heavyball 0.18.8__tar.gz → 0.20.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {heavyball-0.18.8 → heavyball-0.20.1}/PKG-INFO +18 -16
- {heavyball-0.18.8 → heavyball-0.20.1}/README.md +17 -15
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/cached_delayed_psgd_kron.py +11 -11
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/cached_psgd_kron.py +13 -12
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/delayed_psgd.py +15 -18
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/foreach_adamw.py +7 -5
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/foreach_adopt.py +6 -4
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/foreach_laprop.py +10 -5
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/foreach_sfadamw.py +7 -4
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/foreach_soap.py +4 -7
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/p_adam.py +9 -9
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/palm_foreach_sfadamw.py +9 -4
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/palm_foreach_soap.py +6 -6
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/precond_schedule_foreach_soap.py +6 -10
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/precond_schedule_palm_foreach_soap.py +4 -4
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/precond_schedule_sfpsoap.py +20 -10
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/psgd_kron.py +15 -12
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/pure_psgd.py +3 -6
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/schedule_free_palm_foreach_soap.py +17 -8
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/utils.py +146 -57
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball.egg-info/PKG-INFO +18 -16
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball.egg-info/SOURCES.txt +2 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/setup.py +1 -1
- {heavyball-0.18.8 → heavyball-0.20.1}/test/test_bf16_params.py +2 -1
- heavyball-0.20.1/test/test_bf16_storage.py +60 -0
- heavyball-0.20.1/test/test_ema.py +61 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/LICENSE +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball/__init__.py +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball.egg-info/dependency_links.txt +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball.egg-info/requires.txt +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/heavyball.egg-info/top_level.txt +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/setup.cfg +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/test/test_bf16_q.py +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/test/test_closure.py +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/test/test_foreach.py +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/test/test_memory.py +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/test/test_merge.py +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/test/test_no_grad.py +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/test/test_psgd.py +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/test/test_soap.py +0 -0
- {heavyball-0.18.8 → heavyball-0.20.1}/test/test_stochastic_updates.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: heavyball
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.20.1
|
4
4
|
Summary: Efficient optimizers
|
5
5
|
Home-page: https://github.com/clashluke/heavyball
|
6
6
|
Author: Lucas Nestler
|
@@ -32,7 +32,7 @@ A simple package of efficient optimizers
|
|
32
32
|
The goal is not to thrive for completeness, full maintenance or abstraction, but instead to provide a simple
|
33
33
|
largely static alternative to `torch.optim` with more and better optimizers.
|
34
34
|
|
35
|
-
Currently (2024-11-
|
35
|
+
Currently (2024-11-22, 0.19.1), the recommended stable optimizer is `PrecondSchedulePaLMSOAP` (see below). The
|
36
36
|
recommended experimental optimizer is `DelayedPSGDKron` ([tuning guide](docs/psgd_efficiency.md)).
|
37
37
|
|
38
38
|
## Features
|
@@ -45,8 +45,10 @@ recommended experimental optimizer is `DelayedPSGDKron` ([tuning guide](docs/psg
|
|
45
45
|
* **ScheduleFree**: No learning rate schedule, but better convergence
|
46
46
|
* [**Preconditioner Schedule**](https://github.com/lixilinx/psgd_torch/): Improved loss-per-step in early convergence,
|
47
47
|
better step-per-second in late convergence (explained below)
|
48
|
-
* **Memory-efficient storage** PSGD supports `store_triu_as_line` (default: `True`) to trade off memory
|
49
|
-
|
48
|
+
* **Memory-efficient storage** PSGD supports `store_triu_as_line` (default: `True`) and `q_dtype` to trade off memory
|
49
|
+
usage for memory
|
50
|
+
bandwidth; Other optimizers have `storage_dtype`, supporting lower-precision EMAs at no(?) performance drop via
|
51
|
+
stochastic rounding
|
50
52
|
|
51
53
|
## Getting started
|
52
54
|
|
@@ -76,19 +78,19 @@ for _ in range(1000):
|
|
76
78
|
|
77
79
|
## Optimizers
|
78
80
|
|
79
|
-
| Name
|
80
|
-
|
81
|
-
| **AdamW**
|
82
|
-
| **LaProp**
|
83
|
-
| **ADOPT**
|
84
|
-
| **SFAdamW**
|
85
|
-
| **PaLMSFAdamW**
|
86
|
-
| **SOAP**
|
87
|
-
| **PaLMSOAP**
|
88
|
-
| **SFPaLMSOAP**
|
81
|
+
| Name | Description | Advantages / Disadvantages |
|
82
|
+
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
83
|
+
| **AdamW** | More efficient (speed, memory) [AdamW](https://arxiv.org/abs/1711.05101) | + Faster than AdamW<br>+ Possibly more (numerically) stable
|
84
|
+
| **LaProp** | More efficient (speed, memory) [LaProp](https://arxiv.org/abs/2002.04839) | + Same cost as AdamW<br>+ Marginally better converence (better proofs)<br>+ Higher hyperparameter stability<br>- Not a guaranteed win (can be neutral)<br>- No "Slingshot" |
|
85
|
+
| **ADOPT** | More efficient (speed, memory) [ADOPT](https://arxiv.org/abs/2411.02853) | + Same cost as AdamW<br>+ Rigorous mathematical convergence proofs, even for challenging models (GANs)<br>- Empirically underperforms LaProp<br>- no bf16 |
|
86
|
+
| **SFAdamW** | More efficient (speed, memory) [ScheduleFree AdamW](https://arxiv.org/abs/2405.15682) | + Same cost as AdamW, but better eval perf<br>+ Full control over hyperparameters |
|
87
|
+
| **PaLMSFAdamW** | ForeachSFAdamW with [PaLM's beta2 schedule](https://arxiv.org/abs/2204.02311) | + Same cost as AdamW, but better eval perf<br>+ Less control, but faster early and more stable late convergence<br>+ ScheduleFree<br>- slow early convergence |
|
88
|
+
| **SOAP** | More efficient (speed, memory) [SOAP](https://arxiv.org/abs/2409.11321) | + Faster convergence (loss-at-step)<br>+ Full control over hyperparameters<br>- more memory usage<br>- more hyperparameters<br>- higher overhead than AdamW (can be ammortized; better loss-at-second) |
|
89
|
+
| **PaLMSOAP** | ForeachSOAP with [PaLM's beta2 schedule](https://arxiv.org/abs/2204.02311) | + Faster convergence (loss-at-step)<br>+ Less control, but faster early and more stable late convergence<br>- more memory usage<br>- more hyperparameters<br>- higher overhead than AdamW (can be ammortized; better loss-at-second) |
|
90
|
+
| **SFPaLMSOAP** | ScheduleFree PaLMForeachSOAP | + Fast convergence (loss-at-step)<br>+ less memory usage than PaLMForeachSOAP (more tham AdamW)<br>- slower initial convergence than PaLMForeachSOAP (but allows higher LRs)<br>- higher overhead than AdamW (can be ammortized) |
|
89
91
|
| **PrecondScheduleSFPaLMSOAP** | SFPaLMForeachSOAP with [preconditioner schedule](https://github.com/lixilinx/psgd_torch/), matching the error of PrecondEvery=2 with the cost of PrecondEvery=512 | + Better initial convergence than SFPaLMForeachSOAP<br>+ Significantly faster (sec/it) later<br>+ less memory usage than PaLMForeachSOAP (more tham AdamW)<br>- slower initial convergence than PaLMForeachSOAP (but allows higher LRs)<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of step |
|
90
|
-
| **PrecondSchedulePaLMSOAP**
|
91
|
-
| **PrecondScheduleSOAP**
|
92
|
+
| **PrecondSchedulePaLMSOAP** | PrecondScheduleSFPaLMForeachSOAP without schedule-free | + Best initial convergence<br>+ Significantly faster (sec/it) later<br>+ high stability<br>- more memory usage than PrecondScheduleSFPaLMForeachSOAP<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of steps |
|
93
|
+
| **PrecondScheduleSOAP** | PrecondScheduleSFPaLMForeachSOAP without PaLM's beta2 schedule | + Better initial convergence<br>+ Significantly faster (sec/it) later<br>- more memory usage than PrecondScheduleSFPaLMForeachSOAP<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of steps |
|
92
94
|
|
93
95
|
## Precond Schedule
|
94
96
|
|
@@ -8,7 +8,7 @@ A simple package of efficient optimizers
|
|
8
8
|
The goal is not to thrive for completeness, full maintenance or abstraction, but instead to provide a simple
|
9
9
|
largely static alternative to `torch.optim` with more and better optimizers.
|
10
10
|
|
11
|
-
Currently (2024-11-
|
11
|
+
Currently (2024-11-22, 0.19.1), the recommended stable optimizer is `PrecondSchedulePaLMSOAP` (see below). The
|
12
12
|
recommended experimental optimizer is `DelayedPSGDKron` ([tuning guide](docs/psgd_efficiency.md)).
|
13
13
|
|
14
14
|
## Features
|
@@ -21,8 +21,10 @@ recommended experimental optimizer is `DelayedPSGDKron` ([tuning guide](docs/psg
|
|
21
21
|
* **ScheduleFree**: No learning rate schedule, but better convergence
|
22
22
|
* [**Preconditioner Schedule**](https://github.com/lixilinx/psgd_torch/): Improved loss-per-step in early convergence,
|
23
23
|
better step-per-second in late convergence (explained below)
|
24
|
-
* **Memory-efficient storage** PSGD supports `store_triu_as_line` (default: `True`) to trade off memory
|
25
|
-
|
24
|
+
* **Memory-efficient storage** PSGD supports `store_triu_as_line` (default: `True`) and `q_dtype` to trade off memory
|
25
|
+
usage for memory
|
26
|
+
bandwidth; Other optimizers have `storage_dtype`, supporting lower-precision EMAs at no(?) performance drop via
|
27
|
+
stochastic rounding
|
26
28
|
|
27
29
|
## Getting started
|
28
30
|
|
@@ -52,19 +54,19 @@ for _ in range(1000):
|
|
52
54
|
|
53
55
|
## Optimizers
|
54
56
|
|
55
|
-
| Name
|
56
|
-
|
57
|
-
| **AdamW**
|
58
|
-
| **LaProp**
|
59
|
-
| **ADOPT**
|
60
|
-
| **SFAdamW**
|
61
|
-
| **PaLMSFAdamW**
|
62
|
-
| **SOAP**
|
63
|
-
| **PaLMSOAP**
|
64
|
-
| **SFPaLMSOAP**
|
57
|
+
| Name | Description | Advantages / Disadvantages |
|
58
|
+
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
59
|
+
| **AdamW** | More efficient (speed, memory) [AdamW](https://arxiv.org/abs/1711.05101) | + Faster than AdamW<br>+ Possibly more (numerically) stable
|
60
|
+
| **LaProp** | More efficient (speed, memory) [LaProp](https://arxiv.org/abs/2002.04839) | + Same cost as AdamW<br>+ Marginally better converence (better proofs)<br>+ Higher hyperparameter stability<br>- Not a guaranteed win (can be neutral)<br>- No "Slingshot" |
|
61
|
+
| **ADOPT** | More efficient (speed, memory) [ADOPT](https://arxiv.org/abs/2411.02853) | + Same cost as AdamW<br>+ Rigorous mathematical convergence proofs, even for challenging models (GANs)<br>- Empirically underperforms LaProp<br>- no bf16 |
|
62
|
+
| **SFAdamW** | More efficient (speed, memory) [ScheduleFree AdamW](https://arxiv.org/abs/2405.15682) | + Same cost as AdamW, but better eval perf<br>+ Full control over hyperparameters |
|
63
|
+
| **PaLMSFAdamW** | ForeachSFAdamW with [PaLM's beta2 schedule](https://arxiv.org/abs/2204.02311) | + Same cost as AdamW, but better eval perf<br>+ Less control, but faster early and more stable late convergence<br>+ ScheduleFree<br>- slow early convergence |
|
64
|
+
| **SOAP** | More efficient (speed, memory) [SOAP](https://arxiv.org/abs/2409.11321) | + Faster convergence (loss-at-step)<br>+ Full control over hyperparameters<br>- more memory usage<br>- more hyperparameters<br>- higher overhead than AdamW (can be ammortized; better loss-at-second) |
|
65
|
+
| **PaLMSOAP** | ForeachSOAP with [PaLM's beta2 schedule](https://arxiv.org/abs/2204.02311) | + Faster convergence (loss-at-step)<br>+ Less control, but faster early and more stable late convergence<br>- more memory usage<br>- more hyperparameters<br>- higher overhead than AdamW (can be ammortized; better loss-at-second) |
|
66
|
+
| **SFPaLMSOAP** | ScheduleFree PaLMForeachSOAP | + Fast convergence (loss-at-step)<br>+ less memory usage than PaLMForeachSOAP (more tham AdamW)<br>- slower initial convergence than PaLMForeachSOAP (but allows higher LRs)<br>- higher overhead than AdamW (can be ammortized) |
|
65
67
|
| **PrecondScheduleSFPaLMSOAP** | SFPaLMForeachSOAP with [preconditioner schedule](https://github.com/lixilinx/psgd_torch/), matching the error of PrecondEvery=2 with the cost of PrecondEvery=512 | + Better initial convergence than SFPaLMForeachSOAP<br>+ Significantly faster (sec/it) later<br>+ less memory usage than PaLMForeachSOAP (more tham AdamW)<br>- slower initial convergence than PaLMForeachSOAP (but allows higher LRs)<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of step |
|
66
|
-
| **PrecondSchedulePaLMSOAP**
|
67
|
-
| **PrecondScheduleSOAP**
|
68
|
+
| **PrecondSchedulePaLMSOAP** | PrecondScheduleSFPaLMForeachSOAP without schedule-free | + Best initial convergence<br>+ Significantly faster (sec/it) later<br>+ high stability<br>- more memory usage than PrecondScheduleSFPaLMForeachSOAP<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of steps |
|
69
|
+
| **PrecondScheduleSOAP** | PrecondScheduleSFPaLMForeachSOAP without PaLM's beta2 schedule | + Better initial convergence<br>+ Significantly faster (sec/it) later<br>- more memory usage than PrecondScheduleSFPaLMForeachSOAP<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of steps |
|
68
70
|
|
69
71
|
## Precond Schedule
|
70
72
|
|
@@ -9,7 +9,7 @@ from typing import Optional
|
|
9
9
|
import torch
|
10
10
|
|
11
11
|
from .utils import update_param_, warmup, init_Q_exprs, trust_region_clip_, PSGDBase, split_p_and_g_in_group, \
|
12
|
-
line_to_triu, triu_to_line,
|
12
|
+
line_to_triu, triu_to_line, einsum_base, promote, stochastic_lerp_, beta_debias
|
13
13
|
|
14
14
|
|
15
15
|
class ForeachCachedDelayedPSGDKron(PSGDBase):
|
@@ -41,7 +41,8 @@ class ForeachCachedDelayedPSGDKron(PSGDBase):
|
|
41
41
|
max_size_triangular=2048, min_ndim_triangular=2, memory_save_mode=None,
|
42
42
|
momentum_into_precond_update=True, warmup_steps: int = 1, merge_dims: bool = False,
|
43
43
|
split: bool = False, clip_fn: Optional[callable] = None, store_triu_as_line: bool = True,
|
44
|
-
foreach: bool = True, q_dtype='float32', stochastic_schedule: bool = True,
|
44
|
+
foreach: bool = True, q_dtype='float32', stochastic_schedule: bool = True,
|
45
|
+
storage_dtype: str = 'float32', #
|
45
46
|
# expert parameters
|
46
47
|
precond_init_scale=1.0, precond_lr=0.1):
|
47
48
|
if not 0.0 <= lr:
|
@@ -58,7 +59,7 @@ class ForeachCachedDelayedPSGDKron(PSGDBase):
|
|
58
59
|
min_ndim_triangular=min_ndim_triangular, memory_save_mode=memory_save_mode,
|
59
60
|
momentum_into_precond_update=momentum_into_precond_update, precond_lr=precond_lr,
|
60
61
|
precond_init_scale=precond_init_scale, step=0, warmup_steps=warmup_steps, merge_dims=merge_dims,
|
61
|
-
split=split, store_triu_as_line=store_triu_as_line, q_dtype=q_dtype)
|
62
|
+
split=split, store_triu_as_line=store_triu_as_line, q_dtype=q_dtype, storage_dtype=storage_dtype)
|
62
63
|
super().__init__(params, defaults, foreach, stochastic_schedule, clip_fn, preconditioner_update_probability)
|
63
64
|
|
64
65
|
def _step(self, group):
|
@@ -74,14 +75,15 @@ class ForeachCachedDelayedPSGDKron(PSGDBase):
|
|
74
75
|
beta = group['beta']
|
75
76
|
store_triu_as_line = group['store_triu_as_line']
|
76
77
|
q_dtype = getattr(torch, group['q_dtype'])
|
78
|
+
storage_dtype = getattr(torch, group['storage_dtype'])
|
77
79
|
|
78
80
|
vals = []
|
79
81
|
|
80
|
-
for p, g in split_p_and_g_in_group(group):
|
82
|
+
for p, g in split_p_and_g_in_group(group, should_promote=False):
|
81
83
|
state = self.state_(p)
|
82
84
|
|
83
85
|
if 'Q' not in state:
|
84
|
-
state["exp_avg"] = torch.zeros_like(g)
|
86
|
+
state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype)
|
85
87
|
Q, state["exprs"] = init_Q_exprs(p, precond_init_scale, max_size_triangular, min_ndim_triangular,
|
86
88
|
memory_save_mode, dtype=q_dtype)
|
87
89
|
state['Q'] = triu_to_line(Q) if store_triu_as_line else Q
|
@@ -105,7 +107,9 @@ class ForeachCachedDelayedPSGDKron(PSGDBase):
|
|
105
107
|
|
106
108
|
group["step"] += 1
|
107
109
|
|
108
|
-
|
110
|
+
stochastic_lerp_(exp_avg_list, grad_list, 1 - beta_debias(beta, group['step']))
|
111
|
+
|
112
|
+
lr = -warmup(lr, group['step'], group['warmup_steps'])
|
109
113
|
|
110
114
|
grad_list, Q_list, Q_cache_list, exp_avg_list = list(grad_list), list(Q_list), list(Q_cache_list), list(
|
111
115
|
exp_avg_list)
|
@@ -127,8 +131,4 @@ class ForeachCachedDelayedPSGDKron(PSGDBase):
|
|
127
131
|
else:
|
128
132
|
torch.mul(q_.conj(), q_, out=c_)
|
129
133
|
|
130
|
-
|
131
|
-
grad_list = self.clip_fn(grad_list)
|
132
|
-
|
133
|
-
lr = -warmup(lr, group['step'], group['warmup_steps'])
|
134
|
-
update_param_(p_list, grad_list, lr, weight_decay)
|
134
|
+
update_param_([p], self.clip_fn([new]), lr, weight_decay)
|
@@ -9,7 +9,7 @@ from typing import Optional
|
|
9
9
|
import torch
|
10
10
|
|
11
11
|
from .utils import update_param_, warmup, init_Q_exprs, trust_region_clip_, PSGDBase, split_p_and_g_in_group, \
|
12
|
-
line_to_triu, triu_to_line,
|
12
|
+
line_to_triu, triu_to_line, einsum_base, promote, stochastic_lerp_, beta_debias
|
13
13
|
|
14
14
|
|
15
15
|
class ForeachCachedPSGDKron(PSGDBase):
|
@@ -39,7 +39,8 @@ class ForeachCachedPSGDKron(PSGDBase):
|
|
39
39
|
max_size_triangular=2048, min_ndim_triangular=2, memory_save_mode=None,
|
40
40
|
momentum_into_precond_update=True, warmup_steps: int = 1, merge_dims: bool = False,
|
41
41
|
split: bool = False, clip_fn: Optional[callable] = None, store_triu_as_line: bool = True,
|
42
|
-
foreach: bool = True, q_dtype='float32', stochastic_schedule: bool = True,
|
42
|
+
foreach: bool = True, q_dtype='float32', stochastic_schedule: bool = True,
|
43
|
+
storage_dtype: str = 'float32', #
|
43
44
|
# expert parameters
|
44
45
|
precond_init_scale=1.0, precond_lr=0.1):
|
45
46
|
if not 0.0 <= lr:
|
@@ -56,7 +57,8 @@ class ForeachCachedPSGDKron(PSGDBase):
|
|
56
57
|
min_ndim_triangular=min_ndim_triangular, memory_save_mode=memory_save_mode,
|
57
58
|
momentum_into_precond_update=momentum_into_precond_update, precond_lr=precond_lr,
|
58
59
|
precond_init_scale=precond_init_scale, step=0, warmup_steps=warmup_steps, merge_dims=merge_dims,
|
59
|
-
split=split, store_triu_as_line=store_triu_as_line, q_dtype=q_dtype
|
60
|
+
split=split, store_triu_as_line=store_triu_as_line, q_dtype=q_dtype,
|
61
|
+
storage_dtype=storage_dtype)
|
60
62
|
super().__init__(params, defaults, foreach, stochastic_schedule, clip_fn, preconditioner_update_probability)
|
61
63
|
|
62
64
|
def _step(self, group):
|
@@ -71,15 +73,16 @@ class ForeachCachedPSGDKron(PSGDBase):
|
|
71
73
|
beta = group['beta']
|
72
74
|
store_triu_as_line = group['store_triu_as_line']
|
73
75
|
q_dtype = getattr(torch, group['q_dtype'])
|
76
|
+
storage_dtype = getattr(torch, group['storage_dtype'])
|
74
77
|
should_update = self.should_update(group)
|
75
78
|
|
76
79
|
vals = []
|
77
80
|
|
78
|
-
for p, g in split_p_and_g_in_group(group):
|
81
|
+
for p, g in split_p_and_g_in_group(group, should_promote=False):
|
79
82
|
state = self.state_(p)
|
80
83
|
|
81
84
|
if 'Q' not in state:
|
82
|
-
state["exp_avg"] = torch.zeros_like(g)
|
85
|
+
state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype)
|
83
86
|
Q, state["exprs"] = init_Q_exprs(p, precond_init_scale, max_size_triangular, min_ndim_triangular,
|
84
87
|
memory_save_mode, dtype=q_dtype)
|
85
88
|
state['Q'] = triu_to_line(Q) if store_triu_as_line else Q
|
@@ -103,7 +106,9 @@ class ForeachCachedPSGDKron(PSGDBase):
|
|
103
106
|
|
104
107
|
group["step"] += 1
|
105
108
|
|
106
|
-
|
109
|
+
stochastic_lerp_(exp_avg_list, grad_list, 1 - beta_debias(beta, group['step']))
|
110
|
+
|
111
|
+
lr = -warmup(lr, group['step'], group['warmup_steps'])
|
107
112
|
|
108
113
|
grad_list, Q_list, Q_cache_list, exp_avg_list = list(grad_list), list(Q_list), list(Q_cache_list), list(
|
109
114
|
exp_avg_list)
|
@@ -123,9 +128,5 @@ class ForeachCachedPSGDKron(PSGDBase):
|
|
123
128
|
else:
|
124
129
|
torch.mul(q_.conj(), q_, out=c_)
|
125
130
|
|
126
|
-
|
127
|
-
|
128
|
-
grad_list = self.clip_fn(grad_list)
|
129
|
-
|
130
|
-
lr = -warmup(lr, group['step'], group['warmup_steps'])
|
131
|
-
update_param_(p_list, grad_list, lr, weight_decay)
|
131
|
+
g = torch.einsum(self.state_(p)['cache_expr'], *cached_q, ea)
|
132
|
+
update_param_([p], self.clip_fn([g]), lr, weight_decay)
|
@@ -5,10 +5,10 @@ Source available at https://github.com/evanatyourservice/kron_torch/blob/97a2b5e
|
|
5
5
|
"""
|
6
6
|
|
7
7
|
import torch
|
8
|
-
from heavyball.utils import copy_stochastic_list_
|
9
8
|
|
9
|
+
from heavyball.utils import stochastic_lerp_, beta_debias
|
10
10
|
from .utils import update_param_, warmup, psgd_precond_grad, init_Q_exprs, trust_region_clip_, PSGDBase, \
|
11
|
-
|
11
|
+
split_p_and_g_in_group, triu_to_line, line_to_triu, promote
|
12
12
|
|
13
13
|
|
14
14
|
class ForeachDelayedPSGD(PSGDBase):
|
@@ -38,8 +38,8 @@ class ForeachDelayedPSGD(PSGDBase):
|
|
38
38
|
def __init__(self, params, lr=0.001, beta=0.9, weight_decay=0.0, preconditioner_update_probability=None,
|
39
39
|
max_size_triangular=2048, min_ndim_triangular=2, memory_save_mode=None,
|
40
40
|
momentum_into_precond_update=True, warmup_steps: int = 1, merge_dims: bool = False,
|
41
|
-
split: bool = False, clip_fn: callable = None, store_triu_as_line: bool = True,
|
42
|
-
|
41
|
+
split: bool = False, clip_fn: callable = None, store_triu_as_line: bool = True, foreach: bool = True,
|
42
|
+
q_dtype='float32', stochastic_schedule: bool = True, storage_dtype:str='float32', #
|
43
43
|
# expert parameters
|
44
44
|
precond_init_scale=1.0, precond_lr=0.1):
|
45
45
|
if not 0.0 <= lr:
|
@@ -55,12 +55,10 @@ class ForeachDelayedPSGD(PSGDBase):
|
|
55
55
|
defaults = dict(lr=lr, beta=beta, weight_decay=weight_decay, max_size_triangular=max_size_triangular,
|
56
56
|
min_ndim_triangular=min_ndim_triangular, memory_save_mode=memory_save_mode,
|
57
57
|
momentum_into_precond_update=momentum_into_precond_update, precond_lr=precond_lr,
|
58
|
-
precond_init_scale=precond_init_scale,
|
59
|
-
|
60
|
-
store_triu_as_line=store_triu_as_line, q_dtype=q_dtype)
|
58
|
+
precond_init_scale=precond_init_scale, step=0, warmup_steps=warmup_steps, merge_dims=merge_dims,
|
59
|
+
split=split, store_triu_as_line=store_triu_as_line, q_dtype=q_dtype)
|
61
60
|
super().__init__(params, defaults, foreach, stochastic_schedule, clip_fn, preconditioner_update_probability)
|
62
61
|
|
63
|
-
|
64
62
|
def _step(self, group):
|
65
63
|
should_update = self.should_update(group)
|
66
64
|
momentum_into_precond_update = group.get("momentum_into_precond_update", True)
|
@@ -74,14 +72,15 @@ class ForeachDelayedPSGD(PSGDBase):
|
|
74
72
|
beta = group['beta']
|
75
73
|
store_triu_as_line = group['store_triu_as_line']
|
76
74
|
q_dtype = getattr(torch, group['q_dtype'])
|
75
|
+
storage_dtype = getattr(torch, group['storage_dtype'])
|
77
76
|
|
78
77
|
vals = []
|
79
78
|
|
80
|
-
for p, g in split_p_and_g_in_group(group):
|
79
|
+
for p, g in split_p_and_g_in_group(group, should_promote=False):
|
81
80
|
state = self.state_(p)
|
82
81
|
|
83
82
|
if 'Q' not in state:
|
84
|
-
state["exp_avg"] = torch.zeros_like(g)
|
83
|
+
state["exp_avg"] = torch.zeros_like(g, dtype=storage_dtype)
|
85
84
|
Q, state["exprs"] = init_Q_exprs(p, precond_init_scale, max_size_triangular, min_ndim_triangular,
|
86
85
|
memory_save_mode, dtype=q_dtype)
|
87
86
|
state["Q"] = triu_to_line(Q) if store_triu_as_line else Q
|
@@ -96,7 +95,9 @@ class ForeachDelayedPSGD(PSGDBase):
|
|
96
95
|
|
97
96
|
group["step"] += 1
|
98
97
|
|
99
|
-
|
98
|
+
stochastic_lerp_(exp_avg_list, grad_list, beta_debias(beta, group["step"]))
|
99
|
+
|
100
|
+
lr = -warmup(lr, group['step'], group['warmup_steps'])
|
100
101
|
|
101
102
|
Q_list, exp_avg_list = list(Q_list), list(exp_avg_list)
|
102
103
|
for i, (p, g) in enumerate(zip(p_list, grad_list)):
|
@@ -106,10 +107,6 @@ class ForeachDelayedPSGD(PSGDBase):
|
|
106
107
|
new = psgd_precond_grad(q, self.state_(p)["exprs"], ea)
|
107
108
|
if should_update:
|
108
109
|
q32 = [promote(q_) for q_ in q]
|
109
|
-
self.do_update(group,[p], [ea if momentum_into_precond_update else g], [q32], precond_lr, [q_orig],
|
110
|
-
|
111
|
-
|
112
|
-
grad_list = self.clip_fn(grad_list)
|
113
|
-
|
114
|
-
lr = -warmup(lr, group['step'], group['warmup_steps'])
|
115
|
-
update_param_(p_list, grad_list, lr, weight_decay)
|
110
|
+
self.do_update(group, [p], [ea if momentum_into_precond_update else g], [q32], precond_lr, [q_orig],
|
111
|
+
store_triu_as_line)
|
112
|
+
update_param_([p], self.clip_fn([new]), lr, weight_decay)
|
@@ -1,7 +1,7 @@
|
|
1
1
|
import torch
|
2
2
|
import torch.optim
|
3
|
-
from heavyball.utils import copy_stochastic_list_
|
4
3
|
|
4
|
+
from heavyball.utils import copy_stochastic_list_
|
5
5
|
from .utils import warmup, exp_avg_sq_, beta_debias, update_param_, StatefulOptimizer, promote
|
6
6
|
|
7
7
|
|
@@ -20,9 +20,9 @@ def _compilable_step_(y, grad, exp_avg_sq, exp_avg, beta1, beta2, step, lr, eps,
|
|
20
20
|
|
21
21
|
class ForeachAdamW(StatefulOptimizer):
|
22
22
|
def __init__(self, params, lr=0.0025, betas=(0.9, 0.99), eps=1e-8, weight_decay=0, warmup_steps=0,
|
23
|
-
foreach: bool = True):
|
23
|
+
foreach: bool = True, storage_dtype: str = 'float32'):
|
24
24
|
defaults = dict(lr=lr, betas=betas, eps=eps, k=0, warmup_steps=warmup_steps, train_mode=True, weight_sum=0.0,
|
25
|
-
lr_max=-1.0, weight_decay=weight_decay)
|
25
|
+
lr_max=-1.0, weight_decay=weight_decay, storage_dtype=storage_dtype)
|
26
26
|
super().__init__(params, defaults, foreach)
|
27
27
|
|
28
28
|
def _step(self, group):
|
@@ -38,10 +38,12 @@ class ForeachAdamW(StatefulOptimizer):
|
|
38
38
|
if not active_p:
|
39
39
|
return
|
40
40
|
|
41
|
+
storage_dtype = getattr(torch, group['storage_dtype'])
|
42
|
+
|
41
43
|
for p in active_p:
|
42
44
|
if 'exp_avg' not in self.state_(p):
|
43
|
-
self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=
|
44
|
-
self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=
|
45
|
+
self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype)
|
46
|
+
self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
|
45
47
|
|
46
48
|
y, grad, exp_avg_sq, exp_avg = zip(
|
47
49
|
*[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['exp_avg']) for p in active_p])
|
@@ -27,9 +27,9 @@ def _compilable_step_(y, grad, exp_avg_sq, exp_avg, beta1, beta2, step, lr, eps,
|
|
27
27
|
class ForeachADOPT(StatefulOptimizer):
|
28
28
|
|
29
29
|
def __init__(self, params, lr=0.0025, betas=(0.9, 0.99), eps=1e-8, weight_decay=0, warmup_steps=0,
|
30
|
-
foreach: bool = True):
|
30
|
+
foreach: bool = True, storage_dtype: str = 'float32'):
|
31
31
|
defaults = dict(lr=lr, betas=betas, eps=eps, k=0, warmup_steps=warmup_steps, train_mode=True, weight_sum=0.0,
|
32
|
-
lr_max=-1.0, weight_decay=weight_decay)
|
32
|
+
lr_max=-1.0, weight_decay=weight_decay, storage_dtype=storage_dtype)
|
33
33
|
super().__init__(params, defaults, foreach)
|
34
34
|
|
35
35
|
def _step(self, group):
|
@@ -45,10 +45,12 @@ class ForeachADOPT(StatefulOptimizer):
|
|
45
45
|
if not active_p:
|
46
46
|
return
|
47
47
|
|
48
|
+
storage_dtype = getattr(torch, group['storage_dtype'])
|
49
|
+
|
48
50
|
for p in active_p:
|
49
51
|
if 'exp_avg' not in self.state_(p):
|
50
|
-
self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=
|
51
|
-
self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=
|
52
|
+
self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype)
|
53
|
+
self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
|
52
54
|
|
53
55
|
y, grad, exp_avg_sq, exp_avg = zip(
|
54
56
|
*[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['exp_avg']) for p in active_p])
|
@@ -1,7 +1,7 @@
|
|
1
1
|
import torch
|
2
2
|
import torch.optim
|
3
3
|
|
4
|
-
from .utils import warmup, exp_avg_sq_, beta_debias, update_param_, StatefulOptimizer, promote
|
4
|
+
from .utils import warmup, exp_avg_sq_, beta_debias, update_param_, StatefulOptimizer, promote, copy_stochastic_list_
|
5
5
|
|
6
6
|
|
7
7
|
@torch.compile(mode='max-autotune-no-cudagraphs', fullgraph=True, dynamic=True)
|
@@ -16,13 +16,16 @@ def _compilable_step_(y, grad, exp_avg_sq, exp_avg, beta1, beta2, step, lr, eps,
|
|
16
16
|
|
17
17
|
update_param_(y, exp_avg32, lr, decay)
|
18
18
|
|
19
|
+
copy_stochastic_list_(exp_avg, exp_avg32)
|
20
|
+
copy_stochastic_list_(exp_avg_sq, exp_avg_sq32)
|
21
|
+
|
19
22
|
|
20
23
|
class ForeachLaProp(StatefulOptimizer):
|
21
24
|
|
22
25
|
def __init__(self, params, lr=0.0025, betas=(0.9, 0.99), eps=1e-8, weight_decay=0, warmup_steps=1,
|
23
|
-
foreach: bool = True):
|
26
|
+
foreach: bool = True, storage_dtype: str = 'float32'):
|
24
27
|
defaults = dict(lr=lr, betas=betas, eps=eps, k=0, warmup_steps=warmup_steps, train_mode=True, weight_sum=0.0,
|
25
|
-
lr_max=-1.0, weight_decay=weight_decay)
|
28
|
+
lr_max=-1.0, weight_decay=weight_decay, storage_dtype=storage_dtype)
|
26
29
|
super().__init__(params, defaults, foreach)
|
27
30
|
|
28
31
|
def _step(self, group):
|
@@ -38,10 +41,12 @@ class ForeachLaProp(StatefulOptimizer):
|
|
38
41
|
if not active_p:
|
39
42
|
return
|
40
43
|
|
44
|
+
storage_dtype = getattr(torch, group['storage_dtype'])
|
45
|
+
|
41
46
|
for p in active_p:
|
42
47
|
if 'exp_avg' not in self.state_(p):
|
43
|
-
self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=
|
44
|
-
self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=
|
48
|
+
self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype)
|
49
|
+
self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
|
45
50
|
|
46
51
|
y, grad, exp_avg_sq, exp_avg = zip(
|
47
52
|
*[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['exp_avg']) #
|
@@ -1,6 +1,6 @@
|
|
1
1
|
import torch
|
2
2
|
import torch.optim
|
3
|
-
from heavyball.utils import get_ckp1
|
3
|
+
from heavyball.utils import get_ckp1, copy_stochastic_list_
|
4
4
|
|
5
5
|
from .utils import warmup, ScheduleFree, exp_avg_sq_, beta_debias, promote, _compilable_schedule_free_
|
6
6
|
|
@@ -19,14 +19,15 @@ def _compilable_step_(y, grad, exp_avg_sq, z, beta1, beta2, step, ckp1, eps, dec
|
|
19
19
|
for p, z_, g in zip(y, z, g32):
|
20
20
|
_compilable_schedule_free_(p, z_, ckp1, g, lr, beta1)
|
21
21
|
|
22
|
+
copy_stochastic_list_(exp_avg_sq, exp_avg_sq32)
|
22
23
|
|
23
24
|
class ForeachSFAdamW(ScheduleFree):
|
24
25
|
def __init__(self, params, lr=0.0025, betas=(0.9, 0.99), eps=1e-8, weight_decay=0, warmup_steps=0, r=0.0,
|
25
|
-
weight_lr_power=2.0, foreach: bool = True):
|
26
|
+
weight_lr_power=2.0, foreach: bool = True, storage_dtype: str = 'float32'):
|
26
27
|
|
27
28
|
defaults = dict(lr=lr, betas=betas, eps=eps, r=r, k=0, warmup_steps=warmup_steps, train_mode=True,
|
28
29
|
weight_sum=0.0, lr_max=-1.0, weight_lr_power=weight_lr_power, weight_decay=weight_decay,
|
29
|
-
foreach=foreach)
|
30
|
+
foreach=foreach, storage_dtype=storage_dtype)
|
30
31
|
super().__init__(params, defaults, foreach)
|
31
32
|
|
32
33
|
def _step(self, group):
|
@@ -42,10 +43,12 @@ class ForeachSFAdamW(ScheduleFree):
|
|
42
43
|
if not active_p:
|
43
44
|
return
|
44
45
|
|
46
|
+
storage_dtype = getattr(torch, group['storage_dtype'])
|
47
|
+
|
45
48
|
for p in active_p:
|
46
49
|
if 'z' not in self.state_(p):
|
47
50
|
self.state_(p)['z'] = torch.clone(p.data)
|
48
|
-
self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=
|
51
|
+
self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
|
49
52
|
|
50
53
|
y, grad, exp_avg_sq, z = zip(*[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['z']) #
|
51
54
|
for p in active_p])
|
@@ -1,7 +1,7 @@
|
|
1
1
|
import torch
|
2
2
|
|
3
3
|
from .utils import init_preconditioner, update_preconditioner, project, beta_debias, exp_avg_sq_, update_param_, set_, \
|
4
|
-
split_p_and_g_in_group, StatefulOptimizer
|
4
|
+
split_p_and_g_in_group, StatefulOptimizer, exp_avg_
|
5
5
|
|
6
6
|
|
7
7
|
class ForeachSOAP(StatefulOptimizer):
|
@@ -26,8 +26,7 @@ class ForeachSOAP(StatefulOptimizer):
|
|
26
26
|
weight_decay: float = 0.01, precondition_frequency: int = 2, max_precond_dim: int = 2048, #
|
27
27
|
merge_dims: bool = True, precondition_1d: bool = False, normalize_grads: bool = False,
|
28
28
|
data_format: str = "channels_first", correct_bias: bool = True, warmup_steps: int = 1,
|
29
|
-
split: bool = False,
|
30
|
-
foreach: bool = True):
|
29
|
+
split: bool = False, foreach: bool = True):
|
31
30
|
defaults = {"lr": lr, "betas": betas, "shampoo_beta": shampoo_beta, "eps": eps, "weight_decay": weight_decay,
|
32
31
|
"precondition_frequency": precondition_frequency, "max_precond_dim": max_precond_dim,
|
33
32
|
"merge_dims": merge_dims, "precondition_1d": precondition_1d, "normalize_grads": normalize_grads,
|
@@ -65,14 +64,12 @@ class ForeachSOAP(StatefulOptimizer):
|
|
65
64
|
p_list, grad, grad_projected, exp_avg, exp_avg_sq = zip(*vals)
|
66
65
|
beta1, beta2 = group["betas"]
|
67
66
|
|
68
|
-
old_debiased1 = beta_debias(beta1, step)
|
69
67
|
old_debiased2 = beta_debias(beta2, step)
|
70
68
|
|
71
69
|
# Decay the first and second moment running average coefficient
|
72
70
|
# In-place operations to update the averages at the same time
|
73
|
-
torch.
|
74
|
-
|
75
|
-
denom = exp_avg_sq_(exp_avg_sq, grad_projected, old_debiased2, group['eps'])
|
71
|
+
step_tensor = torch.empty((), dtype=torch.int32, device=p_list[0].device).fill_(step)
|
72
|
+
denom = exp_avg_(exp_avg, exp_avg_sq, grad, grad_projected, beta1, beta2, step_tensor)
|
76
73
|
|
77
74
|
for p, g, ea, d in zip(p_list, grad, exp_avg, denom):
|
78
75
|
state = self.state_(p)
|
@@ -39,7 +39,7 @@ class ForeachPaLMPAdam(PSGDBase):
|
|
39
39
|
momentum_into_precond_update=True, warmup_steps: int = 1, betas=(None, None), beta: float = 0.9,
|
40
40
|
beta2_scale: float = 0.8, merge_dims: bool = False, split: bool = False, clip_fn: callable = None,
|
41
41
|
store_triu_as_line: bool = True, foreach: bool = True, q_dtype='float32',
|
42
|
-
stochastic_schedule: bool = True,
|
42
|
+
stochastic_schedule: bool = True, storage_dtype:str ='float32',#
|
43
43
|
# expert parameters
|
44
44
|
precond_init_scale=1.0, precond_lr=0.1):
|
45
45
|
if not 0.0 <= lr:
|
@@ -57,7 +57,7 @@ class ForeachPaLMPAdam(PSGDBase):
|
|
57
57
|
momentum_into_precond_update=momentum_into_precond_update, precond_lr=precond_lr,
|
58
58
|
precond_init_scale=precond_init_scale, step=0, warmup_steps=warmup_steps, beta=beta,
|
59
59
|
beta2_scale=beta2_scale, merge_dims=merge_dims, split=split,
|
60
|
-
store_triu_as_line=store_triu_as_line, q_dtype=q_dtype)
|
60
|
+
store_triu_as_line=store_triu_as_line, q_dtype=q_dtype, storage_dtype=storage_dtype)
|
61
61
|
super().__init__(params, defaults, foreach, stochastic_schedule, clip_fn, preconditioner_update_probability)
|
62
62
|
|
63
63
|
def _step(self, group):
|
@@ -71,15 +71,16 @@ class ForeachPaLMPAdam(PSGDBase):
|
|
71
71
|
lr = group['lr']
|
72
72
|
store_triu_as_line = group['store_triu_as_line']
|
73
73
|
q_dtype = getattr(torch, group['q_dtype'])
|
74
|
+
storage_dtype = getattr(torch, group['storage_dtype'])
|
74
75
|
|
75
76
|
vals = []
|
76
77
|
|
77
|
-
for p, g in split_p_and_g_in_group(group):
|
78
|
+
for p, g in split_p_and_g_in_group(group, should_promote=False):
|
78
79
|
state = self.state_(p)
|
79
80
|
|
80
81
|
if 'Q' not in state:
|
81
|
-
state['exp_avg'] = torch.zeros_like(g)
|
82
|
-
state['exp_avg_sq'] = torch.zeros_like(g)
|
82
|
+
state['exp_avg'] = torch.zeros_like(g, dtype=storage_dtype)
|
83
|
+
state['exp_avg_sq'] = torch.zeros_like(g, dtype=storage_dtype)
|
83
84
|
Q, state["exprs"] = init_Q_exprs(p, precond_init_scale, max_size_triangular, min_ndim_triangular,
|
84
85
|
memory_save_mode, dtype=q_dtype)
|
85
86
|
state['Q'] = triu_to_line(Q) if store_triu_as_line else Q
|
@@ -103,6 +104,8 @@ class ForeachPaLMPAdam(PSGDBase):
|
|
103
104
|
|
104
105
|
beta2 = 1 - group['step'] ** -group['beta2_scale']
|
105
106
|
|
107
|
+
lr = -warmup(lr, group['step'], group['warmup_steps'])
|
108
|
+
|
106
109
|
for p, Q, g, ea, eas in zip(p_list, Q_triu, grad_list, exp_avg, exp_avg_sq):
|
107
110
|
psgd_precond_grad(Q, self.state_(p)["exprs"], g, inplace=True)
|
108
111
|
ea = psgd_precond_grad(Q, self.state_(p)["exprs"], ea)
|
@@ -112,8 +115,5 @@ class ForeachPaLMPAdam(PSGDBase):
|
|
112
115
|
divide by g here, because g == denom (from exp_avg_sq_(out=g)), avoids denom allocation
|
113
116
|
divide into g so we can deallocate ea, avoids one allocation (-> less memory than equivalent foreach)
|
114
117
|
"""
|
118
|
+
update_param_([p], self.clip_fn([g]), lr, weight_decay)
|
115
119
|
|
116
|
-
grad_list = self.clip_fn(grad_list)
|
117
|
-
|
118
|
-
lr = -warmup(lr, group['step'], group['warmup_steps'])
|
119
|
-
update_param_(p_list, grad_list, lr, weight_decay)
|