halib 0.1.99__tar.gz → 0.2.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. {halib-0.1.99 → halib-0.2.2}/.gitignore +0 -1
  2. {halib-0.1.99 → halib-0.2.2}/PKG-INFO +7 -1
  3. {halib-0.1.99 → halib-0.2.2}/README.md +6 -0
  4. {halib-0.1.99 → halib-0.2.2}/halib/__init__.py +3 -3
  5. {halib-0.1.99/halib → halib-0.2.2/halib/common}/common.py +32 -5
  6. {halib-0.1.99 → halib-0.2.2}/halib/filetype/csvfile.py +3 -9
  7. {halib-0.1.99 → halib-0.2.2}/halib/filetype/ipynb.py +3 -5
  8. {halib-0.1.99 → halib-0.2.2}/halib/filetype/jsonfile.py +0 -3
  9. {halib-0.1.99 → halib-0.2.2}/halib/filetype/textfile.py +0 -1
  10. {halib-0.1.99 → halib-0.2.2}/halib/filetype/videofile.py +91 -2
  11. {halib-0.1.99 → halib-0.2.2}/halib/filetype/yamlfile.py +3 -3
  12. {halib-0.1.99 → halib-0.2.2}/halib/online/projectmake.py +7 -6
  13. {halib-0.1.99/halib/utils → halib-0.2.2/halib/online}/tele_noti.py +1 -2
  14. {halib-0.1.99/halib/research → halib-0.2.2/halib/research/core}/base_config.py +44 -0
  15. halib-0.2.2/halib/research/core/base_exp.py +157 -0
  16. halib-0.1.99/halib/research/params_gen.py → halib-0.2.2/halib/research/core/param_gen.py +6 -6
  17. {halib-0.1.99/halib/research → halib-0.2.2/halib/research/core}/wandb_op.py +5 -4
  18. halib-0.2.2/halib/research/data/__init__.py +0 -0
  19. {halib-0.1.99/halib/utils → halib-0.2.2/halib/research/data}/dataclass_util.py +3 -2
  20. {halib-0.1.99/halib/research → halib-0.2.2/halib/research/data}/dataset.py +2 -2
  21. {halib-0.1.99/halib/research → halib-0.2.2/halib/research/data}/torchloader.py +12 -9
  22. halib-0.2.2/halib/research/perf/__init__.py +0 -0
  23. halib-0.1.99/halib/research/flops.py → halib-0.2.2/halib/research/perf/flop_calc.py +37 -3
  24. {halib-0.1.99/halib/research → halib-0.2.2/halib/research/perf}/perfcalc.py +63 -36
  25. halib-0.1.99/halib/research/metrics.py → halib-0.2.2/halib/research/perf/perfmetrics.py +4 -0
  26. {halib-0.1.99/halib/research → halib-0.2.2/halib/research/perf}/perftb.py +4 -6
  27. {halib-0.1.99/halib/research → halib-0.2.2/halib/research/perf}/profiler.py +3 -2
  28. halib-0.2.2/halib/research/viz/__init__.py +0 -0
  29. {halib-0.1.99/halib/research → halib-0.2.2/halib/research/viz}/plot.py +3 -7
  30. halib-0.2.2/halib/system/__init__.py +0 -0
  31. halib-0.2.2/halib/system/filesys.py +164 -0
  32. halib-0.1.99/halib/research/mics.py → halib-0.2.2/halib/system/path.py +8 -3
  33. halib-0.2.2/halib/utils/__init__.py +0 -0
  34. halib-0.1.99/halib/utils/listop.py → halib-0.2.2/halib/utils/list.py +0 -1
  35. {halib-0.1.99 → halib-0.2.2}/halib.egg-info/PKG-INFO +7 -1
  36. halib-0.2.2/halib.egg-info/SOURCES.txt +53 -0
  37. {halib-0.1.99 → halib-0.2.2}/setup.py +1 -1
  38. halib-0.1.99/guide_publish_pip.pdf +0 -0
  39. halib-0.1.99/halib/cuda.py +0 -39
  40. halib-0.1.99/halib/online/gdrive_test.py +0 -50
  41. halib-0.1.99/halib/research/base_exp.py +0 -100
  42. halib-0.1.99/halib/research/flop_csv.py +0 -34
  43. halib-0.1.99/halib/system/filesys.py +0 -124
  44. halib-0.1.99/halib/utils/video.py +0 -82
  45. halib-0.1.99/halib.egg-info/SOURCES.txt +0 -53
  46. {halib-0.1.99 → halib-0.2.2}/GDriveFolder.txt +0 -0
  47. {halib-0.1.99 → halib-0.2.2}/LICENSE.txt +0 -0
  48. {halib-0.1.99 → halib-0.2.2}/MANIFEST.in +0 -0
  49. {halib-0.1.99/halib/filetype → halib-0.2.2/halib/common}/__init__.py +0 -0
  50. {halib-0.1.99/halib → halib-0.2.2/halib/common}/rich_color.py +0 -0
  51. {halib-0.1.99/halib/online → halib-0.2.2/halib/filetype}/__init__.py +0 -0
  52. {halib-0.1.99/halib/research → halib-0.2.2/halib/online}/__init__.py +0 -0
  53. {halib-0.1.99 → halib-0.2.2}/halib/online/gdrive.py +0 -0
  54. {halib-0.1.99 → halib-0.2.2}/halib/online/gdrive_mkdir.py +0 -0
  55. {halib-0.1.99/halib/system → halib-0.2.2/halib/research}/__init__.py +0 -0
  56. {halib-0.1.99/halib/utils → halib-0.2.2/halib/research/core}/__init__.py +0 -0
  57. {halib-0.1.99/halib/utils → halib-0.2.2/halib/research/perf}/gpu_mon.py +0 -0
  58. {halib-0.1.99 → halib-0.2.2}/halib/system/cmd.py +0 -0
  59. /halib-0.1.99/halib/utils/dict_op.py → /halib-0.2.2/halib/utils/dict.py +0 -0
  60. {halib-0.1.99 → halib-0.2.2}/halib.egg-info/dependency_links.txt +0 -0
  61. {halib-0.1.99 → halib-0.2.2}/halib.egg-info/requires.txt +0 -0
  62. {halib-0.1.99 → halib-0.2.2}/halib.egg-info/top_level.txt +0 -0
  63. {halib-0.1.99 → halib-0.2.2}/setup.cfg +0 -0
@@ -50,7 +50,6 @@ Thumbs.db
50
50
 
51
51
  build
52
52
  dist
53
- data
54
53
 
55
54
  venv*/
56
55
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: halib
3
- Version: 0.1.99
3
+ Version: 0.2.2
4
4
  Summary: Small library for common tasks
5
5
  Author: Hoang Van Ha
6
6
  Author-email: hoangvanhauit@gmail.com
@@ -53,6 +53,12 @@ Dynamic: summary
53
53
 
54
54
  # Helper package for coding and automation
55
55
 
56
+ **Version 0.2.2**
57
+ + reorganize packages with most changes in `research` package
58
+
59
+ **Version 0.2.01**
60
+ + `research/base_exp`: add `eval_exp` method to evaluate experiment (e.g., model evaluation on test set) after experiment running is done.
61
+
56
62
  **Version 0.1.99**
57
63
  + `filetype/ipynb`: add `gen_ipynb_name` generator to create file name based on current notebook name as prefix (with optional timestamp)
58
64
 
@@ -1,5 +1,11 @@
1
1
  # Helper package for coding and automation
2
2
 
3
+ **Version 0.2.2**
4
+ + reorganize packages with most changes in `research` package
5
+
6
+ **Version 0.2.01**
7
+ + `research/base_exp`: add `eval_exp` method to evaluate experiment (e.g., model evaluation on test set) after experiment running is done.
8
+
3
9
  **Version 0.1.99**
4
10
  + `filetype/ipynb`: add `gen_ipynb_name` generator to create file name based on current notebook name as prefix (with optional timestamp)
5
11
 
@@ -56,8 +56,7 @@ from .filetype.yamlfile import load_yaml
56
56
  from .system import cmd
57
57
  from .system import filesys as fs
58
58
  from .filetype import csvfile
59
- from .cuda import tcuda
60
- from .common import (
59
+ from .common.common import (
61
60
  console,
62
61
  console_log,
63
62
  ConsoleLog,
@@ -65,6 +64,7 @@ from .common import (
65
64
  norm_str,
66
65
  pprint_box,
67
66
  pprint_local_path,
67
+ tcuda
68
68
  )
69
69
 
70
70
  # for log
@@ -76,7 +76,7 @@ from timebudget import timebudget
76
76
  import omegaconf
77
77
  from omegaconf import OmegaConf
78
78
  from omegaconf.dictconfig import DictConfig
79
- from .rich_color import rcolor_str, rcolor_palette, rcolor_palette_all, rcolor_all_str
79
+ from .common.rich_color import rcolor_str, rcolor_palette, rcolor_palette_all, rcolor_all_str
80
80
 
81
81
  # for visualization
82
82
  import seaborn as sns
@@ -1,20 +1,20 @@
1
1
  import os
2
2
  import re
3
- import rich
4
3
  import arrow
5
- import pathlib
6
- from pathlib import Path
7
- import urllib.parse
4
+ import importlib
8
5
 
6
+ import rich
9
7
  from rich import print
10
8
  from rich.panel import Panel
11
9
  from rich.console import Console
12
10
  from rich.pretty import pprint, Pretty
13
- from pathlib import PureWindowsPath
11
+
12
+ from pathlib import Path, PureWindowsPath
14
13
 
15
14
 
16
15
  console = Console()
17
16
 
17
+
18
18
  def seed_everything(seed=42):
19
19
  import random
20
20
  import numpy as np
@@ -61,6 +61,7 @@ def pprint_box(obj, title="", border_style="green"):
61
61
  Panel(Pretty(obj, expand_all=True), title=title, border_style=border_style)
62
62
  )
63
63
 
64
+
64
65
  def console_rule(msg, do_norm_msg=True, is_end_tag=False):
65
66
  msg = norm_str(msg) if do_norm_msg else msg
66
67
  if is_end_tag:
@@ -149,3 +150,29 @@ def pprint_local_path(
149
150
  console.print(content_str)
150
151
 
151
152
  return file_uri
153
+
154
+
155
+ def tcuda():
156
+ NOT_INSTALLED = "Not Installed"
157
+ GPU_AVAILABLE = "GPU(s) Available"
158
+ ls_lib = ["torch", "tensorflow"]
159
+ lib_stats = {lib: NOT_INSTALLED for lib in ls_lib}
160
+ for lib in ls_lib:
161
+ spec = importlib.util.find_spec(lib)
162
+ if spec:
163
+ if lib == "torch":
164
+ import torch
165
+
166
+ lib_stats[lib] = str(torch.cuda.device_count()) + " " + GPU_AVAILABLE
167
+ elif lib == "tensorflow":
168
+ import tensorflow as tf
169
+
170
+ lib_stats[lib] = (
171
+ str(len(tf.config.list_physical_devices("GPU")))
172
+ + " "
173
+ + GPU_AVAILABLE
174
+ )
175
+ console.rule("<CUDA Library Stats>")
176
+ pprint(lib_stats)
177
+ console.rule("</CUDA Library Stats>")
178
+ return lib_stats
@@ -1,19 +1,13 @@
1
+ import csv
2
+ import textwrap
1
3
  import pandas as pd
4
+ import pygwalker as pyg
2
5
  from tabulate import tabulate
3
6
  from rich.console import Console
4
- from rich import print as rprint
5
- from rich import inspect
6
- from rich.pretty import pprint
7
- from tqdm import tqdm
8
- from loguru import logger
9
7
  from itables import init_notebook_mode, show
10
- import pygwalker as pyg
11
- import textwrap
12
- import csv
13
8
 
14
9
  console = Console()
15
10
 
16
-
17
11
  def read(file, separator=","):
18
12
  df = pd.read_csv(file, separator)
19
13
  return df
@@ -1,10 +1,8 @@
1
- from contextlib import contextmanager
2
- from pathlib import Path
3
-
4
1
  import ipynbname
2
+ from pathlib import Path
3
+ from contextlib import contextmanager
5
4
 
6
- from ..common import console, now_str
7
-
5
+ from ..common.common import now_str
8
6
 
9
7
  @contextmanager
10
8
  def gen_ipynb_name(
@@ -1,17 +1,14 @@
1
1
  import json
2
2
 
3
-
4
3
  def read(file):
5
4
  with open(file) as f:
6
5
  data = json.load(f)
7
6
  return data
8
7
 
9
-
10
8
  def write(data_dict, outfile):
11
9
  with open(outfile, "w") as json_file:
12
10
  json.dump(data_dict, json_file)
13
11
 
14
-
15
12
  def beautify(json_str):
16
13
  formatted_json = json_str
17
14
  try:
@@ -4,7 +4,6 @@ def read_line_by_line(file_path):
4
4
  lines = [line.rstrip() for line in lines]
5
5
  return lines
6
6
 
7
-
8
7
  def write(lines, outfile, append=False):
9
8
  mode = "a" if append else "w"
10
9
  with open(outfile, mode, encoding="utf-8") as f:
@@ -1,11 +1,100 @@
1
+ import os
1
2
  import cv2
2
- import textfile
3
3
  import enlighten
4
+
4
5
  from enum import Enum
5
- from ..system import filesys
6
6
  from tube_dl import Youtube, Playlist
7
7
  from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
8
8
 
9
+ from . import textfile
10
+ from . import csvfile
11
+ from ..system import filesys
12
+
13
+ class VideoUtils:
14
+ @staticmethod
15
+ def _default_meta_extractor(video_path):
16
+ """Default video metadata extractor function."""
17
+ # Open the video file
18
+ cap = cv2.VideoCapture(video_path)
19
+
20
+ # Check if the video was opened successfully
21
+ if not cap.isOpened():
22
+ print(f"Error: Could not open video file {video_path}")
23
+ return None
24
+
25
+ # Get the frame count
26
+ frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
27
+
28
+ # Get the FPS
29
+ fps = cap.get(cv2.CAP_PROP_FPS)
30
+
31
+ # get frame size
32
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
33
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
34
+
35
+ # Release the video capture object
36
+ cap.release()
37
+
38
+ meta_dict = {
39
+ "video_path": video_path,
40
+ "width": width,
41
+ "height": height,
42
+ "frame_count": frame_count,
43
+ "fps": fps,
44
+ }
45
+ return meta_dict
46
+
47
+ @staticmethod
48
+ def get_video_meta_dict(video_path, meta_dict_extractor_func=None):
49
+ assert os.path.exists(video_path), f"Video file {video_path} does not exist"
50
+ if meta_dict_extractor_func and callable(meta_dict_extractor_func):
51
+ assert (
52
+ meta_dict_extractor_func.__code__.co_argcount == 1
53
+ ), "meta_dict_extractor_func must take exactly one argument (video_path)"
54
+ meta_dict = meta_dict_extractor_func(video_path)
55
+ assert isinstance(
56
+ meta_dict, dict
57
+ ), "meta_dict_extractor_func must return a dictionary"
58
+ assert "video_path" in meta_dict, "meta_dict must contain 'video_path'"
59
+ else:
60
+ meta_dict = VideoUtils._default_meta_extractor(video_path=video_path)
61
+ return meta_dict
62
+
63
+ @staticmethod
64
+ def get_video_dir_meta_df(
65
+ video_dir,
66
+ video_exts=[".mp4", ".avi", ".mov", ".mkv"],
67
+ search_recursive=False,
68
+ csv_outfile=None,
69
+ ):
70
+ assert os.path.exists(video_dir), f"Video directory {video_dir} does not exist"
71
+ video_files = filesys.filter_files_by_extension(
72
+ video_dir, video_exts, recursive=search_recursive
73
+ )
74
+ assert (
75
+ len(video_files) > 0
76
+ ), f"No video files found in {video_dir} with extensions {video_exts}"
77
+ video_meta_list = []
78
+ for vfile in video_files:
79
+ meta_dict = VideoUtils.get_video_meta_dict(vfile)
80
+ if meta_dict:
81
+ video_meta_list.append(meta_dict)
82
+ dfmk = csvfile.DFCreator()
83
+ columns = list(video_meta_list[0].keys())
84
+ assert len(columns) > 0, "No video metadata found"
85
+ assert "video_path" in columns, "video_path column not found in video metadata"
86
+ # move video_path to the first column
87
+ columns.remove("video_path")
88
+ columns.insert(0, "video_path")
89
+ dfmk.create_table("video_meta", columns)
90
+ rows = [[meta[col] for col in columns] for meta in video_meta_list]
91
+ dfmk.insert_rows("video_meta", rows)
92
+ dfmk.fill_table_from_row_pool("video_meta")
93
+
94
+ if csv_outfile:
95
+ dfmk["video_meta"].to_csv(csv_outfile, index=False, sep=";")
96
+ return dfmk["video_meta"].copy()
97
+
9
98
 
10
99
  class VideoResolution(Enum):
11
100
  VR480p = "720x480"
@@ -2,15 +2,15 @@ import time
2
2
  import networkx as nx
3
3
  from rich import inspect
4
4
  from rich.pretty import pprint
5
- from omegaconf import OmegaConf
6
5
  from rich.console import Console
6
+
7
+ from omegaconf import OmegaConf
7
8
  from argparse import ArgumentParser
8
9
 
9
- from ..research.mics import *
10
+ from ..system.path import *
10
11
 
11
12
  console = Console()
12
13
 
13
-
14
14
  def _load_yaml_recursively(
15
15
  yaml_file, yaml_files=[], share_nx_graph=nx.DiGraph(), log_info=False
16
16
  ):
@@ -1,17 +1,18 @@
1
1
  # coding=utf-8
2
- import json
2
+
3
3
  import os
4
+ import json
5
+ import pycurl
4
6
  import shutil
5
- from argparse import ArgumentParser
6
- from io import BytesIO
7
+ import certifi
7
8
  import subprocess
9
+ from io import BytesIO
10
+
11
+ from argparse import ArgumentParser
8
12
 
9
- import certifi
10
- import pycurl
11
13
  from ..filetype import jsonfile
12
14
  from ..system import filesys
13
15
 
14
-
15
16
  def get_curl(url, user_and_pass, verbose=True):
16
17
  c = pycurl.Curl()
17
18
  c.setopt(pycurl.VERBOSE, verbose)
@@ -25,12 +25,11 @@ def parse_args():
25
25
  "--cfg",
26
26
  type=str,
27
27
  help="yaml file for tele",
28
- default=r"E:\Dev\halib\cfg_tele_noti.yaml",
28
+ default=r"E:\Dev\__halib\halib\online\tele_noti_cfg.yaml",
29
29
  )
30
30
 
31
31
  return parser.parse_args()
32
32
 
33
-
34
33
  def get_watcher_message_df(target_file, num_last_lines):
35
34
  file_ext = fs.get_file_name(target_file, split_file_ext=True)[1]
36
35
  supported_ext = [".txt", ".log", ".csv"]
@@ -1,6 +1,10 @@
1
1
  import os
2
2
  from rich.pretty import pprint
3
3
  from abc import ABC, abstractmethod
4
+ from typing import List, Optional, TypeVar, Generic
5
+
6
+ from abc import ABC, abstractmethod
7
+ from dataclasses import dataclass
4
8
  from dataclass_wizard import YAMLWizard
5
9
 
6
10
 
@@ -19,6 +23,46 @@ class NamedConfig(ABC):
19
23
  pass
20
24
 
21
25
 
26
+ @dataclass
27
+ class AutoNamedConfig(YAMLWizard, NamedConfig):
28
+ """
29
+ Mixin that automatically implements get_name() by returning self.name.
30
+ Classes using this MUST have a 'name' field.
31
+ """
32
+
33
+ name: Optional[str] = None
34
+
35
+ def get_name(self):
36
+ return self.name
37
+
38
+ def __post_init__(self):
39
+ # Enforce the "MUST" rule here
40
+ if self.name is None:
41
+ # We allow None during initial load, but it must be set before usage
42
+ # or handled by the loader.
43
+ pass
44
+
45
+ T = TypeVar("T", bound=AutoNamedConfig)
46
+
47
+ class BaseSelectorConfig(Generic[T]):
48
+ """
49
+ Base class to handle the logic of selecting an item from a list by name.
50
+ """
51
+
52
+ def _resolve_selection(self, items: List[T], selected_name: str, context: str) -> T:
53
+ if selected_name is None:
54
+ raise ValueError(f"No {context} selected in the configuration.")
55
+
56
+ # Create a lookup dict for O(1) access, or just iterate if list is short
57
+ for item in items:
58
+ if item.name == selected_name:
59
+ return item
60
+
61
+ raise ValueError(
62
+ f"{context.capitalize()} '{selected_name}' not found in the configuration list."
63
+ )
64
+
65
+
22
66
  class ExpBaseConfig(ABC, YAMLWizard):
23
67
  """
24
68
  Base class for configuration objects.
@@ -0,0 +1,157 @@
1
+ from abc import ABC, abstractmethod
2
+ from typing import Tuple, Any, Optional
3
+ from base_config import ExpBaseConfig
4
+ from ..perf.perfcalc import PerfCalc
5
+ from ..perf.perfmetrics import MetricsBackend
6
+
7
+ # ! SEE https://github.com/hahv/base_exp for sample usage
8
+ class BaseExperiment(PerfCalc, ABC):
9
+ """
10
+ Base class for experiments.
11
+ Orchestrates the experiment pipeline using a pluggable metrics backend.
12
+ """
13
+
14
+ def __init__(self, config: ExpBaseConfig):
15
+ self.config = config
16
+ self.metric_backend = None
17
+ # Flag to track if init_general/prepare_dataset has run
18
+ self._is_env_ready = False
19
+
20
+ # -----------------------
21
+ # PerfCalc Required Methods
22
+ # -----------------------
23
+ def get_dataset_name(self):
24
+ return self.config.get_dataset_cfg().get_name()
25
+
26
+ def get_experiment_name(self):
27
+ return self.config.get_cfg_name()
28
+
29
+ def get_metric_backend(self):
30
+ if not self.metric_backend:
31
+ self.metric_backend = self.prepare_metrics(self.config.get_metric_cfg())
32
+ return self.metric_backend
33
+
34
+ # -----------------------
35
+ # Abstract Experiment Steps
36
+ # -----------------------
37
+ @abstractmethod
38
+ def init_general(self, general_cfg):
39
+ """Setup general settings like SEED, logging, env variables."""
40
+ pass
41
+
42
+ @abstractmethod
43
+ def prepare_dataset(self, dataset_cfg):
44
+ """Load/prepare dataset."""
45
+ pass
46
+
47
+ @abstractmethod
48
+ def prepare_metrics(self, metric_cfg) -> MetricsBackend:
49
+ """
50
+ Prepare the metrics for the experiment.
51
+ This method should be implemented in subclasses.
52
+ """
53
+ pass
54
+
55
+ @abstractmethod
56
+ def before_exec_exp_once(self, *args, **kwargs):
57
+ """Optional: any setup before exec_exp. Note this is called once per run_exp."""
58
+ pass
59
+
60
+ @abstractmethod
61
+ def exec_exp(self, *args, **kwargs) -> Optional[Tuple[Any, Any]]:
62
+ """Run experiment process, e.g.: training/evaluation loop.
63
+ Return: either `None` or a tuple of (raw_metrics_data, extra_data) for calc_and_save_exp_perfs
64
+ """
65
+ pass
66
+
67
+ @abstractmethod
68
+ def exec_eval(self, *args, **kwargs) -> Optional[Tuple[Any, Any]]:
69
+ """Run evaluation process.
70
+ Return: either `None` or a tuple of (raw_metrics_data, extra_data) for calc_and_save_exp_perfs
71
+ """
72
+ pass
73
+
74
+ # -----------------------
75
+ # Internal Helpers
76
+ # -----------------------
77
+ def _validate_and_unpack(self, results):
78
+ if results is None:
79
+ return None
80
+ if not isinstance(results, (tuple, list)) or len(results) != 2:
81
+ raise ValueError("exec must return (metrics_data, extra_data)")
82
+ return results[0], results[1]
83
+
84
+ def _prepare_environment(self, force_reload: bool = False):
85
+ """
86
+ Common setup. Skips if already initialized, unless force_reload is True.
87
+ """
88
+ if self._is_env_ready and not force_reload:
89
+ # Environment is already prepared, skipping setup.
90
+ return
91
+
92
+ # 1. Run Setup
93
+ self.init_general(self.config.get_general_cfg())
94
+ self.prepare_dataset(self.config.get_dataset_cfg())
95
+
96
+ # 2. Update metric backend (refresh if needed)
97
+ self.metric_backend = self.prepare_metrics(self.config.get_metric_cfg())
98
+
99
+ # 3. Mark as ready
100
+ self._is_env_ready = True
101
+
102
+ # -----------------------
103
+ # Main Experiment Runner
104
+ # -----------------------
105
+ def run_exp(self, should_calc_metrics=True, reload_env=False, *args, **kwargs):
106
+ """
107
+ Run the whole experiment pipeline.
108
+ :param reload_env: If True, forces dataset/general init to run again.
109
+ :param should_calc_metrics: Whether to calculate and save metrics after execution.
110
+ :kwargs Params:
111
+ + 'outfile' to save csv file results,
112
+ + 'outdir' to set output directory for experiment results.
113
+ + 'return_df' to return a DataFrame of results instead of a dictionary.
114
+
115
+ Full pipeline:
116
+ 1. Init
117
+ 2. Prepare Environment (General + Dataset + Metrics)
118
+ 3. Save Config
119
+ 4. Execute
120
+ 5. Calculate & Save Metrics
121
+ """
122
+ self._prepare_environment(force_reload=reload_env)
123
+
124
+ # Any pre-exec setup (loading models, etc)
125
+ self.before_exec_exp_once(*args, **kwargs)
126
+ # Save config before running
127
+ self.config.save_to_outdir()
128
+
129
+ # Execute experiment
130
+ results = self.exec_exp(*args, **kwargs)
131
+
132
+ if should_calc_metrics and results is not None:
133
+ metrics_data, extra_data = self._validate_and_unpack(results)
134
+ # Calculate & Save metrics
135
+ perf_results = self.calc_perfs(
136
+ raw_metrics_data=metrics_data, extra_data=extra_data, *args, **kwargs
137
+ )
138
+ return perf_results
139
+ else:
140
+ return results
141
+
142
+ # -----------------------
143
+ # Main Experiment Evaluator
144
+ # -----------------------
145
+ def eval_exp(self, reload_env=False, *args, **kwargs):
146
+ """
147
+ Run evaluation only.
148
+ :param reload_env: If True, forces dataset/general init to run again.
149
+ """
150
+ self._prepare_environment(force_reload=reload_env)
151
+ results = self.exec_eval(*args, **kwargs)
152
+ if results is not None:
153
+ metrics_data, extra_data = self._validate_and_unpack(results)
154
+ return self.calc_perfs(
155
+ raw_metrics_data=metrics_data, extra_data=extra_data, *args, **kwargs
156
+ )
157
+ return None
@@ -1,12 +1,12 @@
1
- from typing import Dict, Any, List
2
- import numpy as np
3
- from ..common import *
4
- from ..filetype import yamlfile
5
- import yaml
6
1
  import os
2
+ import yaml
3
+ import numpy as np
4
+ from typing import Dict, Any, List
7
5
 
8
- class ParamGen:
6
+ from ...common.common import *
7
+ from ...filetype import yamlfile
9
8
 
9
+ class ParamGen:
10
10
  @staticmethod
11
11
  def build_from_file(params_file):
12
12
  builder = ParamGen(params_file)
@@ -1,11 +1,12 @@
1
- import glob
2
- from rich.pretty import pprint
3
1
  import os
4
- import subprocess
5
- import argparse
2
+ import glob
6
3
  import wandb
4
+ import argparse
5
+ import subprocess
6
+
7
7
  from tqdm import tqdm
8
8
  from rich.console import Console
9
+
9
10
  console = Console()
10
11
 
11
12
  def sync_runs(outdir):
File without changes
@@ -1,10 +1,11 @@
1
1
  import yaml
2
2
  from typing import Any
3
+
3
4
  from rich.pretty import pprint
4
- from ..filetype import yamlfile
5
- # from halib.filetype import yamlfile
6
5
  from dataclasses import make_dataclass
7
6
 
7
+ from ...filetype import yamlfile
8
+
8
9
  def dict_to_dataclass(name: str, data: dict):
9
10
  fields = []
10
11
  values = {}
@@ -13,8 +13,8 @@ from rich.pretty import pprint
13
13
  from torchvision.datasets import ImageFolder
14
14
  from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit
15
15
 
16
- from ..system import filesys as fs
17
- from ..common import console, seed_everything, ConsoleLog
16
+ from ...common.common import console, seed_everything, ConsoleLog
17
+ from ...system import filesys as fs
18
18
 
19
19
  def parse_args():
20
20
  parser = ArgumentParser(description="desc text")
@@ -6,19 +6,22 @@
6
6
  * @desc this module works as a utility tools for finding the best configuration for dataloader (num_workers, batch_size, pin_menory, etc.) that fits your hardware.
7
7
  """
8
8
  from argparse import ArgumentParser
9
- from ..common import *
10
- from ..filetype import csvfile
11
- from ..filetype.yamlfile import load_yaml
12
- from rich import inspect
13
- from torch.utils.data import DataLoader
14
- from torchvision import datasets, transforms
15
- from tqdm import tqdm
16
- from typing import Union
17
- import itertools as it # for cartesian product
9
+
18
10
  import os
19
11
  import time
20
12
  import traceback
21
13
 
14
+ from tqdm import tqdm
15
+ from rich import inspect
16
+ from typing import Union
17
+ import itertools as it # for cartesian product
18
+
19
+ from torch.utils.data import DataLoader
20
+ from torchvision import datasets, transforms
21
+
22
+ from ...common.common import *
23
+ from ...filetype import csvfile
24
+ from ...filetype.yamlfile import load_yaml
22
25
 
23
26
  def parse_args():
24
27
  parser = ArgumentParser(description="desc text")
File without changes