StatefulOptimizer):
56
56
  step = state['step'] = state.get("step", -1) + 1
57
57
 
58
58
  if "exp_avg" not in state:
59
- state["exp_avg"] = torch.zeros_like(g, dtype=torch.float32)
60
- state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32)
59
+ state["exp_avg"] = torch.zeros_like(g, dtype=torch.float32, memory_format=torch.preserve_format)
60
+ state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32, memory_format=torch.preserve_format)
61
61
  init_preconditioner(g, state, max_precond_dim, precondition_1d)
62
62
  update_preconditioner(g, state, max_precond_dim, precondition_1d, 0, True)
63
63
  continue # first step is skipped so that we never use the current gradients in the projection.
@@ -50,8 +50,8 @@ class PrecondScheduleForeachSOAP(StatefulOptimizer):
50
50
  step = state['step'] = state.get("step", -1) + 1
51
51
 
52
52
  if "exp_avg" not in state:
53
- state["exp_avg"] = torch.zeros_like(g, dtype=torch.float32)
54
- state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32)
53
+ state["exp_avg"] = torch.zeros_like(g, dtype=torch.float32, memory_format=torch.preserve_format)
54
+ state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32, memory_format=torch.preserve_format)
55
55
  init_preconditioner(g, state, max_precond_dim, precondition_1d)
56
56
  update_preconditioner(g, state, max_precond_dim, precondition_1d, 0, True)
57
57
  continue # first step is skipped so that we never use the current gradients in the projection.
@@ -58,8 +58,8 @@ class PrecondSchedulePaLMForeachSOAP(StatefulOptimizer):
58
58
  step = state['step'] = state.get("step", -1) + 1
59
59
 
60
60
  if "exp_avg" not in state:
61
- state["exp_avg"] = torch.zeros_like(g, dtype=torch.float32)
62
- state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32)
61
+ state["exp_avg"] = torch.zeros_like(g, dtype=torch.float32, memory_format=torch.preserve_format)
62
+ state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32, memory_format=torch.preserve_format)
63
63
  init_preconditioner(g, state, max_precond_dim, precondition_1d)
64
64
  update_preconditioner(g, state, max_precond_dim, precondition_1d, 0, True)
65
65
  continue # first step is skipped so that we never use the current gradients in the projection.
@@ -96,8 +96,8 @@ class PrecondScheduleSFPaLMSOAP(ScheduleFree):
96
96
  state = self.state_(p)
97
97
 
98
98
  if "z" not in state:
99
- state["z"] = torch.clone(p.data)
100
- state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32)
99
+ state["z"] = torch.clone(p.data, memory_format=torch.preserve_format)
100
+ state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32, memory_format=torch.preserve_format)
101
101
  init_preconditioner(g, state, max_precond_dim, precondition_1d)
102
102
  update_preconditioner(g, state, max_precond_dim, precondition_1d, 0, True)
103
103
  continue # first step is skipped so that we never use the current gradients in the projection.
@@ -84,7 +84,7 @@ class ForeachPSGDKron(PSGDBase):
84
84
  state = self.state_(p)
85
85
 
86
86
  if 'Q' not in state:
87
- state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype)
87
+ state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype, memory_format=torch.preserve_format)
88
88
  Q, state["exprs"] = init_Q_exprs(p, precond_init_scale, max_size_triangular, min_ndim_triangular,
89
89
  memory_save_mode, dtype=q_dtype)
90
90
  state['Q'] = triu_to_line(Q) if store_triu_as_line else Q
@@ -90,7 +90,7 @@ class SFPaLMForeachSOAP(ScheduleFree):
90
90
 
91
91
  if "z" not in state:
92
92
  state["z"] = torch.clone(p).float()
93
- state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32)
93
+ state["exp_avg_sq"] = torch.zeros_like(g, dtype=torch.float32, memory_format=torch.preserve_format)
94
94
  if mars:
95
95
  state['mars_prev_grad'] = g.clone()
96
96
  init_preconditioner(g, state, max_precond_dim, precondition_1d)
@@ -8,9 +8,9 @@ from typing import List, Optional, Tuple, Callable, Union
8
8
  import numpy as np
9
9
  import torch
10
10
  from torch import Tensor
11
+ from torch._dynamo.exc import TorchDynamoException
11
12
  from torch.backends import cudnn, opt_einsum
12
13
  from torch.utils._pytree import tree_map
13
- from torch._dynamo.exc import TorchDynamoException
14
14
 
15
15
  compile_mode = "max-autotune-no-cudagraphs"
16
16
  dynamic = False
@@ -23,26 +23,26 @@ def decorator(func):
23
23
 
24
24
  @functools.wraps(func)
25
25
  def _fn(*args, **kwargs):
26
- if compile_mode is None:
26
+ if is_compiling() or compile_mode is None:
27
27
  return func(*args, **kwargs)
28
28
  nonlocal compiled
29
29
  if compiled is None:
30
- compiled = torch.compile(func, fullgraph=True, dynamic=dynamic, mode=compile_mode_recommended_to_none)
30
+ compiled = torch.compile(fullgraph=True, dynamic=dynamic, mode=compile_mode_recommended_to_none)(func)
31
31
  return compiled(*args, **kwargs)
32
32
 
33
33
  return _fn
34
34
 
35
35
 
36
- def decorator_knowngood(func):
36
+ def decorator_knowngood(func: Callable):
37
37
  compiled = None
38
38
 
39
39
  @functools.wraps(func)
40
40
  def _fn(*args, **kwargs):
41
- if compile_mode is None:
41
+ if is_compiling() or compile_mode is None:
42
42
  return func(*args, **kwargs)
43
43
  nonlocal compiled
44
44
  if compiled is None:
45
- compiled = torch.compile(func, fullgraph=True, dynamic=dynamic, mode=compile_mode)
45
+ compiled = torch.compile(fullgraph=True, dynamic=dynamic, mode=compile_mode)(func)
46
46
  return compiled(*args, **kwargs)
47
47
 
48
48
  return _fn
@@ -58,12 +58,13 @@ def warmup(lr: float, step: int, warmup_steps: int):
58
58
 
59
59
 
60
60
  @decorator_knowngood
61
- def _compilable_schedule_free_(p: List[Tensor], z: List[Tensor], ckp1: Tensor, grad: List[Tensor], lr: Tensor, beta1: Tensor):
62
- p32, z32, g32 = [promote(x) for x in (p, z, grad)]
61
+ def _compilable_schedule_free_(p: List[Tensor], z: List[Tensor], ckp1: Tensor, grad: List[Tensor], lr: Tensor,
62
+ beta1: Tensor):
63
+ p32, z32, g32 = [list(map(promote, x)) for x in (p, z, grad)]
63
64
  for p_, z_, g_ in zip(p32, z32, g32):
64
65
  p_.lerp_(z_, ckp1)
65
66
  p_.add_(g_, alpha=lr * (beta1 * (1 - ckp1) - 1))
66
- z_.add(g_, alpha=-lr)
67
+ z_.add_(g_, alpha=-lr)
67
68
  copy_stochastic_list_(p, p32)
68
69
  copy_stochastic_list_(z, z32)
69
70
 
@@ -158,7 +159,8 @@ def beta_debias(beta, step):
158
159
 
159
160
 
160
161
  @decorator_knowngood
161
- def _compilable_exp_avg_sq_(state: List[Tensor], grad: List[Tensor], beta2: Tensor, eps: Tensor, out: List[Optional[Tensor]]):
162
+ def _compilable_exp_avg_sq_(state: List[Tensor], grad: List[Tensor], beta2: Tensor, eps: Tensor,
163
+ out: List[Optional[Tensor]]):
162
164
  torch._foreach_mul_(state, beta2)
163
165
  [s.addcmul_(g, g, value=1 - beta2) for s, g in zip(state, grad)]
164
166
  denom = torch._foreach_sqrt(state)
@@ -1050,7 +1052,7 @@ class PSGDBase(StatefulOptimizer):
1050
1052
 
1051
1053
 
1052
1054
  # TODO: Figure out why this sometimes crashes
1053
- #@decorator_knowngood
1055
+ # @decorator_knowngood
1054
1056
  def _compilable_precond_grad_cached_(ea: Tensor, expr: str, param: Tensor, lr: Tensor, weight_decay: Tensor,
1055
1057
  clip_fn: callable, caution: bool, grad: Optional[Tensor], *cached_q: Tensor):
1056
1058
  md = min_dtype(list(cached_q) + [ea])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: heavyball
3
- Version: 0.23.3
3
+ Version: 0.24.0
4
4
  Summary: Efficient optimizers
5
5
  Home-page: https://github.com/clashluke/heavyball
6
6
  Author: Lucas Nestler
@@ -29,6 +29,7 @@ test/test_bf16_params.py
29
29
  test/test_bf16_q.py
30
30
  test/test_bf16_storage.py
31
31
  test/test_caution.py
32
+ test/test_channels_last.py
32
33
  test/test_closure.py
33
34
  test/test_ema.py
34
35
  test/test_foreach.py
@@ -10,7 +10,7 @@ setuptools.setup(
10
10
  name='heavyball',
11
11
  license='BSD',
12
12
  description='Efficient optimizers',
13
- version='0.23.3',
13
+ version='0.24.0',
14
14
  long_description=README,
15
15
  url='https://github.com/clashluke/heavyball',
16
16
  packages=setuptools.find_packages(),
@@ -0,0 +1,50 @@
1
+ import os
2
+
3
+ os.environ["TORCH_LOGS"] = "+recompiles"
4
+
5
+ import heavyball
6
+ import heavyball.utils
7
+ import pytest
8
+ import torch
9
+ from benchmark.utils import get_optim
10
+ from heavyball.utils import clean, set_torch
11
+ from torch import nn
12
+ from torch._dynamo import config
13
+
14
+ config.cache_size_limit = 128
15
+
16
+
17
+ @pytest.mark.parametrize("opt", heavyball.__all__)
18
+ @pytest.mark.parametrize("size,depth", [(128, 1)])
19
+ def test_foreach(opt, size, depth: int, iterations: int = 32, outer_iterations: int = 1):
20
+ set_torch()
21
+ opt = getattr(heavyball, opt)
22
+
23
+ peaks = []
24
+ losses = []
25
+
26
+ for is_channels_last in [False, True]:
27
+ torch.manual_seed(0x2131290)
28
+ peaks.append([])
29
+ losses.append([])
30
+
31
+ for i in range(outer_iterations):
32
+ model = nn.Sequential(*[nn.Conv2d(size, size, 1) for _ in range(depth)]).cuda()
33
+ if is_channels_last:
34
+ model.to(memory_format=torch.channels_last)
35
+
36
+ o = get_optim(opt, model.parameters(), lr=1e-3, weight_decay=1e-4, warmup_steps=16)
37
+
38
+ for _ in range(iterations):
39
+ loss = model(torch.randn((1024, size, 1, 1), device='cuda')).square().mean()
40
+ loss.backward()
41
+ o.step()
42
+ o.zero_grad()
43
+ losses[-1].append(loss.detach())
44
+
45
+ del model, o
46
+ clean()
47
+
48
+ for i, (l0, l1) in enumerate(zip(*losses)):
49
+ print(i, l0.item(), l1.item())
50
+ assert torch.allclose(l0.float(), l1.float(), rtol=0.1)
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes