hccinfhir 0.0.3__tar.gz → 0.0.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/PKG-INFO +147 -9
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/README.md +146 -8
- hccinfhir-0.0.5/hccinfhir/data/ra_coefficients_2025.csv +6352 -0
- hccinfhir-0.0.5/hccinfhir/data/ra_dx_to_cc_2025.csv +53952 -0
- hccinfhir-0.0.5/hccinfhir/data/ra_eligible_cpt_hcpcs_2024.csv +6697 -0
- hccinfhir-0.0.5/hccinfhir/data/ra_eligible_cpt_hcpcs_2025.csv +6725 -0
- hccinfhir-0.0.5/hccinfhir/data/ra_hierarchies_2025.csv +487 -0
- hccinfhir-0.0.5/hccinfhir/datamodels.py +101 -0
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/hccinfhir/extractor.py +3 -3
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/hccinfhir/extractor_837.py +1 -2
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/hccinfhir/extractor_fhir.py +1 -1
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/hccinfhir/filter.py +3 -5
- hccinfhir-0.0.5/hccinfhir/hccinfhir.py +149 -0
- hccinfhir-0.0.5/hccinfhir/model_calculate.py +95 -0
- hccinfhir-0.0.5/hccinfhir/model_coefficients.py +143 -0
- hccinfhir-0.0.5/hccinfhir/model_demographics.py +191 -0
- hccinfhir-0.0.5/hccinfhir/model_dx_to_cc.py +54 -0
- hccinfhir-0.0.5/hccinfhir/model_hierarchies.py +70 -0
- hccinfhir-0.0.5/hccinfhir/model_interactions.py +342 -0
- hccinfhir-0.0.5/hccinfhir/samples/__init__.py +2 -0
- hccinfhir-0.0.5/hccinfhir/utils.py +51 -0
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/pyproject.toml +2 -2
- hccinfhir-0.0.3/hccinfhir/models.py +0 -44
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/.gitignore +0 -0
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/LICENSE +0 -0
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/hccinfhir/__init__.py +0 -0
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/hccinfhir/data/__init__.py +0 -0
- {hccinfhir-0.0.3 → hccinfhir-0.0.5}/hccinfhir/data/ra_eligible_cpt_hcpcs_2023.csv +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_0.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_1.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_10.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_11.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_2.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_3.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_4.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_5.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_6.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_7.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_8.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_837_9.txt +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_eob_1.json +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_eob_2.json +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_eob_200.ndjson +0 -0
- {hccinfhir-0.0.3/hccinfhir/data → hccinfhir-0.0.5/hccinfhir/samples}/sample_eob_3.json +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.3
|
|
2
2
|
Name: hccinfhir
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.5
|
|
4
4
|
Summary: HCC Algorithm for FHIR Resources
|
|
5
5
|
Project-URL: Homepage, https://github.com/mimilabs/hccinfhir
|
|
6
6
|
Project-URL: Issues, https://github.com/mimilabs/hccinfhir/issues
|
|
@@ -20,6 +20,9 @@ A Python library for extracting standardized service-level data from FHIR Explan
|
|
|
20
20
|
- Support for both BCDA (Blue Button 2.0) and standard FHIR R4 formats
|
|
21
21
|
- Pydantic models for type safety and data validation
|
|
22
22
|
- Standardized Service Level Data (SLD) output format
|
|
23
|
+
- Multiple HCC model support (V22, V24, V28, ESRD V21, ESRD V24, RxHCC V08)
|
|
24
|
+
- Flexible input options: FHIR EOBs, service data, or direct diagnosis codes
|
|
25
|
+
|
|
23
26
|
|
|
24
27
|
## Installation
|
|
25
28
|
```bash
|
|
@@ -45,7 +48,26 @@ sld = [{
|
|
|
45
48
|
}, ...]
|
|
46
49
|
```
|
|
47
50
|
|
|
48
|
-
|
|
51
|
+
Or, for direct risk score calculation from a list of diagnosis codes, you only need the model name, diagnosis codes, and basic demographic factors:
|
|
52
|
+
|
|
53
|
+
```python
|
|
54
|
+
from hccinfhir.model_calculate import calculate_raf
|
|
55
|
+
|
|
56
|
+
diagnosis_codes = ['E119', 'I509'] # Diabetes without complications, Heart failure
|
|
57
|
+
age = 67
|
|
58
|
+
sex = 'F'
|
|
59
|
+
model_name = "CMS-HCC Model V24"
|
|
60
|
+
|
|
61
|
+
result = calculate_raf(
|
|
62
|
+
diagnosis_codes=diagnosis_codes,
|
|
63
|
+
model_name=model_name,
|
|
64
|
+
age=age,
|
|
65
|
+
sex=sex
|
|
66
|
+
)
|
|
67
|
+
```
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
For more details on the SLD format, see the `datamodels.py` file.
|
|
49
71
|
|
|
50
72
|
## Core Components
|
|
51
73
|
|
|
@@ -71,23 +93,99 @@ filtered_sld = apply_filter(sld_list)
|
|
|
71
93
|
```
|
|
72
94
|
|
|
73
95
|
|
|
74
|
-
### 3. Logic Module
|
|
96
|
+
### 3. Logic Module
|
|
75
97
|
Implements core HCC calculation logic:
|
|
76
98
|
- Maps diagnosis codes to HCC categories
|
|
77
99
|
- Applies hierarchical rules and interactions
|
|
78
100
|
- Calculates final RAF scores
|
|
79
101
|
- Integrates with standard CMS data files
|
|
80
102
|
|
|
81
|
-
## Usage
|
|
82
103
|
```python
|
|
83
|
-
from hccinfhir import
|
|
104
|
+
from hccinfhir.model_calculate import calculate_raf
|
|
105
|
+
|
|
106
|
+
diagnosis_codes = ['E119', 'I509'] # Diabetes without complications, Heart failure
|
|
107
|
+
result = calculate_raf(
|
|
108
|
+
diagnosis_codes=diagnosis_codes,
|
|
109
|
+
model_name="CMS-HCC Model V24",
|
|
110
|
+
age=67,
|
|
111
|
+
sex='F'
|
|
112
|
+
)
|
|
113
|
+
```
|
|
84
114
|
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
115
|
+
### 4. HCCInFHIR Class
|
|
116
|
+
The main processor class that integrates extraction, filtering, and calculation components:
|
|
117
|
+
|
|
118
|
+
```python
|
|
119
|
+
from hccinfhir.hccinfhir import HCCInFHIR
|
|
120
|
+
from hccinfhir.datamodels import Demographics
|
|
121
|
+
|
|
122
|
+
# Initialize with custom configuration
|
|
123
|
+
hcc_processor = HCCInFHIR(
|
|
124
|
+
filter_claims=True, # Enable claim filtering
|
|
125
|
+
model_name="CMS-HCC Model V28", # Choose HCC model version
|
|
126
|
+
proc_filtering_filename="ra_eligible_cpt_hcpcs_2025.csv", # CPT/HCPCS filtering rules
|
|
127
|
+
dx_cc_mapping_filename="ra_dx_to_cc_2025.csv" # Diagnosis to CC mapping
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
# Define beneficiary demographics
|
|
131
|
+
demographics = Demographics(
|
|
132
|
+
age=67,
|
|
133
|
+
sex='F',
|
|
134
|
+
dual_elgbl_cd='00', # Not dual eligible
|
|
135
|
+
orec='0', # Old age
|
|
136
|
+
crec='0', # Current old age
|
|
137
|
+
new_enrollee=False,
|
|
138
|
+
snp=False
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
# Method 1: Process FHIR EOB resources
|
|
142
|
+
raf_result = hcc_processor.run(eob_list, demographics)
|
|
143
|
+
|
|
144
|
+
# Method 2: Process service level data
|
|
145
|
+
service_data = [{
|
|
146
|
+
"procedure_code": "99214",
|
|
147
|
+
"claim_diagnosis_codes": ["E11.9", "I10"],
|
|
148
|
+
"claim_type": "71",
|
|
149
|
+
"service_date": "2024-01-15"
|
|
150
|
+
}]
|
|
151
|
+
raf_result = hcc_processor.run_from_service_data(service_data, demographics)
|
|
152
|
+
|
|
153
|
+
# Method 3: Direct diagnosis processing
|
|
154
|
+
diagnosis_codes = ['E119', 'I509']
|
|
155
|
+
raf_result = hcc_processor.calculate_from_diagnosis(diagnosis_codes, demographics)
|
|
156
|
+
|
|
157
|
+
# RAF Result contains:
|
|
158
|
+
print(f"Risk Score: {raf_result['risk_score']}")
|
|
159
|
+
print(f"HCC List: {raf_result['hcc_list']}")
|
|
160
|
+
print(f"CC to Diagnosis Mapping: {raf_result['cc_to_dx']}")
|
|
161
|
+
print(f"Applied Coefficients: {raf_result['coefficients']}")
|
|
162
|
+
print(f"Applied Interactions: {raf_result['interactions']}")
|
|
89
163
|
```
|
|
90
164
|
|
|
165
|
+
The HCCInFHIR class provides three main processing methods:
|
|
166
|
+
|
|
167
|
+
1. `run(eob_list, demographics)`: Process FHIR ExplanationOfBenefit resources
|
|
168
|
+
- Extracts service data from FHIR resources
|
|
169
|
+
- Applies filtering rules if enabled
|
|
170
|
+
- Calculates RAF scores using the specified model
|
|
171
|
+
|
|
172
|
+
2. `run_from_service_data(service_data, demographics)`: Process standardized service data
|
|
173
|
+
- Accepts pre-formatted service level data
|
|
174
|
+
- Validates data structure using Pydantic models
|
|
175
|
+
- Applies filtering and calculates RAF scores
|
|
176
|
+
|
|
177
|
+
3. `calculate_from_diagnosis(diagnosis_codes, demographics)`: Direct diagnosis processing
|
|
178
|
+
- Processes raw diagnosis codes without service context
|
|
179
|
+
- Useful for quick RAF calculations or validation
|
|
180
|
+
- Bypasses service-level filtering
|
|
181
|
+
|
|
182
|
+
Each method returns a RAFResult containing:
|
|
183
|
+
- Final risk score
|
|
184
|
+
- List of HCCs
|
|
185
|
+
- Mapping of condition categories to diagnosis codes
|
|
186
|
+
- Applied coefficients and interactions
|
|
187
|
+
- Processed service level data (when applicable)
|
|
188
|
+
|
|
91
189
|
## Testing
|
|
92
190
|
```bash
|
|
93
191
|
$ python3 -m hatch shell
|
|
@@ -172,8 +270,48 @@ $ python3 -m pytest tests/*
|
|
|
172
270
|
3. Add support for allowed_amount in 837 if available in different segments
|
|
173
271
|
4. Consider adding more robust error handling in both implementations
|
|
174
272
|
|
|
273
|
+
## Data Files
|
|
274
|
+
|
|
275
|
+
`ra_dx_to_cc_mapping_2025.csv`
|
|
276
|
+
```sql
|
|
277
|
+
SELECT diagnosis_code, cc, model_name
|
|
278
|
+
FROM ra_dx_to_cc_mapping
|
|
279
|
+
WHERE year = 2025 and model_type = 'Initial';
|
|
280
|
+
```
|
|
281
|
+
|
|
282
|
+
`ra_hierarchies_2025.csv`
|
|
283
|
+
```sql
|
|
284
|
+
SELECT cc_parent,
|
|
285
|
+
cc_child,
|
|
286
|
+
model_domain,
|
|
287
|
+
model_version,
|
|
288
|
+
model_fullname
|
|
289
|
+
FROM ra_hierarchies
|
|
290
|
+
WHERE eff_last_date > '2025-01-01';
|
|
291
|
+
```
|
|
292
|
+
|
|
293
|
+
`ra_coefficients_2025.csv`
|
|
294
|
+
```sql
|
|
295
|
+
SELECT coefficient, value, model_domain, model_version
|
|
296
|
+
FROM ra_coefficients
|
|
297
|
+
WHERE eff_last_date > '2025-01-01';
|
|
298
|
+
```
|
|
299
|
+
|
|
300
|
+
`ra_eligible_cpt_hcpcs_2025.csv`
|
|
301
|
+
```sql
|
|
302
|
+
SELECT DISTINCT cpt_hcpcs_code
|
|
303
|
+
FROM mimi_ws_1.cmspayment.ra_eligible_cpt_hcpcs
|
|
304
|
+
WHERE is_included = 'yes' AND YEAR(mimi_src_file_date) = 2024;
|
|
305
|
+
```
|
|
306
|
+
|
|
175
307
|
## Contributing
|
|
176
308
|
Join us at [mimilabs](https://mimilabs.ai/signup). Reference data available in MIMILabs data lakehouse.
|
|
177
309
|
|
|
310
|
+
## Publishing (only for those maintainers...)
|
|
311
|
+
```bash
|
|
312
|
+
$ hatch build
|
|
313
|
+
$ hatch publish
|
|
314
|
+
```
|
|
315
|
+
|
|
178
316
|
## License
|
|
179
317
|
Apache License 2.0
|
|
@@ -6,6 +6,9 @@ A Python library for extracting standardized service-level data from FHIR Explan
|
|
|
6
6
|
- Support for both BCDA (Blue Button 2.0) and standard FHIR R4 formats
|
|
7
7
|
- Pydantic models for type safety and data validation
|
|
8
8
|
- Standardized Service Level Data (SLD) output format
|
|
9
|
+
- Multiple HCC model support (V22, V24, V28, ESRD V21, ESRD V24, RxHCC V08)
|
|
10
|
+
- Flexible input options: FHIR EOBs, service data, or direct diagnosis codes
|
|
11
|
+
|
|
9
12
|
|
|
10
13
|
## Installation
|
|
11
14
|
```bash
|
|
@@ -31,7 +34,26 @@ sld = [{
|
|
|
31
34
|
}, ...]
|
|
32
35
|
```
|
|
33
36
|
|
|
34
|
-
|
|
37
|
+
Or, for direct risk score calculation from a list of diagnosis codes, you only need the model name, diagnosis codes, and basic demographic factors:
|
|
38
|
+
|
|
39
|
+
```python
|
|
40
|
+
from hccinfhir.model_calculate import calculate_raf
|
|
41
|
+
|
|
42
|
+
diagnosis_codes = ['E119', 'I509'] # Diabetes without complications, Heart failure
|
|
43
|
+
age = 67
|
|
44
|
+
sex = 'F'
|
|
45
|
+
model_name = "CMS-HCC Model V24"
|
|
46
|
+
|
|
47
|
+
result = calculate_raf(
|
|
48
|
+
diagnosis_codes=diagnosis_codes,
|
|
49
|
+
model_name=model_name,
|
|
50
|
+
age=age,
|
|
51
|
+
sex=sex
|
|
52
|
+
)
|
|
53
|
+
```
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
For more details on the SLD format, see the `datamodels.py` file.
|
|
35
57
|
|
|
36
58
|
## Core Components
|
|
37
59
|
|
|
@@ -57,23 +79,99 @@ filtered_sld = apply_filter(sld_list)
|
|
|
57
79
|
```
|
|
58
80
|
|
|
59
81
|
|
|
60
|
-
### 3. Logic Module
|
|
82
|
+
### 3. Logic Module
|
|
61
83
|
Implements core HCC calculation logic:
|
|
62
84
|
- Maps diagnosis codes to HCC categories
|
|
63
85
|
- Applies hierarchical rules and interactions
|
|
64
86
|
- Calculates final RAF scores
|
|
65
87
|
- Integrates with standard CMS data files
|
|
66
88
|
|
|
67
|
-
## Usage
|
|
68
89
|
```python
|
|
69
|
-
from hccinfhir import
|
|
90
|
+
from hccinfhir.model_calculate import calculate_raf
|
|
91
|
+
|
|
92
|
+
diagnosis_codes = ['E119', 'I509'] # Diabetes without complications, Heart failure
|
|
93
|
+
result = calculate_raf(
|
|
94
|
+
diagnosis_codes=diagnosis_codes,
|
|
95
|
+
model_name="CMS-HCC Model V24",
|
|
96
|
+
age=67,
|
|
97
|
+
sex='F'
|
|
98
|
+
)
|
|
99
|
+
```
|
|
70
100
|
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
101
|
+
### 4. HCCInFHIR Class
|
|
102
|
+
The main processor class that integrates extraction, filtering, and calculation components:
|
|
103
|
+
|
|
104
|
+
```python
|
|
105
|
+
from hccinfhir.hccinfhir import HCCInFHIR
|
|
106
|
+
from hccinfhir.datamodels import Demographics
|
|
107
|
+
|
|
108
|
+
# Initialize with custom configuration
|
|
109
|
+
hcc_processor = HCCInFHIR(
|
|
110
|
+
filter_claims=True, # Enable claim filtering
|
|
111
|
+
model_name="CMS-HCC Model V28", # Choose HCC model version
|
|
112
|
+
proc_filtering_filename="ra_eligible_cpt_hcpcs_2025.csv", # CPT/HCPCS filtering rules
|
|
113
|
+
dx_cc_mapping_filename="ra_dx_to_cc_2025.csv" # Diagnosis to CC mapping
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
# Define beneficiary demographics
|
|
117
|
+
demographics = Demographics(
|
|
118
|
+
age=67,
|
|
119
|
+
sex='F',
|
|
120
|
+
dual_elgbl_cd='00', # Not dual eligible
|
|
121
|
+
orec='0', # Old age
|
|
122
|
+
crec='0', # Current old age
|
|
123
|
+
new_enrollee=False,
|
|
124
|
+
snp=False
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
# Method 1: Process FHIR EOB resources
|
|
128
|
+
raf_result = hcc_processor.run(eob_list, demographics)
|
|
129
|
+
|
|
130
|
+
# Method 2: Process service level data
|
|
131
|
+
service_data = [{
|
|
132
|
+
"procedure_code": "99214",
|
|
133
|
+
"claim_diagnosis_codes": ["E11.9", "I10"],
|
|
134
|
+
"claim_type": "71",
|
|
135
|
+
"service_date": "2024-01-15"
|
|
136
|
+
}]
|
|
137
|
+
raf_result = hcc_processor.run_from_service_data(service_data, demographics)
|
|
138
|
+
|
|
139
|
+
# Method 3: Direct diagnosis processing
|
|
140
|
+
diagnosis_codes = ['E119', 'I509']
|
|
141
|
+
raf_result = hcc_processor.calculate_from_diagnosis(diagnosis_codes, demographics)
|
|
142
|
+
|
|
143
|
+
# RAF Result contains:
|
|
144
|
+
print(f"Risk Score: {raf_result['risk_score']}")
|
|
145
|
+
print(f"HCC List: {raf_result['hcc_list']}")
|
|
146
|
+
print(f"CC to Diagnosis Mapping: {raf_result['cc_to_dx']}")
|
|
147
|
+
print(f"Applied Coefficients: {raf_result['coefficients']}")
|
|
148
|
+
print(f"Applied Interactions: {raf_result['interactions']}")
|
|
75
149
|
```
|
|
76
150
|
|
|
151
|
+
The HCCInFHIR class provides three main processing methods:
|
|
152
|
+
|
|
153
|
+
1. `run(eob_list, demographics)`: Process FHIR ExplanationOfBenefit resources
|
|
154
|
+
- Extracts service data from FHIR resources
|
|
155
|
+
- Applies filtering rules if enabled
|
|
156
|
+
- Calculates RAF scores using the specified model
|
|
157
|
+
|
|
158
|
+
2. `run_from_service_data(service_data, demographics)`: Process standardized service data
|
|
159
|
+
- Accepts pre-formatted service level data
|
|
160
|
+
- Validates data structure using Pydantic models
|
|
161
|
+
- Applies filtering and calculates RAF scores
|
|
162
|
+
|
|
163
|
+
3. `calculate_from_diagnosis(diagnosis_codes, demographics)`: Direct diagnosis processing
|
|
164
|
+
- Processes raw diagnosis codes without service context
|
|
165
|
+
- Useful for quick RAF calculations or validation
|
|
166
|
+
- Bypasses service-level filtering
|
|
167
|
+
|
|
168
|
+
Each method returns a RAFResult containing:
|
|
169
|
+
- Final risk score
|
|
170
|
+
- List of HCCs
|
|
171
|
+
- Mapping of condition categories to diagnosis codes
|
|
172
|
+
- Applied coefficients and interactions
|
|
173
|
+
- Processed service level data (when applicable)
|
|
174
|
+
|
|
77
175
|
## Testing
|
|
78
176
|
```bash
|
|
79
177
|
$ python3 -m hatch shell
|
|
@@ -158,8 +256,48 @@ $ python3 -m pytest tests/*
|
|
|
158
256
|
3. Add support for allowed_amount in 837 if available in different segments
|
|
159
257
|
4. Consider adding more robust error handling in both implementations
|
|
160
258
|
|
|
259
|
+
## Data Files
|
|
260
|
+
|
|
261
|
+
`ra_dx_to_cc_mapping_2025.csv`
|
|
262
|
+
```sql
|
|
263
|
+
SELECT diagnosis_code, cc, model_name
|
|
264
|
+
FROM ra_dx_to_cc_mapping
|
|
265
|
+
WHERE year = 2025 and model_type = 'Initial';
|
|
266
|
+
```
|
|
267
|
+
|
|
268
|
+
`ra_hierarchies_2025.csv`
|
|
269
|
+
```sql
|
|
270
|
+
SELECT cc_parent,
|
|
271
|
+
cc_child,
|
|
272
|
+
model_domain,
|
|
273
|
+
model_version,
|
|
274
|
+
model_fullname
|
|
275
|
+
FROM ra_hierarchies
|
|
276
|
+
WHERE eff_last_date > '2025-01-01';
|
|
277
|
+
```
|
|
278
|
+
|
|
279
|
+
`ra_coefficients_2025.csv`
|
|
280
|
+
```sql
|
|
281
|
+
SELECT coefficient, value, model_domain, model_version
|
|
282
|
+
FROM ra_coefficients
|
|
283
|
+
WHERE eff_last_date > '2025-01-01';
|
|
284
|
+
```
|
|
285
|
+
|
|
286
|
+
`ra_eligible_cpt_hcpcs_2025.csv`
|
|
287
|
+
```sql
|
|
288
|
+
SELECT DISTINCT cpt_hcpcs_code
|
|
289
|
+
FROM mimi_ws_1.cmspayment.ra_eligible_cpt_hcpcs
|
|
290
|
+
WHERE is_included = 'yes' AND YEAR(mimi_src_file_date) = 2024;
|
|
291
|
+
```
|
|
292
|
+
|
|
161
293
|
## Contributing
|
|
162
294
|
Join us at [mimilabs](https://mimilabs.ai/signup). Reference data available in MIMILabs data lakehouse.
|
|
163
295
|
|
|
296
|
+
## Publishing (only for those maintainers...)
|
|
297
|
+
```bash
|
|
298
|
+
$ hatch build
|
|
299
|
+
$ hatch publish
|
|
300
|
+
```
|
|
301
|
+
|
|
164
302
|
## License
|
|
165
303
|
Apache License 2.0
|