hana-ai 1.0.25052000__tar.gz → 1.0.25061700__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (540) hide show
  1. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/INTRODUCTION.md +2 -17
  2. {hana_ai-1.0.25052000/src/hana_ai.egg-info → hana_ai-1.0.25061700}/PKG-INFO +2 -2
  3. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/README.md +1 -1
  4. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/pyproject.toml +1 -1
  5. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/__init__.py +1 -1
  6. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/agents/hanaml_agent_with_memory.py +48 -10
  7. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/code_template_tools.py +12 -8
  8. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/additive_model_forecast_tools.py +74 -125
  9. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/automatic_timeseries_tools.py +99 -160
  10. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/cap_artifacts_tools.py +43 -21
  11. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/fetch_tools.py +15 -9
  12. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/intermittent_forecast_tools.py +24 -16
  13. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/model_storage_tools.py +51 -24
  14. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/ts_accuracy_measure_tools.py +31 -38
  15. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/ts_check_tools.py +126 -81
  16. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/ts_outlier_detection_tools.py +45 -42
  17. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/ts_visualizer_tools.py +31 -10
  18. hana_ai-1.0.25061700/src/hana_ai/tools/hana_ml_tools/unsupported_tools.py +117 -0
  19. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/utility.py +5 -0
  20. hana_ai-1.0.25061700/src/hana_ai/tools/toolkit.py +314 -0
  21. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700/src/hana_ai.egg-info}/PKG-INFO +2 -2
  22. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai.egg-info/SOURCES.txt +1 -0
  23. hana_ai-1.0.25052000/src/hana_ai/tools/toolkit.py +0 -153
  24. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/CONTRIBUTING.md +0 -0
  25. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/LICENSE +0 -0
  26. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/MANIFEST.in +0 -0
  27. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/agent.png +0 -0
  28. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/chatbotwithtoolkit.png +0 -0
  29. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/code_template.png +0 -0
  30. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/crag.png +0 -0
  31. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/dataset_report.png +0 -0
  32. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/embeddings.png +0 -0
  33. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/embeddings_pal.png +0 -0
  34. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/hana_embeddings.png +0 -0
  35. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/kg.png +0 -0
  36. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/pal_embeddings0.png +0 -0
  37. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/pal_embeddings1.png +0 -0
  38. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/smartdf_ask.png +0 -0
  39. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/smartdf_res.png +0 -0
  40. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/img/smartdf_transform.png +0 -0
  41. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/requirements.txt +0 -0
  42. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/setup.cfg +0 -0
  43. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/agents/__init__.py +0 -0
  44. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/agents/hana_dataframe_agent.py +0 -0
  45. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/agents/hana_dataframe_prompt.py +0 -0
  46. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/agents/hana_sql_agent.py +0 -0
  47. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/smart_dataframe.py +0 -0
  48. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/__init__.py +0 -0
  49. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/agent_as_a_tool.py +0 -0
  50. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/tools/hana_ml_tools/__init__.py +0 -0
  51. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/utility.py +0 -0
  52. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/__init__.py +0 -0
  53. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/code_templates.py +0 -0
  54. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/corrective_retriever.py +0 -0
  55. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/embedding_service.py +0 -0
  56. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/hana_vector_engine.py +0 -0
  57. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/__init__.py +0 -0
  58. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/AMDPDeployer.txt +0 -0
  59. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/AMDPGenerator.txt +0 -0
  60. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ARIMAExplainer.txt +0 -0
  61. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/AdditiveModelForecastExplainer.txt +0 -0
  62. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/AffinityPropagation.txt +0 -0
  63. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/AgglomerateHierarchicalClustering.txt +0 -0
  64. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Apriori.txt +0 -0
  65. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/AprioriLite.txt +0 -0
  66. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/AutomaticClassificationPredictionWithReason.txt +0 -0
  67. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/AutomaticClassificationTraining.txt +0 -0
  68. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/AutomaticRegressionPredictionWithReason.txt +0 -0
  69. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/AutomaticRegressionTraining.txt +0 -0
  70. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/BCPD.txt +0 -0
  71. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/BSTSExplainer.txt +0 -0
  72. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/BeeswarmPlot.txt +0 -0
  73. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/BestPipelineReport.txt +0 -0
  74. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/BiVariateGeometricRegression.txt +0 -0
  75. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/BiVariateNaturalLogarithmicRegression.txt +0 -0
  76. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/BrownExponentialSmoothing.txt +0 -0
  77. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/CATPCA.txt +0 -0
  78. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/CPD.txt +0 -0
  79. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/CRF.txt +0 -0
  80. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/CommunitiesLouvain.txt +0 -0
  81. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/CoxProportionalHazardModel.txt +0 -0
  82. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Croston.txt +0 -0
  83. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/CrostonTSB.txt +0 -0
  84. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/DBSCAN.txt +0 -0
  85. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/DWT.txt +0 -0
  86. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/DatasetReport.txt +0 -0
  87. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Discretize.txt +0 -0
  88. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/DoubleExponentialSmoothing.txt +0 -0
  89. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/EDAVisualizer.txt +0 -0
  90. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Edge.txt +0 -0
  91. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ExponentialRegression.txt +0 -0
  92. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/FFMClassifier.txt +0 -0
  93. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/FFMRanker.txt +0 -0
  94. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/FFMRegressor.txt +0 -0
  95. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/FFT.txt +0 -0
  96. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/FPGrowth.txt +0 -0
  97. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/FairMLClassification.txt +0 -0
  98. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/FairMLRegression.txt +0 -0
  99. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/FeatureNormalizer.txt +0 -0
  100. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/FeatureValueAndEffect.txt +0 -0
  101. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Fernet.txt +0 -0
  102. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/GARCH.txt +0 -0
  103. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/GRUAttention.txt +0 -0
  104. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/GaussianMixture.txt +0 -0
  105. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/GeneralProgressStatusMonitor.txt +0 -0
  106. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/GeometryDBSCAN.txt +0 -0
  107. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/GradientBoostingClassifier.txt +0 -0
  108. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/GradientBoostingRegressor.txt +0 -0
  109. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/GridSearchCV.txt +0 -0
  110. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/HANAGeneratorForCAP.txt +0 -0
  111. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/HANAScheduler.txt +0 -0
  112. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/HanaGenerator.txt +0 -0
  113. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Hierarchical_Forecast.txt +0 -0
  114. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/IdGenerator.txt +0 -0
  115. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/InPort.txt +0 -0
  116. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/KBinsDiscretizer.txt +0 -0
  117. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/KDE.txt +0 -0
  118. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/KMeansOutlier.txt +0 -0
  119. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/KMedians.txt +0 -0
  120. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/KMedoids.txt +0 -0
  121. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/KNN.txt +0 -0
  122. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/KORD.txt +0 -0
  123. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/KShortestPaths.txt +0 -0
  124. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/LR_seasonal_adjust.txt +0 -0
  125. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/LSTM.txt +0 -0
  126. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/LTSF.txt +0 -0
  127. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/LinkPrediction.txt +0 -0
  128. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/MDS.txt +0 -0
  129. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/MLPRecommender.txt +0 -0
  130. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/MetricReportBuilder.txt +0 -0
  131. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/MetricsVisualizer.txt +0 -0
  132. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Model.txt +0 -0
  133. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ModelStorage.txt +0 -0
  134. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Neighbors.txt +0 -0
  135. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/NeighborsSubgraph.txt +0 -0
  136. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Node.txt +0 -0
  137. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/OnlineARIMA.txt +0 -0
  138. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/OnlineBCPD.txt +0 -0
  139. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/OnlineLinearRegression.txt +0 -0
  140. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/OutPort.txt +0 -0
  141. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/OutlierProfiling.txt +0 -0
  142. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/PCA.txt +0 -0
  143. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Page.txt +0 -0
  144. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/PageRank.txt +0 -0
  145. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/PipelineProgressStatusMonitor.txt +0 -0
  146. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/PolynomialRegression.txt +0 -0
  147. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Preprocessing.txt +0 -0
  148. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/QuantileTransform.txt +0 -0
  149. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/RandomForestClassifier.txt +0 -0
  150. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/RandomForestRegressor.txt +0 -0
  151. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/RandomSearchCV.txt +0 -0
  152. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/SMOTE.txt +0 -0
  153. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/SMOTETomek.txt +0 -0
  154. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/SOM.txt +0 -0
  155. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/SPM.txt +0 -0
  156. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Sampling.txt +0 -0
  157. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Settings.txt +0 -0
  158. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ShapleyExplainer.txt +0 -0
  159. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ShortestPath.txt +0 -0
  160. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ShortestPathsOneToAll.txt +0 -0
  161. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/SimplePipelineProgressStatusMonitor.txt +0 -0
  162. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/SingleExponentialSmoothing.txt +0 -0
  163. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/SlightSilhouette.txt +0 -0
  164. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/SpectralClustering.txt +0 -0
  165. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/StronglyConnectedComponents.txt +0 -0
  166. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/TFIDF.txt +0 -0
  167. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/TSNE.txt +0 -0
  168. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/TimeSeriesExplainer.txt +0 -0
  169. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/TimeSeriesReport.txt +0 -0
  170. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/TomekLinks.txt +0 -0
  171. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/TopologicalSort.txt +0 -0
  172. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/TreeModelDebriefing.txt +0 -0
  173. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/TripleExponentialSmoothing.txt +0 -0
  174. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/UnifiedExponentialSmoothing.txt +0 -0
  175. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/UnifiedReport.txt +0 -0
  176. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/Visualizer.txt +0 -0
  177. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/WeaklyConnectedComponents.txt +0 -0
  178. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/WordCloud.txt +0 -0
  179. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/abc_analysis.txt +0 -0
  180. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/accuracy_measure.txt +0 -0
  181. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/accuracy_score.txt +0 -0
  182. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/auc.txt +0 -0
  183. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/bar_plot.txt +0 -0
  184. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/benford_analysis.txt +0 -0
  185. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/bernoulli.txt +0 -0
  186. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/beta.txt +0 -0
  187. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/binary_classification_debriefing.txt +0 -0
  188. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/binomial.txt +0 -0
  189. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/box_plot.txt +0 -0
  190. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/bubble_plot.txt +0 -0
  191. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/candlestick_plot.txt +0 -0
  192. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/cauchy.txt +0 -0
  193. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/cdf.txt +0 -0
  194. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/check_pal_function_exist.txt +0 -0
  195. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/chi_squared.txt +0 -0
  196. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/chi_squared_goodness_of_fit.txt +0 -0
  197. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/chi_squared_independence.txt +0 -0
  198. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/condition_index.txt +0 -0
  199. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/confusion_matrix.txt +0 -0
  200. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/connection_context.txt +0 -0
  201. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/correlation.txt +0 -0
  202. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/correlation_plot.txt +0 -0
  203. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/covariance_matrix.txt +0 -0
  204. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/create_dataframe_from_pandas.txt +0 -0
  205. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/create_dataframe_from_shapefile.txt +0 -0
  206. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/create_dataframe_from_spark.txt +0 -0
  207. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/create_graph_from_dataframes.txt +0 -0
  208. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/create_graph_from_edges_dataframe.txt +0 -0
  209. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/create_graph_from_hana_dataframes.txt +0 -0
  210. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/dataframe_functions.txt +0 -0
  211. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/delete_afl_state.txt +0 -0
  212. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/delete_afl_state_by_description.txt +0 -0
  213. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/discover_graph_workspace.txt +0 -0
  214. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/discover_graph_workspaces.txt +0 -0
  215. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/distribution_fit.txt +0 -0
  216. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/distribution_plot.txt +0 -0
  217. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/dtw.txt +0 -0
  218. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/entropy.txt +0 -0
  219. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/exponential.txt +0 -0
  220. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/export_into.txt +0 -0
  221. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/f.txt +0 -0
  222. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/f_oneway.txt +0 -0
  223. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/f_oneway_repeated.txt +0 -0
  224. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/factor_analysis.txt +0 -0
  225. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/fast_dtw.txt +0 -0
  226. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/forecast_line_plot.txt +0 -0
  227. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ftest_equal_var.txt +0 -0
  228. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/gamma.txt +0 -0
  229. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/generate_feature.txt +0 -0
  230. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/geometric.txt +0 -0
  231. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_created_srses.txt +0 -0
  232. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_floor_value.txt +0 -0
  233. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_max_index.txt +0 -0
  234. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_min_index.txt +0 -0
  235. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_pipeline_info.txt +0 -0
  236. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_related_doc.txt +0 -0
  237. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_related_term.txt +0 -0
  238. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_relevant_doc.txt +0 -0
  239. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_relevant_term.txt +0 -0
  240. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_suggested_term.txt +0 -0
  241. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_tempdir_path.txt +0 -0
  242. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/get_type_code_map.txt +0 -0
  243. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/grubbs_test.txt +0 -0
  244. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/gumbel.txt +0 -0
  245. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/hist.txt +0 -0
  246. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/hull_white_simulate.txt +0 -0
  247. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/import_csv_from.txt +0 -0
  248. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/import_from.txt +0 -0
  249. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/intermittent_forecast.txt +0 -0
  250. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/interval_quality.txt +0 -0
  251. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/iqr.txt +0 -0
  252. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/kaplan_meier_survival_analysis.txt +0 -0
  253. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/kdeplot.txt +0 -0
  254. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ks_test.txt +0 -0
  255. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/list_afl_state.txt +0 -0
  256. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/lognormal.txt +0 -0
  257. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/m4_sampling.txt +0 -0
  258. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/mae.txt +0 -0
  259. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/massive_fft.txt +0 -0
  260. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/mcmc.txt +0 -0
  261. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/median_test_1samp.txt +0 -0
  262. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/melt.txt +0 -0
  263. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/minify.txt +0 -0
  264. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/multiclass_auc.txt +0 -0
  265. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/multinomial.txt +0 -0
  266. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/negative_binomial.txt +0 -0
  267. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/normal.txt +0 -0
  268. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/notna.txt +0 -0
  269. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/outlier_detection_kmeans.txt +0 -0
  270. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/parallel_coordinates.txt +0 -0
  271. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/pearsonr_matrix.txt +0 -0
  272. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/periodogram.txt +0 -0
  273. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/permutation_importance.txt +0 -0
  274. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/pert.txt +0 -0
  275. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/pie_plot.txt +0 -0
  276. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/plot_acf.txt +0 -0
  277. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/plot_change_points.txt +0 -0
  278. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/plot_moving_average.txt +0 -0
  279. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/plot_pacf.txt +0 -0
  280. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/plot_psd.txt +0 -0
  281. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/plot_rolling_stddev.txt +0 -0
  282. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/plot_seasonal_decompose.txt +0 -0
  283. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/plot_time_series_outlier.txt +0 -0
  284. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/poisson.txt +0 -0
  285. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/quantile.txt +0 -0
  286. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/quarter_plot.txt +0 -0
  287. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/quote.txt +0 -0
  288. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/quotename.txt +0 -0
  289. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/r2_score.txt +0 -0
  290. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/read_pickle.txt +0 -0
  291. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/regression_score.txt +0 -0
  292. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/rmse.txt +0 -0
  293. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/scatter_plot.txt +0 -0
  294. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/seasonal_decompose.txt +0 -0
  295. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/seasonal_plot.txt +0 -0
  296. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/smart_quote.txt +0 -0
  297. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/stationarity_test.txt +0 -0
  298. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/student_t.txt +0 -0
  299. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/text_classification.txt +0 -0
  300. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/tf_analysis.txt +0 -0
  301. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/timeseries_box_plot.txt +0 -0
  302. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/train_test_val_split.txt +0 -0
  303. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/trend_test.txt +0 -0
  304. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ttest_1samp.txt +0 -0
  305. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ttest_ind.txt +0 -0
  306. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/ttest_paired.txt +0 -0
  307. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/type_sql2cds.txt +0 -0
  308. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/uniform.txt +0 -0
  309. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/unify_min_max_value_of_yAxis.txt +0 -0
  310. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/unique.txt +0 -0
  311. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/univariate_analysis.txt +0 -0
  312. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/update_display.txt +0 -0
  313. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/variance_test.txt +0 -0
  314. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/version_compare.txt +0 -0
  315. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/wavedec.txt +0 -0
  316. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/waverec.txt +0 -0
  317. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/weibull.txt +0 -0
  318. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/weighted_score_table.txt +0 -0
  319. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/white_noise_test.txt +0 -0
  320. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/wilcoxon.txt +0 -0
  321. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/wpdec.txt +0 -0
  322. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/wprec.txt +0 -0
  323. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/python_knowledge/wraps.txt +0 -0
  324. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/AutoML-checkpoint.txt +0 -0
  325. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/AutoML.txt +0 -0
  326. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/Multi-task-multilayer-perceptron.txt +0 -0
  327. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/Optimization.txt +0 -0
  328. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/abc-analysis-d92aa78.txt +0 -0
  329. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/accelerated-k-means-5a3e282.txt +0 -0
  330. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/additive-model-time-series-analysis-7e78d06.txt +0 -0
  331. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/affinity-propagation-ec478f5.txt +0 -0
  332. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/agglomerate-hierarchical-clustering-394a529.txt +0 -0
  333. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/alternating-least-squares-7129de6.txt +0 -0
  334. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/anomaly-detection-8c0e2a6.txt +0 -0
  335. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/anova-e8a1d1b.txt +0 -0
  336. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/application-function-library-afl-11abcbf.txt +0 -0
  337. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/apriori-7a073d6.txt +0 -0
  338. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/area-under-curve-auc-df08788.txt +0 -0
  339. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/arima-dbd52a1.txt +0 -0
  340. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/attention-d0743fb.txt +0 -0
  341. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/auto-arima-9f2574e.txt +0 -0
  342. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/auto-exponential-smoothing-60471b0.txt +0 -0
  343. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/automl-tutorial-9954eef.txt +0 -0
  344. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/bayesian-change-point-detection-c6387a3.txt +0 -0
  345. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/bayesian-structural-time-series-b997257.txt +0 -0
  346. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/bi-variate-geometric-regression-71a9cee.txt +0 -0
  347. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/bi-variate-natural-logarithmic-regression-57ced8a.txt +0 -0
  348. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/biased-model-b663cf1.txt +0 -0
  349. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/biased-model-f03d616.txt +0 -0
  350. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/brown-exponential-smoothing-a5981d5.txt +0 -0
  351. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/calling-pal-procedures-2c2a424.txt +0 -0
  352. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/calling-pal-procedures-in-parallel-with-hint-parallel-by-parameter-partitions-ed5807b.txt +0 -0
  353. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/calling-pal-procedures-in-parallel-with-map-reduce-5e462e1.txt +0 -0
  354. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/calling-pal-procedures-in-parallel-with-operator-map-merge-7b7bbef.txt +0 -0
  355. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/categorical-principal-component-analysis-ef445c7.txt +0 -0
  356. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/change-point-detection-70ea3e2.txt +0 -0
  357. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/chi-square-goodness-of-fit-test-af48bff.txt +0 -0
  358. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/chi-squared-test-of-independence-90fbf5c.txt +0 -0
  359. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/cluster-assignment-bb994fb.txt +0 -0
  360. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/compatibility-264fbdc.txt +0 -0
  361. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/compatibility-4849b44.txt +0 -0
  362. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/compatibility-7a49959.txt +0 -0
  363. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/condition-index-bf089cc.txt +0 -0
  364. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/conditional-random-field-48ece2f.txt +0 -0
  365. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/confusion-matrix-79c0d16.txt +0 -0
  366. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/correlation-function-bb69320.txt +0 -0
  367. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/cox-proportional-hazard-model-1492fd1.txt +0 -0
  368. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/croston-s-method-c6721c3.txt +0 -0
  369. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/croston-tsb-method-8203847.txt +0 -0
  370. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/cumulative-distribution-function-3d24332.txt +0 -0
  371. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/customized-seasonalities-6c30a24.txt +0 -0
  372. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/data-partition-39da6b3.txt +0 -0
  373. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/data-partition-4ca3a33.txt +0 -0
  374. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/dbscan-b2c5511.txt +0 -0
  375. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/decision-trees-c8ab80c.txt +0 -0
  376. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/detect-outlier-from-residual-f5a6285.txt +0 -0
  377. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/discrete-wavelet-packet-transform-2f5d75b.txt +0 -0
  378. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/discrete-wavelet-transform-2ad85a5.txt +0 -0
  379. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/discretize-612b76f.txt +0 -0
  380. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/discretize-apply-82921db.txt +0 -0
  381. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/distribution-fitting-d15e88a.txt +0 -0
  382. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/distribution-quantile-6ae6985.txt +0 -0
  383. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/double-exponential-smoothing-4665493.txt +0 -0
  384. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/dynamic-time-warping-2b949ae.txt +0 -0
  385. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/early-stop-of-hybrid-gradient-boosting-tree-daad5b4.txt +0 -0
  386. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/entropy-35daf5c.txt +0 -0
  387. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/equal-variance-test-a11d2bb.txt +0 -0
  388. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/exception-handling-22f1c1b.txt +0 -0
  389. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/explaining-the-forecasts-of-arima-bca2300.txt +0 -0
  390. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/exponential-regression-011ebc9.txt +0 -0
  391. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/factor-analysis-d0d962d.txt +0 -0
  392. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/factorized-polynomial-regression-models-27e7242.txt +0 -0
  393. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/fast-dynamic-time-warping-66e588e.txt +0 -0
  394. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/fast-fourier-transform-e9a3680.txt +0 -0
  395. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/feature-grouping-for-hybrid-gradient-boosting-tree-c3767f6.txt +0 -0
  396. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/feature-selection-29a47ef.txt +0 -0
  397. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/field-aware-factorization-machine-2e30885.txt +0 -0
  398. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/forecast-accuracy-measures-568723f.txt +0 -0
  399. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/fp-growth-9495128.txt +0 -0
  400. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/garch-f71f400.txt +0 -0
  401. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/gaussian-mixture-model-gmm-3054f47.txt +0 -0
  402. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/generalised-linear-models-1e4e0a6.txt +0 -0
  403. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/geometry-dbscan-66fab6f.txt +0 -0
  404. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/get-related-documents-7c0a97b.txt +0 -0
  405. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/get-related-documents-multi.txt +0 -0
  406. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/get-related-terms-0eebec7.txt +0 -0
  407. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/get-related-terms-multi.txt +0 -0
  408. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/get-relevant-documents-ea0b7cd.txt +0 -0
  409. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/get-relevant-documents-multi.txt +0 -0
  410. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/get-relevant-terms-bb2018a.txt +0 -0
  411. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/get-relevant-terms-multi.txt +0 -0
  412. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/get-suggested-terms-ceaf49e.txt +0 -0
  413. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/get-suggested-terms-multi.txt +0 -0
  414. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/grubbs-test-32ccab0.txt +0 -0
  415. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/hierarchical-forecast-384e8e7.txt +0 -0
  416. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/histogram-splitting-method-for-hybrid-gradient-boosting-tree-7216cbe.txt +0 -0
  417. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/hull-white.txt +0 -0
  418. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/hybrid-gradient-boosting-tree-ca5106c.txt +0 -0
  419. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/inter-quartile-range-3e322ad.txt +0 -0
  420. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/intermittent-time-series-forecast-itsf-e0ac689.txt +0 -0
  421. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/interval-quality-cf9e45d.txt +0 -0
  422. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/isolation-forest-11345d9.txt +0 -0
  423. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/k-means-53e6908.txt +0 -0
  424. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/k-medians-91dc75c.txt +0 -0
  425. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/k-medoids-0ba6f4b.txt +0 -0
  426. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/k-optimal-rule-discovery-kord-598818b.txt +0 -0
  427. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/kaplan-meier-survival-analysis-b1e7a3c.txt +0 -0
  428. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/kernel-density-18d0510.txt +0 -0
  429. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/kolmogorov-smirnov-test-1aab0c6.txt +0 -0
  430. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/latent-dirichlet-allocation-866928f.txt +0 -0
  431. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/linear-discriminant-analysis-a2b984a.txt +0 -0
  432. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/linear-regression-with-damped-trend-and-seasonal-adjust-d5f360d.txt +0 -0
  433. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/link-prediction-9f3dc84.txt +0 -0
  434. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/local-interpretability-of-models-c330665.txt +0 -0
  435. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/local-interpretability-of-models-cb71249.txt +0 -0
  436. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/local-interpretability-of-models-e25b17e.txt +0 -0
  437. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/local-interpretability-of-models-e576c27.txt +0 -0
  438. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/logistic-regression-with-elastic-net-regularization-46effe5.txt +0 -0
  439. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/long-short-term-memory-3c2fc78.txt +0 -0
  440. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/long-term-series-forecasting-060735d.txt +0 -0
  441. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/mcmc-sampling-b492ef9.txt +0 -0
  442. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/methods-to-get-residual-in-outlier-detection-eadb4d4.txt +0 -0
  443. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/missing-value-handling-3b26f67.txt +0 -0
  444. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/missing-value-handling-40aa336.txt +0 -0
  445. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/missing-value-handling-41174ae.txt +0 -0
  446. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/missing-value-handling-594ba55.txt +0 -0
  447. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-compression-6b8be39.txt +0 -0
  448. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-compression-825e28e.txt +0 -0
  449. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-compression-c77c002.txt +0 -0
  450. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-compression-ea71174.txt +0 -0
  451. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-compression-ee6b28e.txt +0 -0
  452. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-compression-fc7f18b.txt +0 -0
  453. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-evaluation-0f7e441.txt +0 -0
  454. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-evaluation-73bbec0.txt +0 -0
  455. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-evaluation-7a36df4.txt +0 -0
  456. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-evaluation-adf189b.txt +0 -0
  457. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-evaluation-and-parameter-selection-602e54b.txt +0 -0
  458. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-evaluation-and-parameter-selection-c7cf1f6.txt +0 -0
  459. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/model-visualization-174c46c.txt +0 -0
  460. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/multi-class-logistic-regression-bc5fe09.txt +0 -0
  461. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/multidimensional-scaling-mds-75a1c5a.txt +0 -0
  462. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/multilayer-perceptron-ddd236d.txt +0 -0
  463. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/multiple-linear-regression-eedc909.txt +0 -0
  464. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/multivariate-analysis-e872de9.txt +0 -0
  465. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/naive-bayes-4fdc40e.txt +0 -0
  466. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/one-sample-median-test-c7e9654.txt +0 -0
  467. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/online-arima-1027f8a.txt +0 -0
  468. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/online-bayesian-change-point-detection-1398751.txt +0 -0
  469. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/online-linear-regression-ffbfa5a.txt +0 -0
  470. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/online-multi-class-logistic-regression-efe794e.txt +0 -0
  471. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/outlier-detection-17253b4.txt +0 -0
  472. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/pagerank-27a10e6.txt +0 -0
  473. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/parameter-tables-6c931c4.txt +0 -0
  474. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/parameter-tables-94a8d3b.txt +0 -0
  475. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/partition-af41e5f.txt +0 -0
  476. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/periodogram-b9253c7.txt +0 -0
  477. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/permutation-importance-e36d4e1.txt +0 -0
  478. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/permutation-importance-ff18019.txt +0 -0
  479. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/pipeline-de96493.txt +0 -0
  480. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/pipeline-operator-fd58a3f.txt +0 -0
  481. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/polynomial-regression-daf62ae.txt +0 -0
  482. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/power-transform-3bc0528.txt +0 -0
  483. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/precomputed-distance-matrix-as-input-data-49f9b46.txt +0 -0
  484. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/precomputed-distance-matrix-as-input-data-c627694.txt +0 -0
  485. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/prediction-intervals-and-confidence-intervals-d854b8c.txt +0 -0
  486. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/prediction-intervals-and-confidence-intervals-f157449.txt +0 -0
  487. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/principal-component-analysis-pca-dbf2eae.txt +0 -0
  488. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/random-decision-trees-9ad576a.txt +0 -0
  489. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/random-distribution-sampling-031e35e.txt +0 -0
  490. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/restricting-cpu-and-memory-usage-874883c.txt +0 -0
  491. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/rocket-07c9a8c.txt +0 -0
  492. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/sampling-282550b.txt +0 -0
  493. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/scale-e3f29fa.txt +0 -0
  494. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/scale-with-model-f8d480e.txt +0 -0
  495. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/scenario-analyze-the-cash-flow-of-an-investment-on-a-new-product-a2f8380.txt +0 -0
  496. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/scenario-predict-segmentation-of-new-customers-for-a-supermarket-e1acc4e.txt +0 -0
  497. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/scenario-survival-analysis-51b366d.txt +0 -0
  498. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/seasonality-test-d990dc7.txt +0 -0
  499. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/self-organizing-maps-8e000f8.txt +0 -0
  500. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/sequential-pattern-mining-860ec4a.txt +0 -0
  501. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/single-exponential-smoothing-ba4bb85.txt +0 -0
  502. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/slight-silhouette-bd6fa5c.txt +0 -0
  503. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/smote-1bef6c3.txt +0 -0
  504. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/smotetomek-343b849.txt +0 -0
  505. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/spectral-clustering-d540a57.txt +0 -0
  506. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/state-enabled-real-time-scoring-functions-b88b433.txt +0 -0
  507. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/stationarity-test-1d85b07.txt +0 -0
  508. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/successive-halving-and-hyperband-for-model-evaluation-and-parameter-selection-734113f.txt +0 -0
  509. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/support-vector-machine-901a10d.txt +0 -0
  510. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/switching-between-the-pal-algorithms-with-the-same-dataset-3879837.txt +0 -0
  511. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/t-distributed-stochastic-neighbour-embedding-3de9095.txt +0 -0
  512. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/t-test-431ffa3.txt +0 -0
  513. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/term-analysis-0dd1876.txt +0 -0
  514. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/text-classification-6425747.txt +0 -0
  515. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/text-classification-predict.txt +0 -0
  516. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/text-classification-train.txt +0 -0
  517. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/tf-idf-calculation-ef2bad0.txt +0 -0
  518. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/time-series-missing-value-handling-368f755.txt +0 -0
  519. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/tomek-s-links-aad0816.txt +0 -0
  520. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/trend-test-88f9cdd.txt +0 -0
  521. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/triple-exponential-smoothing-a25b1de.txt +0 -0
  522. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/tutorial-dataset-f9e32f5.txt +0 -0
  523. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/unified-classification-8bd88cf.txt +0 -0
  524. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/unified-classification-with-pivoted-input-data-5f37c0a.txt +0 -0
  525. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/unified-clustering-6870a0c.txt +0 -0
  526. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/unified-clustering-with-pivoted-input-data-baa7174.txt +0 -0
  527. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/unified-exponential-smoothing-0d3683e.txt +0 -0
  528. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/unified-exponential-smoothing-with-pivoted-input-data-f54758e.txt +0 -0
  529. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/unified-regression-736b679.txt +0 -0
  530. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/unified-regression-with-pivoted-input-data-3fdd715.txt +0 -0
  531. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/univariate-analysis-a1fac59.txt +0 -0
  532. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/variance-test-08cb673.txt +0 -0
  533. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/varma-19e206e.txt +0 -0
  534. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/weighted-score-table-a72289c.txt +0 -0
  535. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/white-noise-test-9536698.txt +0 -0
  536. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/knowledge_base/sql_knowledge/wilcox-signed-rank-test-e4d3416.txt +0 -0
  537. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai/vectorstore/union_vector_stores.py +0 -0
  538. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai.egg-info/dependency_links.txt +0 -0
  539. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai.egg-info/requires.txt +0 -0
  540. {hana_ai-1.0.25052000 → hana_ai-1.0.25061700}/src/hana_ai.egg-info/top_level.txt +0 -0
@@ -14,8 +14,6 @@ The generative AI toolkit for SAP HANA Cloud provides the following key capabili
14
14
  * a SmartDataFrame interface to directly interact with HANA dataframes using functions like "ask" and "transform" to explore and transform the data in a conversational manner
15
15
  * tools for leveraging the SAP HANA Cloud vectorstore and embedding services
16
16
  * components for building custom code generation tools, targeted for SAP HANA Cloud scenarios
17
-
18
-
19
17
 
20
18
  # Capabilities introduction
21
19
 
@@ -45,6 +43,7 @@ Provided AI-tools for streamlining usage of HANA ML functions in context of the
45
43
  | forecast_line_plot | To generate line plot for the forecasted result. |
46
44
  | intermittent_forecast | To forecast the intermittent time series data. |
47
45
  | list_models | To list the models in the model storage. |
46
+ | delete_models | To delete the model from the model storage. |
48
47
  | seasonality_test | To check the seasonality of the time series data. |
49
48
  | stationarity_test | To check the stationarity of the time series data. |
50
49
  | trend_test | To check the trend of the time series data. |
@@ -53,20 +52,6 @@ Provided AI-tools for streamlining usage of HANA ML functions in context of the
53
52
  | ts_outlier_detection | To detect the outliers in the time series data. |
54
53
  | white_noise_test | To check the white noise of the time series data. |
55
54
 
56
- ## Agent to generate HANA-ML code and execute tasks based on a SAP HANA dataframe
57
- A generative AI-assisted, conversational SAP HANA dataframe agent to generate HANA ML code and execute tasks based on SAP HANA dataframe.
58
-
59
- ```python
60
- agent = create_hana_dataframe_agent(llm=llm, tools=[<####>], df=data, verbose=True)
61
- agent.invoke("Create Automatic Regression model on this dataframe with max_eval_time_mins=10. Provide key is ID, background_size=100 and model_table_name='my_model' in the fit function and execute it. ")
62
- ```
63
- ![alt](./img/agent.png)
64
-
65
- ```python
66
- agent.invoke("create a dataset report.")
67
- ```
68
- ![alt](./img/dataset_report.png)
69
-
70
55
  ## Vector engine and Embedding generation tools
71
56
  Different Embedding functions can be used ...
72
57
  ### Embedding some code examples
@@ -121,7 +106,7 @@ cr.query("AutoML classification", top_n=1)
121
106
  ```
122
107
 
123
108
  ## Smart DataFrame
124
- The Smart DataFrame is agent interface to HANA dataframes, provding a conversational approach for dataframe-related tasks for exploring the data using the "ask" method. Similarly and in addition, the "transform" method adds passing back the result data as a HANA dataframe.
109
+ The Smart DataFrame is agent interface to HANA dataframes, provding a conversational approach for dataframe-related tasks for exploring the data using the "ask" method. Similarly and in addition, the "transform" method adds passing back the result data as a HANA dataframe. Currently, it is not compatible with GPT-4o, but works with GPT-4 and other models.
125
110
 
126
111
  ```python
127
112
  from hana_ai.smart_dataframe import SmartDataFrame
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: hana_ai
3
- Version: 1.0.25052000
3
+ Version: 1.0.25061700
4
4
  Summary: Generative AI Toolkit for SAP HANA Cloud
5
5
  Author: SAP
6
6
  License: Apache-2.0
@@ -33,7 +33,7 @@ Dynamic: license-file
33
33
 
34
34
  ## About this project
35
35
 
36
- Generative AI Client for SAP HANA Cloud is an extension of the existing HANA ML Python client library, mainly focusing on GenAI and related use cases. It includes many leading-edge GenAI related open source libraries and provides seamless integration with HANA ML, HANA vector engine, and other SAP GenAI Hub SDK, see our [Introduction](https://github.com/SAP/generative-ai-toolkit-for-sap-hana-cloud/blob/main/INTRODUCTION.md) and [Documentation](https://sap.github.io/generative-ai-toolkit-for-sap-hana-cloud/).
36
+ Generative AI Client for SAP HANA Cloud is an extension of the existing HANA ML Python client library, mainly focusing on GenAI and related use cases. It includes many leading-edge GenAI related open source libraries and provides seamless integration with HANA ML, HANA vector engine, and other SAP GenAI Hub SDK, see our [Introduction](https://github.com/SAP/generative-ai-toolkit-for-sap-hana-cloud/blob/main/INTRODUCTION.md), [Notebook](https://github.com/SAP/generative-ai-toolkit-for-sap-hana-cloud/blob/main/nutest/testscripts/demo/e2e_scenarios/time_series_forecast_scenario_sales_refunds.ipynb) and [Documentation](https://sap.github.io/generative-ai-toolkit-for-sap-hana-cloud/).
37
37
 
38
38
  ## Requirements and Setup
39
39
 
@@ -4,7 +4,7 @@
4
4
 
5
5
  ## About this project
6
6
 
7
- Generative AI Client for SAP HANA Cloud is an extension of the existing HANA ML Python client library, mainly focusing on GenAI and related use cases. It includes many leading-edge GenAI related open source libraries and provides seamless integration with HANA ML, HANA vector engine, and other SAP GenAI Hub SDK, see our [Introduction](https://github.com/SAP/generative-ai-toolkit-for-sap-hana-cloud/blob/main/INTRODUCTION.md) and [Documentation](https://sap.github.io/generative-ai-toolkit-for-sap-hana-cloud/).
7
+ Generative AI Client for SAP HANA Cloud is an extension of the existing HANA ML Python client library, mainly focusing on GenAI and related use cases. It includes many leading-edge GenAI related open source libraries and provides seamless integration with HANA ML, HANA vector engine, and other SAP GenAI Hub SDK, see our [Introduction](https://github.com/SAP/generative-ai-toolkit-for-sap-hana-cloud/blob/main/INTRODUCTION.md), [Notebook](https://github.com/SAP/generative-ai-toolkit-for-sap-hana-cloud/blob/main/nutest/testscripts/demo/e2e_scenarios/time_series_forecast_scenario_sales_refunds.ipynb) and [Documentation](https://sap.github.io/generative-ai-toolkit-for-sap-hana-cloud/).
8
8
 
9
9
  ## Requirements and Setup
10
10
 
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "hana_ai"
7
- version = "1.0.25052000"
7
+ version = "1.0.25061700"
8
8
  authors = [
9
9
  {name = "SAP"}
10
10
  ]
@@ -2,4 +2,4 @@
2
2
  hana_ai is a Python package for AI/ML related utilities.
3
3
  """
4
4
 
5
- __version__ = "1.0.25052000"
5
+ __version__ = "1.0.25061700"
@@ -13,7 +13,7 @@ import inspect
13
13
  import logging
14
14
  import pandas as pd
15
15
  from pydantic import ValidationError
16
- from langchain.agents import initialize_agent, AgentType
16
+ from langchain.agents import initialize_agent, AgentType, Tool
17
17
  from langchain.callbacks.base import BaseCallbackHandler
18
18
  from langchain_core.chat_history import InMemoryChatMessageHistory
19
19
  from langchain_core.messages.base import BaseMessage
@@ -25,6 +25,9 @@ from langchain.load.dump import dumps
25
25
 
26
26
  logging.getLogger().setLevel(logging.ERROR)
27
27
 
28
+ CHATBOT_SYSTEM_PROMPT = """You're an assistant skilled in data science using hana-ml tools.
29
+ Ask for missing parameters if needed. Regardless of whether this tool has been called before, it must be called."""
30
+
28
31
  def _check_generated_cap_for_bas(intermediate_steps):
29
32
  """
30
33
  Check if the generated CAP artifacts are valid.
@@ -83,6 +86,8 @@ class _ToolObservationCallbackHandler(BaseCallbackHandler):
83
86
  self.max_observations = max_observations # Set your desired limit here
84
87
 
85
88
  def on_tool_end(self, output: str, **kwargs):
89
+ if kwargs.get("name") == "delete_chat_history":
90
+ return # 跳过记录
86
91
  memory = self.memory_getter()
87
92
  # Get all current observations in chronological order
88
93
  current_obs = [msg for msg in memory.messages if self._is_observation(msg)]
@@ -151,11 +156,21 @@ class HANAMLAgentWithMemory(object):
151
156
  """
152
157
  def __init__(self, llm, tools, session_id="hanaai_chat_session", n_messages=10, max_observations=5, verbose=False, **kwargs):
153
158
  self.llm = llm
154
- self.tools = tools
159
+ self.tools = list(tools)
155
160
  self.memory = InMemoryChatMessageHistory(session_id=session_id)
156
- system_prompt = """You're an assistant skilled in data science using hana-ml tools.
157
- Ask for missing parameters if needed. Regardless of whether this tool has been called before, it must be called."""
158
-
161
+ system_prompt = CHATBOT_SYSTEM_PROMPT
162
+ # Add the delete_chat_history tool
163
+ delete_tool = Tool(
164
+ name="delete_chat_history",
165
+ func=self.delete_chat_history_tool,
166
+ description=(
167
+ "Use this tool ONLY when the user explicitly requests to delete ALL chat history. "
168
+ "This action cannot be undone. Do NOT call this tool for any other reason. "
169
+ "Input must ALWAYS be an empty string (''). Example usage: delete_chat_history('')"
170
+ ),
171
+ return_direct=True
172
+ )
173
+ self.tools.append(delete_tool)
159
174
  self.prompt = ChatPromptTemplate.from_messages([
160
175
  ("system", system_prompt),
161
176
  MessagesPlaceholder(variable_name="history", n_messages=n_messages),
@@ -165,7 +180,7 @@ class HANAMLAgentWithMemory(object):
165
180
  self.verbose = verbose
166
181
  # Create callback handler linked to memory
167
182
  self.observation_callback = _ToolObservationCallbackHandler(lambda: self.memory, max_observations=max_observations)
168
- chain: Runnable = self.prompt | initialize_agent(tools,
183
+ chain: Runnable = self.prompt | initialize_agent(self.tools,
169
184
  llm,
170
185
  agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,verbose=verbose,
171
186
  callbacks=[self.observation_callback],
@@ -213,6 +228,20 @@ class HANAMLAgentWithMemory(object):
213
228
  input_messages_key="question",
214
229
  history_messages_key="history")
215
230
 
231
+ def delete_chat_history_tool(self, _input=""):
232
+ """
233
+ Delete chat history tool.
234
+ """
235
+ # 清除内存中的聊天记录
236
+ self.memory.clear()
237
+ # 重置回调处理器
238
+ self.observation_callback = _ToolObservationCallbackHandler(
239
+ lambda: self.memory,
240
+ self.observation_callback.max_observations
241
+ )
242
+ return "Chat history has been deleted successfully."
243
+
244
+
216
245
  def run(self, question):
217
246
  """
218
247
  Chat with the chatbot.
@@ -252,8 +281,14 @@ class HANAMLAgentWithMemory(object):
252
281
  error_message = str(e)
253
282
  if "Error code: 429" not in error_message:
254
283
  self.memory.add_ai_message(f"The error message is `{error_message}`. The response is `{response}`.")
284
+ if "action" in response and "action_input" in response:
285
+ try:
286
+ response = json.loads(response)
287
+ except:
288
+ pass
255
289
  if isinstance(response, str) and response.strip() == "":
256
290
  response = "I'm sorry, I don't understand. Please ask me again."
291
+
257
292
  if isinstance(response, dict) and 'action' in response and 'action_input' in response:
258
293
  action = response.get("action")
259
294
  for tool in self.tools:
@@ -273,7 +308,7 @@ class HANAMLAgentWithMemory(object):
273
308
  self.memory.add_ai_message(f"The error message is `{error_message}`. The response is `{response}`.")
274
309
  return response
275
310
 
276
- def stateless_call(llm, tools, question, chat_history=None, verbose=False, return_intermediate_steps=False):
311
+ def stateless_call(llm, tools, question, chat_history=None, verbose=False, return_intermediate_steps=False, system_prompt=CHATBOT_SYSTEM_PROMPT):
277
312
  """
278
313
  Utility function to call the agent with chat_history input. For stateless use cases.
279
314
  This function is useful for BAS integration purposes.
@@ -300,15 +335,13 @@ def stateless_call(llm, tools, question, chat_history=None, verbose=False, retur
300
335
  """
301
336
  if chat_history is None:
302
337
  chat_history = []
303
- system_prompt = """You're an assistant skilled in data science using hana-ml tools.
304
- Ask for missing parameters if needed. Regardless of whether this tool has been called before, it must be called."""
305
338
 
306
339
  prompt = ChatPromptTemplate.from_messages([
307
340
  ("system", system_prompt),
308
341
  MessagesPlaceholder(variable_name="history", messages=chat_history),
309
342
  ("human", "{question}"),
310
343
  ])
311
- agent: Runnable = prompt | initialize_agent(tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=verbose, return_intermediate_steps=return_intermediate_steps, handle_parsing_errors=True)
344
+ agent: Runnable = prompt | initialize_agent(tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=verbose, return_intermediate_steps=return_intermediate_steps)
312
345
  intermediate_steps = None
313
346
  try:
314
347
  response = agent.invoke({"question": question, "history": chat_history})
@@ -342,6 +375,11 @@ def stateless_call(llm, tools, question, chat_history=None, verbose=False, retur
342
375
  except Exception as e:
343
376
  error_message = str(e)
344
377
  response = f"The error message is `{error_message}`. Please display the error message, and then analyze the error message and provide the solution."
378
+ if "action" in response and "action_input" in response:
379
+ try:
380
+ response = json.loads(response)
381
+ except:
382
+ pass
345
383
  if isinstance(response, str) and response.strip() == "":
346
384
  response = "I'm sorry, I don't understand. Please ask me again."
347
385
  if isinstance(response, dict) and 'action' in response and 'action_input' in response:
@@ -9,13 +9,9 @@ The following class are available:
9
9
  """
10
10
  # pylint: disable=unused-argument
11
11
 
12
- from typing import Optional, Type
12
+ from typing import Type
13
13
  from pydantic import BaseModel
14
14
  from langchain.tools import BaseTool
15
- from langchain.callbacks.manager import (
16
- AsyncCallbackManagerForToolRun,
17
- CallbackManagerForToolRun,
18
- )
19
15
 
20
16
  from hana_ai.vectorstore.hana_vector_engine import HANAMLinVectorEngine
21
17
 
@@ -55,9 +51,17 @@ class GetCodeTemplateFromVectorDB(BaseTool):
55
51
  self.vectordb = vectordb
56
52
 
57
53
  def _run(
58
- self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None
54
+ self,
55
+ **kwargs
59
56
  ) -> str:
60
57
  """Use the tool."""
58
+
59
+ if "kwargs" in kwargs:
60
+ kwargs = kwargs["kwargs"]
61
+ query = kwargs.get("query", None)
62
+ if query is None:
63
+ return "Query is required"
64
+
61
65
  if self.vectordb is None:
62
66
  raise ValueError("No vector database set.")
63
67
  model = self.vectordb
@@ -66,7 +70,7 @@ class GetCodeTemplateFromVectorDB(BaseTool):
66
70
  return result
67
71
 
68
72
  async def _arun(
69
- self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
73
+ self, **kwargs
70
74
  ) -> str:
71
75
  """Use the tool asynchronously."""
72
- raise NotImplementedError("Does not support async")
76
+ return self._run(**kwargs)
@@ -12,11 +12,6 @@ import json
12
12
  import logging
13
13
  from typing import Optional, Type, Union
14
14
  from pydantic import BaseModel, Field
15
-
16
- from langchain.callbacks.manager import (
17
- AsyncCallbackManagerForToolRun,
18
- CallbackManagerForToolRun,
19
- )
20
15
  from langchain_core.tools import BaseTool
21
16
 
22
17
  from hana_ml import ConnectionContext
@@ -29,7 +24,7 @@ logger = logging.getLogger(__name__)
29
24
 
30
25
  def _guess_fourier_order(period: int) -> int:
31
26
  # Calculate base value and round to nearest integer
32
- base_value = round(period / 36.5)
27
+ base_value = round(float(period) / 36.5)
33
28
 
34
29
  # Apply bounds: minimum 3, maximum 10
35
30
  return max(3, min(10, base_value))
@@ -163,31 +158,41 @@ class AdditiveModelForecastFitAndSave(BaseTool):
163
158
 
164
159
  def _run(
165
160
  self,
166
- fit_table: str,
167
- key: str,
168
- name: str,
169
- version: Optional[str] = None,
170
- growth: Optional[str] = None,
171
- logistic_growth_capacity: Optional[float] = None,
172
- seasonality_mode: Optional[str] = None,
173
- period: Union[Optional[int], Optional[list]] = None,
174
- num_changepoints: Optional[int] = None,
175
- changepoint_range: Optional[float] = None,
176
- regressor: Optional[list] = None,
177
- changepoints: Optional[list] = None,
178
- yearly_seasonality: Optional[str] = None,
179
- weekly_seasonality: Optional[str] = None,
180
- daily_seasonality: Optional[str] = None,
181
- seasonality_prior_scale: Optional[float] = None,
182
- holiday_prior_scale: Optional[float] = None,
183
- changepoint_prior_scale: Optional[float] = None,
184
- endog: Optional[str] = None,
185
- exog: Union[Optional[str], Optional[list]] = None,
186
- holiday_table: Optional[str] = None,
187
- categorical_variable: Union[Optional[str], Optional[list]] = None,
188
- run_manager: Optional[CallbackManagerForToolRun] = None
161
+ **kwargs
189
162
  ) -> str:
190
163
  """Use the tool."""
164
+
165
+ if "kwargs" in kwargs:
166
+ kwargs = kwargs["kwargs"]
167
+ fit_table = kwargs.get("fit_table", None)
168
+ if fit_table is None:
169
+ return "Training table is required"
170
+ key = kwargs.get("key", None)
171
+ if key is None:
172
+ return "key is required"
173
+ name = kwargs.get("name", None)
174
+ if name is None:
175
+ return "Model name is required"
176
+ version = kwargs.get("version", None)
177
+ growth = kwargs.get("growth", None)
178
+ logistic_growth_capacity = kwargs.get("logistic_growth_capacity", None)
179
+ seasonality_mode = kwargs.get("seasonality_mode", None)
180
+ period = kwargs.get("period", None)
181
+ num_changepoints = kwargs.get("num_changepoints", None)
182
+ changepoint_range = kwargs.get("changepoint_range", None)
183
+ regressor = kwargs.get("regressor", None)
184
+ changepoints = kwargs.get("changepoints", None)
185
+ yearly_seasonality = kwargs.get("yearly_seasonality", None)
186
+ weekly_seasonality = kwargs.get("weekly_seasonality", None)
187
+ daily_seasonality = kwargs.get("daily_seasonality", None)
188
+ seasonality_prior_scale = kwargs.get("seasonality_prior_scale", None)
189
+ holiday_prior_scale = kwargs.get("holiday_prior_scale", None)
190
+ changepoint_prior_scale = kwargs.get("changepoint_prior_scale", None)
191
+ endog = kwargs.get("endog", None)
192
+ exog = kwargs.get("exog", None)
193
+ holiday_table = kwargs.get("holiday_table", None)
194
+ categorical_variable = kwargs.get("categorical_variable", None)
195
+
191
196
  # check fit_table exists
192
197
  if not self.connection_context.has_table(fit_table):
193
198
  return f"Table {fit_table} does not exist in the database."
@@ -256,54 +261,9 @@ class AdditiveModelForecastFitAndSave(BaseTool):
256
261
 
257
262
  async def _arun(
258
263
  self,
259
- fit_table: str,
260
- key: str,
261
- name: str,
262
- version: Optional[str] = None,
263
- growth: Optional[str] = None,
264
- logistic_growth_capacity: Optional[float] = None,
265
- seasonality_mode: Optional[str] = None,
266
- period: Union[Optional[int], Optional[list]] = None,
267
- num_changepoints: Optional[int] = None,
268
- changepoint_range: Optional[float] = None,
269
- regressor: Optional[list] = None,
270
- changepoints: Optional[list] = None,
271
- yearly_seasonality: Optional[str] = None,
272
- weekly_seasonality: Optional[str] = None,
273
- daily_seasonality: Optional[str] = None,
274
- seasonality_prior_scale: Optional[float] = None,
275
- holiday_prior_scale: Optional[float] = None,
276
- changepoint_prior_scale: Optional[float] = None,
277
- endog: Optional[str] = None,
278
- exog: Union[Optional[str], Optional[list]] = None,
279
- holiday_table: Optional[str] = None,
280
- categorical_variable: Union[Optional[str], Optional[list]] = None,
281
- run_manager: Optional[AsyncCallbackManagerForToolRun] = None
264
+ **kwargs
282
265
  ) -> str:
283
- return self._run(
284
- fit_table=fit_table,
285
- key=key,
286
- name=name,
287
- version=version,
288
- growth=growth,
289
- logistic_growth_capacity=logistic_growth_capacity,
290
- seasonality_mode=seasonality_mode,
291
- period=period,
292
- num_changepoints=num_changepoints,
293
- changepoint_range=changepoint_range,
294
- regressor=regressor,
295
- changepoints=changepoints,
296
- yearly_seasonality=yearly_seasonality,
297
- weekly_seasonality=weekly_seasonality,
298
- daily_seasonality=daily_seasonality,
299
- seasonality_prior_scale=seasonality_prior_scale,
300
- holiday_prior_scale=holiday_prior_scale,
301
- changepoint_prior_scale=changepoint_prior_scale,
302
- endog=endog,
303
- exog=exog,
304
- holiday_table=holiday_table,
305
- categorical_variable=categorical_variable,
306
- run_manager=run_manager
266
+ return self._run(**kwargs
307
267
  )
308
268
 
309
269
  class AdditiveModelForecastLoadModelAndPredict(BaseTool):
@@ -374,21 +334,32 @@ class AdditiveModelForecastLoadModelAndPredict(BaseTool):
374
334
 
375
335
  def _run(
376
336
  self,
377
- predict_table: str,
378
- key: str,
379
- name: str,
380
- version: Optional[str] = None,
381
- exog: Union[Optional[str], Optional[list]] = None,
382
- logistic_growth_capacity: Optional[float] = None,
383
- interval_width: Optional[float] = None,
384
- uncertainty_samples: Optional[int] = None,
385
- show_explainer: Optional[bool] = None,
386
- decompose_seasonality: Optional[bool] = None,
387
- decompose_holiday: Optional[bool] = None,
388
- add_placeholder: Optional[bool] = True,
389
- run_manager: Optional[CallbackManagerForToolRun] = None
337
+ **kwargs
390
338
  ) -> str:
391
339
  """Use the tool."""
340
+
341
+ if "kwargs" in kwargs:
342
+ kwargs = kwargs["kwargs"]
343
+ predict_table = kwargs.get("predict_table", None)
344
+ if predict_table is None:
345
+ return "Prediction table is required"
346
+ key = kwargs.get("key", None)
347
+ if key is None:
348
+ return "Key is required"
349
+ name = kwargs.get("name", None)
350
+ if name is None:
351
+ return "Model name is required"
352
+ version = kwargs.get("version", None)
353
+ exog = kwargs.get("exog", None)
354
+ logistic_growth_capacity = kwargs.get("logistic_growth_capacity", None)
355
+ interval_width = kwargs.get("interval_width", None)
356
+ uncertainty_samples = kwargs.get("uncertainty_samples", None)
357
+ show_explainer = kwargs.get("show_explainer", None)
358
+ decompose_seasonality = kwargs.get("decompose_seasonality", None)
359
+ decompose_holiday = kwargs.get("decompose_holiday", None)
360
+ add_placeholder = kwargs.get("add_placeholder", True)
361
+
362
+ predict_df = self.connection_context.table(predict_table)
392
363
  if not self.connection_context.has_table(predict_table):
393
364
  return f"Table {predict_table} does not exist in the database."
394
365
  if key not in self.connection_context.table(predict_table).columns:
@@ -398,17 +369,19 @@ class AdditiveModelForecastLoadModelAndPredict(BaseTool):
398
369
  if hasattr(model, 'version'):
399
370
  if model.version is not None:
400
371
  version = model.version
372
+ if len(predict_df.columns) == 1:
373
+ predict_df = predict_df.add_constant("PLACEHOLDER", 0)
401
374
  try:
402
- model.predict(data=self.connection_context.table(predict_table),
403
- key=key,
404
- exog=exog,
405
- logistic_growth_capacity=logistic_growth_capacity,
406
- interval_width=interval_width,
407
- uncertainty_samples=uncertainty_samples,
408
- show_explainer=show_explainer,
409
- decompose_seasonality=decompose_seasonality,
410
- decompose_holiday=decompose_holiday,
411
- add_placeholder=add_placeholder)
375
+ model.predict(data=predict_df,
376
+ key=key,
377
+ exog=exog,
378
+ logistic_growth_capacity=logistic_growth_capacity,
379
+ interval_width=interval_width,
380
+ uncertainty_samples=uncertainty_samples,
381
+ show_explainer=show_explainer,
382
+ decompose_seasonality=decompose_seasonality,
383
+ decompose_holiday=decompose_holiday,
384
+ add_placeholder=add_placeholder)
412
385
  except ValueError as ve:
413
386
  # Handles invalid parameter values (e.g., alpha not in [0,1])
414
387
  return f"ValueError occurred: {str(ve)}"
@@ -434,32 +407,8 @@ class AdditiveModelForecastLoadModelAndPredict(BaseTool):
434
407
 
435
408
  async def _arun(
436
409
  self,
437
- predict_table: str,
438
- key: str,
439
- name: str,
440
- version: Optional[str] = None,
441
- exog: Union[Optional[str], Optional[list]] = None,
442
- logistic_growth_capacity: Optional[float] = None,
443
- interval_width: Optional[float] = None,
444
- uncertainty_samples: Optional[int] = None,
445
- show_explainer: Optional[bool] = None,
446
- decompose_seasonality: Optional[bool] = None,
447
- decompose_holiday: Optional[bool] = None,
448
- add_placeholder: Optional[bool] = True,
449
- run_manager: Optional[AsyncCallbackManagerForToolRun] = None
410
+ **kwargs
450
411
  ) -> str:
451
412
  return self._run(
452
- predict_table=predict_table,
453
- key=key,
454
- name=name,
455
- version=version,
456
- exog=exog,
457
- logistic_growth_capacity=logistic_growth_capacity,
458
- interval_width=interval_width,
459
- uncertainty_samples=uncertainty_samples,
460
- show_explainer=show_explainer,
461
- decompose_seasonality=decompose_seasonality,
462
- decompose_holiday=decompose_holiday,
463
- add_placeholder=add_placeholder,
464
- run_manager=run_manager
413
+ **kwargs
465
414
  )