halib 0.1.99__tar.gz → 0.2.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {halib-0.1.99 → halib-0.2.2}/.gitignore +0 -1
- {halib-0.1.99 → halib-0.2.2}/PKG-INFO +7 -1
- {halib-0.1.99 → halib-0.2.2}/README.md +6 -0
- {halib-0.1.99 → halib-0.2.2}/halib/__init__.py +3 -3
- {halib-0.1.99/halib → halib-0.2.2/halib/common}/common.py +32 -5
- {halib-0.1.99 → halib-0.2.2}/halib/filetype/csvfile.py +3 -9
- {halib-0.1.99 → halib-0.2.2}/halib/filetype/ipynb.py +3 -5
- {halib-0.1.99 → halib-0.2.2}/halib/filetype/jsonfile.py +0 -3
- {halib-0.1.99 → halib-0.2.2}/halib/filetype/textfile.py +0 -1
- {halib-0.1.99 → halib-0.2.2}/halib/filetype/videofile.py +91 -2
- {halib-0.1.99 → halib-0.2.2}/halib/filetype/yamlfile.py +3 -3
- {halib-0.1.99 → halib-0.2.2}/halib/online/projectmake.py +7 -6
- {halib-0.1.99/halib/utils → halib-0.2.2/halib/online}/tele_noti.py +1 -2
- {halib-0.1.99/halib/research → halib-0.2.2/halib/research/core}/base_config.py +44 -0
- halib-0.2.2/halib/research/core/base_exp.py +157 -0
- halib-0.1.99/halib/research/params_gen.py → halib-0.2.2/halib/research/core/param_gen.py +6 -6
- {halib-0.1.99/halib/research → halib-0.2.2/halib/research/core}/wandb_op.py +5 -4
- halib-0.2.2/halib/research/data/__init__.py +0 -0
- {halib-0.1.99/halib/utils → halib-0.2.2/halib/research/data}/dataclass_util.py +3 -2
- {halib-0.1.99/halib/research → halib-0.2.2/halib/research/data}/dataset.py +2 -2
- {halib-0.1.99/halib/research → halib-0.2.2/halib/research/data}/torchloader.py +12 -9
- halib-0.2.2/halib/research/perf/__init__.py +0 -0
- halib-0.1.99/halib/research/flops.py → halib-0.2.2/halib/research/perf/flop_calc.py +37 -3
- {halib-0.1.99/halib/research → halib-0.2.2/halib/research/perf}/perfcalc.py +63 -36
- halib-0.1.99/halib/research/metrics.py → halib-0.2.2/halib/research/perf/perfmetrics.py +4 -0
- {halib-0.1.99/halib/research → halib-0.2.2/halib/research/perf}/perftb.py +4 -6
- {halib-0.1.99/halib/research → halib-0.2.2/halib/research/perf}/profiler.py +3 -2
- halib-0.2.2/halib/research/viz/__init__.py +0 -0
- {halib-0.1.99/halib/research → halib-0.2.2/halib/research/viz}/plot.py +3 -7
- halib-0.2.2/halib/system/__init__.py +0 -0
- halib-0.2.2/halib/system/filesys.py +164 -0
- halib-0.1.99/halib/research/mics.py → halib-0.2.2/halib/system/path.py +8 -3
- halib-0.2.2/halib/utils/__init__.py +0 -0
- halib-0.1.99/halib/utils/listop.py → halib-0.2.2/halib/utils/list.py +0 -1
- {halib-0.1.99 → halib-0.2.2}/halib.egg-info/PKG-INFO +7 -1
- halib-0.2.2/halib.egg-info/SOURCES.txt +53 -0
- {halib-0.1.99 → halib-0.2.2}/setup.py +1 -1
- halib-0.1.99/guide_publish_pip.pdf +0 -0
- halib-0.1.99/halib/cuda.py +0 -39
- halib-0.1.99/halib/online/gdrive_test.py +0 -50
- halib-0.1.99/halib/research/base_exp.py +0 -100
- halib-0.1.99/halib/research/flop_csv.py +0 -34
- halib-0.1.99/halib/system/filesys.py +0 -124
- halib-0.1.99/halib/utils/video.py +0 -82
- halib-0.1.99/halib.egg-info/SOURCES.txt +0 -53
- {halib-0.1.99 → halib-0.2.2}/GDriveFolder.txt +0 -0
- {halib-0.1.99 → halib-0.2.2}/LICENSE.txt +0 -0
- {halib-0.1.99 → halib-0.2.2}/MANIFEST.in +0 -0
- {halib-0.1.99/halib/filetype → halib-0.2.2/halib/common}/__init__.py +0 -0
- {halib-0.1.99/halib → halib-0.2.2/halib/common}/rich_color.py +0 -0
- {halib-0.1.99/halib/online → halib-0.2.2/halib/filetype}/__init__.py +0 -0
- {halib-0.1.99/halib/research → halib-0.2.2/halib/online}/__init__.py +0 -0
- {halib-0.1.99 → halib-0.2.2}/halib/online/gdrive.py +0 -0
- {halib-0.1.99 → halib-0.2.2}/halib/online/gdrive_mkdir.py +0 -0
- {halib-0.1.99/halib/system → halib-0.2.2/halib/research}/__init__.py +0 -0
- {halib-0.1.99/halib/utils → halib-0.2.2/halib/research/core}/__init__.py +0 -0
- {halib-0.1.99/halib/utils → halib-0.2.2/halib/research/perf}/gpu_mon.py +0 -0
- {halib-0.1.99 → halib-0.2.2}/halib/system/cmd.py +0 -0
- /halib-0.1.99/halib/utils/dict_op.py → /halib-0.2.2/halib/utils/dict.py +0 -0
- {halib-0.1.99 → halib-0.2.2}/halib.egg-info/dependency_links.txt +0 -0
- {halib-0.1.99 → halib-0.2.2}/halib.egg-info/requires.txt +0 -0
- {halib-0.1.99 → halib-0.2.2}/halib.egg-info/top_level.txt +0 -0
- {halib-0.1.99 → halib-0.2.2}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: halib
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.2.2
|
|
4
4
|
Summary: Small library for common tasks
|
|
5
5
|
Author: Hoang Van Ha
|
|
6
6
|
Author-email: hoangvanhauit@gmail.com
|
|
@@ -53,6 +53,12 @@ Dynamic: summary
|
|
|
53
53
|
|
|
54
54
|
# Helper package for coding and automation
|
|
55
55
|
|
|
56
|
+
**Version 0.2.2**
|
|
57
|
+
+ reorganize packages with most changes in `research` package
|
|
58
|
+
|
|
59
|
+
**Version 0.2.01**
|
|
60
|
+
+ `research/base_exp`: add `eval_exp` method to evaluate experiment (e.g., model evaluation on test set) after experiment running is done.
|
|
61
|
+
|
|
56
62
|
**Version 0.1.99**
|
|
57
63
|
+ `filetype/ipynb`: add `gen_ipynb_name` generator to create file name based on current notebook name as prefix (with optional timestamp)
|
|
58
64
|
|
|
@@ -1,5 +1,11 @@
|
|
|
1
1
|
# Helper package for coding and automation
|
|
2
2
|
|
|
3
|
+
**Version 0.2.2**
|
|
4
|
+
+ reorganize packages with most changes in `research` package
|
|
5
|
+
|
|
6
|
+
**Version 0.2.01**
|
|
7
|
+
+ `research/base_exp`: add `eval_exp` method to evaluate experiment (e.g., model evaluation on test set) after experiment running is done.
|
|
8
|
+
|
|
3
9
|
**Version 0.1.99**
|
|
4
10
|
+ `filetype/ipynb`: add `gen_ipynb_name` generator to create file name based on current notebook name as prefix (with optional timestamp)
|
|
5
11
|
|
|
@@ -56,8 +56,7 @@ from .filetype.yamlfile import load_yaml
|
|
|
56
56
|
from .system import cmd
|
|
57
57
|
from .system import filesys as fs
|
|
58
58
|
from .filetype import csvfile
|
|
59
|
-
from .
|
|
60
|
-
from .common import (
|
|
59
|
+
from .common.common import (
|
|
61
60
|
console,
|
|
62
61
|
console_log,
|
|
63
62
|
ConsoleLog,
|
|
@@ -65,6 +64,7 @@ from .common import (
|
|
|
65
64
|
norm_str,
|
|
66
65
|
pprint_box,
|
|
67
66
|
pprint_local_path,
|
|
67
|
+
tcuda
|
|
68
68
|
)
|
|
69
69
|
|
|
70
70
|
# for log
|
|
@@ -76,7 +76,7 @@ from timebudget import timebudget
|
|
|
76
76
|
import omegaconf
|
|
77
77
|
from omegaconf import OmegaConf
|
|
78
78
|
from omegaconf.dictconfig import DictConfig
|
|
79
|
-
from .rich_color import rcolor_str, rcolor_palette, rcolor_palette_all, rcolor_all_str
|
|
79
|
+
from .common.rich_color import rcolor_str, rcolor_palette, rcolor_palette_all, rcolor_all_str
|
|
80
80
|
|
|
81
81
|
# for visualization
|
|
82
82
|
import seaborn as sns
|
|
@@ -1,20 +1,20 @@
|
|
|
1
1
|
import os
|
|
2
2
|
import re
|
|
3
|
-
import rich
|
|
4
3
|
import arrow
|
|
5
|
-
import
|
|
6
|
-
from pathlib import Path
|
|
7
|
-
import urllib.parse
|
|
4
|
+
import importlib
|
|
8
5
|
|
|
6
|
+
import rich
|
|
9
7
|
from rich import print
|
|
10
8
|
from rich.panel import Panel
|
|
11
9
|
from rich.console import Console
|
|
12
10
|
from rich.pretty import pprint, Pretty
|
|
13
|
-
|
|
11
|
+
|
|
12
|
+
from pathlib import Path, PureWindowsPath
|
|
14
13
|
|
|
15
14
|
|
|
16
15
|
console = Console()
|
|
17
16
|
|
|
17
|
+
|
|
18
18
|
def seed_everything(seed=42):
|
|
19
19
|
import random
|
|
20
20
|
import numpy as np
|
|
@@ -61,6 +61,7 @@ def pprint_box(obj, title="", border_style="green"):
|
|
|
61
61
|
Panel(Pretty(obj, expand_all=True), title=title, border_style=border_style)
|
|
62
62
|
)
|
|
63
63
|
|
|
64
|
+
|
|
64
65
|
def console_rule(msg, do_norm_msg=True, is_end_tag=False):
|
|
65
66
|
msg = norm_str(msg) if do_norm_msg else msg
|
|
66
67
|
if is_end_tag:
|
|
@@ -149,3 +150,29 @@ def pprint_local_path(
|
|
|
149
150
|
console.print(content_str)
|
|
150
151
|
|
|
151
152
|
return file_uri
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def tcuda():
|
|
156
|
+
NOT_INSTALLED = "Not Installed"
|
|
157
|
+
GPU_AVAILABLE = "GPU(s) Available"
|
|
158
|
+
ls_lib = ["torch", "tensorflow"]
|
|
159
|
+
lib_stats = {lib: NOT_INSTALLED for lib in ls_lib}
|
|
160
|
+
for lib in ls_lib:
|
|
161
|
+
spec = importlib.util.find_spec(lib)
|
|
162
|
+
if spec:
|
|
163
|
+
if lib == "torch":
|
|
164
|
+
import torch
|
|
165
|
+
|
|
166
|
+
lib_stats[lib] = str(torch.cuda.device_count()) + " " + GPU_AVAILABLE
|
|
167
|
+
elif lib == "tensorflow":
|
|
168
|
+
import tensorflow as tf
|
|
169
|
+
|
|
170
|
+
lib_stats[lib] = (
|
|
171
|
+
str(len(tf.config.list_physical_devices("GPU")))
|
|
172
|
+
+ " "
|
|
173
|
+
+ GPU_AVAILABLE
|
|
174
|
+
)
|
|
175
|
+
console.rule("<CUDA Library Stats>")
|
|
176
|
+
pprint(lib_stats)
|
|
177
|
+
console.rule("</CUDA Library Stats>")
|
|
178
|
+
return lib_stats
|
|
@@ -1,19 +1,13 @@
|
|
|
1
|
+
import csv
|
|
2
|
+
import textwrap
|
|
1
3
|
import pandas as pd
|
|
4
|
+
import pygwalker as pyg
|
|
2
5
|
from tabulate import tabulate
|
|
3
6
|
from rich.console import Console
|
|
4
|
-
from rich import print as rprint
|
|
5
|
-
from rich import inspect
|
|
6
|
-
from rich.pretty import pprint
|
|
7
|
-
from tqdm import tqdm
|
|
8
|
-
from loguru import logger
|
|
9
7
|
from itables import init_notebook_mode, show
|
|
10
|
-
import pygwalker as pyg
|
|
11
|
-
import textwrap
|
|
12
|
-
import csv
|
|
13
8
|
|
|
14
9
|
console = Console()
|
|
15
10
|
|
|
16
|
-
|
|
17
11
|
def read(file, separator=","):
|
|
18
12
|
df = pd.read_csv(file, separator)
|
|
19
13
|
return df
|
|
@@ -1,10 +1,8 @@
|
|
|
1
|
-
from contextlib import contextmanager
|
|
2
|
-
from pathlib import Path
|
|
3
|
-
|
|
4
1
|
import ipynbname
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
from contextlib import contextmanager
|
|
5
4
|
|
|
6
|
-
from ..common import
|
|
7
|
-
|
|
5
|
+
from ..common.common import now_str
|
|
8
6
|
|
|
9
7
|
@contextmanager
|
|
10
8
|
def gen_ipynb_name(
|
|
@@ -1,17 +1,14 @@
|
|
|
1
1
|
import json
|
|
2
2
|
|
|
3
|
-
|
|
4
3
|
def read(file):
|
|
5
4
|
with open(file) as f:
|
|
6
5
|
data = json.load(f)
|
|
7
6
|
return data
|
|
8
7
|
|
|
9
|
-
|
|
10
8
|
def write(data_dict, outfile):
|
|
11
9
|
with open(outfile, "w") as json_file:
|
|
12
10
|
json.dump(data_dict, json_file)
|
|
13
11
|
|
|
14
|
-
|
|
15
12
|
def beautify(json_str):
|
|
16
13
|
formatted_json = json_str
|
|
17
14
|
try:
|
|
@@ -1,11 +1,100 @@
|
|
|
1
|
+
import os
|
|
1
2
|
import cv2
|
|
2
|
-
import textfile
|
|
3
3
|
import enlighten
|
|
4
|
+
|
|
4
5
|
from enum import Enum
|
|
5
|
-
from ..system import filesys
|
|
6
6
|
from tube_dl import Youtube, Playlist
|
|
7
7
|
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
|
|
8
8
|
|
|
9
|
+
from . import textfile
|
|
10
|
+
from . import csvfile
|
|
11
|
+
from ..system import filesys
|
|
12
|
+
|
|
13
|
+
class VideoUtils:
|
|
14
|
+
@staticmethod
|
|
15
|
+
def _default_meta_extractor(video_path):
|
|
16
|
+
"""Default video metadata extractor function."""
|
|
17
|
+
# Open the video file
|
|
18
|
+
cap = cv2.VideoCapture(video_path)
|
|
19
|
+
|
|
20
|
+
# Check if the video was opened successfully
|
|
21
|
+
if not cap.isOpened():
|
|
22
|
+
print(f"Error: Could not open video file {video_path}")
|
|
23
|
+
return None
|
|
24
|
+
|
|
25
|
+
# Get the frame count
|
|
26
|
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
27
|
+
|
|
28
|
+
# Get the FPS
|
|
29
|
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
30
|
+
|
|
31
|
+
# get frame size
|
|
32
|
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
33
|
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
34
|
+
|
|
35
|
+
# Release the video capture object
|
|
36
|
+
cap.release()
|
|
37
|
+
|
|
38
|
+
meta_dict = {
|
|
39
|
+
"video_path": video_path,
|
|
40
|
+
"width": width,
|
|
41
|
+
"height": height,
|
|
42
|
+
"frame_count": frame_count,
|
|
43
|
+
"fps": fps,
|
|
44
|
+
}
|
|
45
|
+
return meta_dict
|
|
46
|
+
|
|
47
|
+
@staticmethod
|
|
48
|
+
def get_video_meta_dict(video_path, meta_dict_extractor_func=None):
|
|
49
|
+
assert os.path.exists(video_path), f"Video file {video_path} does not exist"
|
|
50
|
+
if meta_dict_extractor_func and callable(meta_dict_extractor_func):
|
|
51
|
+
assert (
|
|
52
|
+
meta_dict_extractor_func.__code__.co_argcount == 1
|
|
53
|
+
), "meta_dict_extractor_func must take exactly one argument (video_path)"
|
|
54
|
+
meta_dict = meta_dict_extractor_func(video_path)
|
|
55
|
+
assert isinstance(
|
|
56
|
+
meta_dict, dict
|
|
57
|
+
), "meta_dict_extractor_func must return a dictionary"
|
|
58
|
+
assert "video_path" in meta_dict, "meta_dict must contain 'video_path'"
|
|
59
|
+
else:
|
|
60
|
+
meta_dict = VideoUtils._default_meta_extractor(video_path=video_path)
|
|
61
|
+
return meta_dict
|
|
62
|
+
|
|
63
|
+
@staticmethod
|
|
64
|
+
def get_video_dir_meta_df(
|
|
65
|
+
video_dir,
|
|
66
|
+
video_exts=[".mp4", ".avi", ".mov", ".mkv"],
|
|
67
|
+
search_recursive=False,
|
|
68
|
+
csv_outfile=None,
|
|
69
|
+
):
|
|
70
|
+
assert os.path.exists(video_dir), f"Video directory {video_dir} does not exist"
|
|
71
|
+
video_files = filesys.filter_files_by_extension(
|
|
72
|
+
video_dir, video_exts, recursive=search_recursive
|
|
73
|
+
)
|
|
74
|
+
assert (
|
|
75
|
+
len(video_files) > 0
|
|
76
|
+
), f"No video files found in {video_dir} with extensions {video_exts}"
|
|
77
|
+
video_meta_list = []
|
|
78
|
+
for vfile in video_files:
|
|
79
|
+
meta_dict = VideoUtils.get_video_meta_dict(vfile)
|
|
80
|
+
if meta_dict:
|
|
81
|
+
video_meta_list.append(meta_dict)
|
|
82
|
+
dfmk = csvfile.DFCreator()
|
|
83
|
+
columns = list(video_meta_list[0].keys())
|
|
84
|
+
assert len(columns) > 0, "No video metadata found"
|
|
85
|
+
assert "video_path" in columns, "video_path column not found in video metadata"
|
|
86
|
+
# move video_path to the first column
|
|
87
|
+
columns.remove("video_path")
|
|
88
|
+
columns.insert(0, "video_path")
|
|
89
|
+
dfmk.create_table("video_meta", columns)
|
|
90
|
+
rows = [[meta[col] for col in columns] for meta in video_meta_list]
|
|
91
|
+
dfmk.insert_rows("video_meta", rows)
|
|
92
|
+
dfmk.fill_table_from_row_pool("video_meta")
|
|
93
|
+
|
|
94
|
+
if csv_outfile:
|
|
95
|
+
dfmk["video_meta"].to_csv(csv_outfile, index=False, sep=";")
|
|
96
|
+
return dfmk["video_meta"].copy()
|
|
97
|
+
|
|
9
98
|
|
|
10
99
|
class VideoResolution(Enum):
|
|
11
100
|
VR480p = "720x480"
|
|
@@ -2,15 +2,15 @@ import time
|
|
|
2
2
|
import networkx as nx
|
|
3
3
|
from rich import inspect
|
|
4
4
|
from rich.pretty import pprint
|
|
5
|
-
from omegaconf import OmegaConf
|
|
6
5
|
from rich.console import Console
|
|
6
|
+
|
|
7
|
+
from omegaconf import OmegaConf
|
|
7
8
|
from argparse import ArgumentParser
|
|
8
9
|
|
|
9
|
-
from ..
|
|
10
|
+
from ..system.path import *
|
|
10
11
|
|
|
11
12
|
console = Console()
|
|
12
13
|
|
|
13
|
-
|
|
14
14
|
def _load_yaml_recursively(
|
|
15
15
|
yaml_file, yaml_files=[], share_nx_graph=nx.DiGraph(), log_info=False
|
|
16
16
|
):
|
|
@@ -1,17 +1,18 @@
|
|
|
1
1
|
# coding=utf-8
|
|
2
|
-
|
|
2
|
+
|
|
3
3
|
import os
|
|
4
|
+
import json
|
|
5
|
+
import pycurl
|
|
4
6
|
import shutil
|
|
5
|
-
|
|
6
|
-
from io import BytesIO
|
|
7
|
+
import certifi
|
|
7
8
|
import subprocess
|
|
9
|
+
from io import BytesIO
|
|
10
|
+
|
|
11
|
+
from argparse import ArgumentParser
|
|
8
12
|
|
|
9
|
-
import certifi
|
|
10
|
-
import pycurl
|
|
11
13
|
from ..filetype import jsonfile
|
|
12
14
|
from ..system import filesys
|
|
13
15
|
|
|
14
|
-
|
|
15
16
|
def get_curl(url, user_and_pass, verbose=True):
|
|
16
17
|
c = pycurl.Curl()
|
|
17
18
|
c.setopt(pycurl.VERBOSE, verbose)
|
|
@@ -25,12 +25,11 @@ def parse_args():
|
|
|
25
25
|
"--cfg",
|
|
26
26
|
type=str,
|
|
27
27
|
help="yaml file for tele",
|
|
28
|
-
default=r"E:\Dev\halib\
|
|
28
|
+
default=r"E:\Dev\__halib\halib\online\tele_noti_cfg.yaml",
|
|
29
29
|
)
|
|
30
30
|
|
|
31
31
|
return parser.parse_args()
|
|
32
32
|
|
|
33
|
-
|
|
34
33
|
def get_watcher_message_df(target_file, num_last_lines):
|
|
35
34
|
file_ext = fs.get_file_name(target_file, split_file_ext=True)[1]
|
|
36
35
|
supported_ext = [".txt", ".log", ".csv"]
|
|
@@ -1,6 +1,10 @@
|
|
|
1
1
|
import os
|
|
2
2
|
from rich.pretty import pprint
|
|
3
3
|
from abc import ABC, abstractmethod
|
|
4
|
+
from typing import List, Optional, TypeVar, Generic
|
|
5
|
+
|
|
6
|
+
from abc import ABC, abstractmethod
|
|
7
|
+
from dataclasses import dataclass
|
|
4
8
|
from dataclass_wizard import YAMLWizard
|
|
5
9
|
|
|
6
10
|
|
|
@@ -19,6 +23,46 @@ class NamedConfig(ABC):
|
|
|
19
23
|
pass
|
|
20
24
|
|
|
21
25
|
|
|
26
|
+
@dataclass
|
|
27
|
+
class AutoNamedConfig(YAMLWizard, NamedConfig):
|
|
28
|
+
"""
|
|
29
|
+
Mixin that automatically implements get_name() by returning self.name.
|
|
30
|
+
Classes using this MUST have a 'name' field.
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
name: Optional[str] = None
|
|
34
|
+
|
|
35
|
+
def get_name(self):
|
|
36
|
+
return self.name
|
|
37
|
+
|
|
38
|
+
def __post_init__(self):
|
|
39
|
+
# Enforce the "MUST" rule here
|
|
40
|
+
if self.name is None:
|
|
41
|
+
# We allow None during initial load, but it must be set before usage
|
|
42
|
+
# or handled by the loader.
|
|
43
|
+
pass
|
|
44
|
+
|
|
45
|
+
T = TypeVar("T", bound=AutoNamedConfig)
|
|
46
|
+
|
|
47
|
+
class BaseSelectorConfig(Generic[T]):
|
|
48
|
+
"""
|
|
49
|
+
Base class to handle the logic of selecting an item from a list by name.
|
|
50
|
+
"""
|
|
51
|
+
|
|
52
|
+
def _resolve_selection(self, items: List[T], selected_name: str, context: str) -> T:
|
|
53
|
+
if selected_name is None:
|
|
54
|
+
raise ValueError(f"No {context} selected in the configuration.")
|
|
55
|
+
|
|
56
|
+
# Create a lookup dict for O(1) access, or just iterate if list is short
|
|
57
|
+
for item in items:
|
|
58
|
+
if item.name == selected_name:
|
|
59
|
+
return item
|
|
60
|
+
|
|
61
|
+
raise ValueError(
|
|
62
|
+
f"{context.capitalize()} '{selected_name}' not found in the configuration list."
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
|
|
22
66
|
class ExpBaseConfig(ABC, YAMLWizard):
|
|
23
67
|
"""
|
|
24
68
|
Base class for configuration objects.
|
|
@@ -0,0 +1,157 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from typing import Tuple, Any, Optional
|
|
3
|
+
from base_config import ExpBaseConfig
|
|
4
|
+
from ..perf.perfcalc import PerfCalc
|
|
5
|
+
from ..perf.perfmetrics import MetricsBackend
|
|
6
|
+
|
|
7
|
+
# ! SEE https://github.com/hahv/base_exp for sample usage
|
|
8
|
+
class BaseExperiment(PerfCalc, ABC):
|
|
9
|
+
"""
|
|
10
|
+
Base class for experiments.
|
|
11
|
+
Orchestrates the experiment pipeline using a pluggable metrics backend.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
def __init__(self, config: ExpBaseConfig):
|
|
15
|
+
self.config = config
|
|
16
|
+
self.metric_backend = None
|
|
17
|
+
# Flag to track if init_general/prepare_dataset has run
|
|
18
|
+
self._is_env_ready = False
|
|
19
|
+
|
|
20
|
+
# -----------------------
|
|
21
|
+
# PerfCalc Required Methods
|
|
22
|
+
# -----------------------
|
|
23
|
+
def get_dataset_name(self):
|
|
24
|
+
return self.config.get_dataset_cfg().get_name()
|
|
25
|
+
|
|
26
|
+
def get_experiment_name(self):
|
|
27
|
+
return self.config.get_cfg_name()
|
|
28
|
+
|
|
29
|
+
def get_metric_backend(self):
|
|
30
|
+
if not self.metric_backend:
|
|
31
|
+
self.metric_backend = self.prepare_metrics(self.config.get_metric_cfg())
|
|
32
|
+
return self.metric_backend
|
|
33
|
+
|
|
34
|
+
# -----------------------
|
|
35
|
+
# Abstract Experiment Steps
|
|
36
|
+
# -----------------------
|
|
37
|
+
@abstractmethod
|
|
38
|
+
def init_general(self, general_cfg):
|
|
39
|
+
"""Setup general settings like SEED, logging, env variables."""
|
|
40
|
+
pass
|
|
41
|
+
|
|
42
|
+
@abstractmethod
|
|
43
|
+
def prepare_dataset(self, dataset_cfg):
|
|
44
|
+
"""Load/prepare dataset."""
|
|
45
|
+
pass
|
|
46
|
+
|
|
47
|
+
@abstractmethod
|
|
48
|
+
def prepare_metrics(self, metric_cfg) -> MetricsBackend:
|
|
49
|
+
"""
|
|
50
|
+
Prepare the metrics for the experiment.
|
|
51
|
+
This method should be implemented in subclasses.
|
|
52
|
+
"""
|
|
53
|
+
pass
|
|
54
|
+
|
|
55
|
+
@abstractmethod
|
|
56
|
+
def before_exec_exp_once(self, *args, **kwargs):
|
|
57
|
+
"""Optional: any setup before exec_exp. Note this is called once per run_exp."""
|
|
58
|
+
pass
|
|
59
|
+
|
|
60
|
+
@abstractmethod
|
|
61
|
+
def exec_exp(self, *args, **kwargs) -> Optional[Tuple[Any, Any]]:
|
|
62
|
+
"""Run experiment process, e.g.: training/evaluation loop.
|
|
63
|
+
Return: either `None` or a tuple of (raw_metrics_data, extra_data) for calc_and_save_exp_perfs
|
|
64
|
+
"""
|
|
65
|
+
pass
|
|
66
|
+
|
|
67
|
+
@abstractmethod
|
|
68
|
+
def exec_eval(self, *args, **kwargs) -> Optional[Tuple[Any, Any]]:
|
|
69
|
+
"""Run evaluation process.
|
|
70
|
+
Return: either `None` or a tuple of (raw_metrics_data, extra_data) for calc_and_save_exp_perfs
|
|
71
|
+
"""
|
|
72
|
+
pass
|
|
73
|
+
|
|
74
|
+
# -----------------------
|
|
75
|
+
# Internal Helpers
|
|
76
|
+
# -----------------------
|
|
77
|
+
def _validate_and_unpack(self, results):
|
|
78
|
+
if results is None:
|
|
79
|
+
return None
|
|
80
|
+
if not isinstance(results, (tuple, list)) or len(results) != 2:
|
|
81
|
+
raise ValueError("exec must return (metrics_data, extra_data)")
|
|
82
|
+
return results[0], results[1]
|
|
83
|
+
|
|
84
|
+
def _prepare_environment(self, force_reload: bool = False):
|
|
85
|
+
"""
|
|
86
|
+
Common setup. Skips if already initialized, unless force_reload is True.
|
|
87
|
+
"""
|
|
88
|
+
if self._is_env_ready and not force_reload:
|
|
89
|
+
# Environment is already prepared, skipping setup.
|
|
90
|
+
return
|
|
91
|
+
|
|
92
|
+
# 1. Run Setup
|
|
93
|
+
self.init_general(self.config.get_general_cfg())
|
|
94
|
+
self.prepare_dataset(self.config.get_dataset_cfg())
|
|
95
|
+
|
|
96
|
+
# 2. Update metric backend (refresh if needed)
|
|
97
|
+
self.metric_backend = self.prepare_metrics(self.config.get_metric_cfg())
|
|
98
|
+
|
|
99
|
+
# 3. Mark as ready
|
|
100
|
+
self._is_env_ready = True
|
|
101
|
+
|
|
102
|
+
# -----------------------
|
|
103
|
+
# Main Experiment Runner
|
|
104
|
+
# -----------------------
|
|
105
|
+
def run_exp(self, should_calc_metrics=True, reload_env=False, *args, **kwargs):
|
|
106
|
+
"""
|
|
107
|
+
Run the whole experiment pipeline.
|
|
108
|
+
:param reload_env: If True, forces dataset/general init to run again.
|
|
109
|
+
:param should_calc_metrics: Whether to calculate and save metrics after execution.
|
|
110
|
+
:kwargs Params:
|
|
111
|
+
+ 'outfile' to save csv file results,
|
|
112
|
+
+ 'outdir' to set output directory for experiment results.
|
|
113
|
+
+ 'return_df' to return a DataFrame of results instead of a dictionary.
|
|
114
|
+
|
|
115
|
+
Full pipeline:
|
|
116
|
+
1. Init
|
|
117
|
+
2. Prepare Environment (General + Dataset + Metrics)
|
|
118
|
+
3. Save Config
|
|
119
|
+
4. Execute
|
|
120
|
+
5. Calculate & Save Metrics
|
|
121
|
+
"""
|
|
122
|
+
self._prepare_environment(force_reload=reload_env)
|
|
123
|
+
|
|
124
|
+
# Any pre-exec setup (loading models, etc)
|
|
125
|
+
self.before_exec_exp_once(*args, **kwargs)
|
|
126
|
+
# Save config before running
|
|
127
|
+
self.config.save_to_outdir()
|
|
128
|
+
|
|
129
|
+
# Execute experiment
|
|
130
|
+
results = self.exec_exp(*args, **kwargs)
|
|
131
|
+
|
|
132
|
+
if should_calc_metrics and results is not None:
|
|
133
|
+
metrics_data, extra_data = self._validate_and_unpack(results)
|
|
134
|
+
# Calculate & Save metrics
|
|
135
|
+
perf_results = self.calc_perfs(
|
|
136
|
+
raw_metrics_data=metrics_data, extra_data=extra_data, *args, **kwargs
|
|
137
|
+
)
|
|
138
|
+
return perf_results
|
|
139
|
+
else:
|
|
140
|
+
return results
|
|
141
|
+
|
|
142
|
+
# -----------------------
|
|
143
|
+
# Main Experiment Evaluator
|
|
144
|
+
# -----------------------
|
|
145
|
+
def eval_exp(self, reload_env=False, *args, **kwargs):
|
|
146
|
+
"""
|
|
147
|
+
Run evaluation only.
|
|
148
|
+
:param reload_env: If True, forces dataset/general init to run again.
|
|
149
|
+
"""
|
|
150
|
+
self._prepare_environment(force_reload=reload_env)
|
|
151
|
+
results = self.exec_eval(*args, **kwargs)
|
|
152
|
+
if results is not None:
|
|
153
|
+
metrics_data, extra_data = self._validate_and_unpack(results)
|
|
154
|
+
return self.calc_perfs(
|
|
155
|
+
raw_metrics_data=metrics_data, extra_data=extra_data, *args, **kwargs
|
|
156
|
+
)
|
|
157
|
+
return None
|
|
@@ -1,12 +1,12 @@
|
|
|
1
|
-
from typing import Dict, Any, List
|
|
2
|
-
import numpy as np
|
|
3
|
-
from ..common import *
|
|
4
|
-
from ..filetype import yamlfile
|
|
5
|
-
import yaml
|
|
6
1
|
import os
|
|
2
|
+
import yaml
|
|
3
|
+
import numpy as np
|
|
4
|
+
from typing import Dict, Any, List
|
|
7
5
|
|
|
8
|
-
|
|
6
|
+
from ...common.common import *
|
|
7
|
+
from ...filetype import yamlfile
|
|
9
8
|
|
|
9
|
+
class ParamGen:
|
|
10
10
|
@staticmethod
|
|
11
11
|
def build_from_file(params_file):
|
|
12
12
|
builder = ParamGen(params_file)
|
|
@@ -1,11 +1,12 @@
|
|
|
1
|
-
import glob
|
|
2
|
-
from rich.pretty import pprint
|
|
3
1
|
import os
|
|
4
|
-
import
|
|
5
|
-
import argparse
|
|
2
|
+
import glob
|
|
6
3
|
import wandb
|
|
4
|
+
import argparse
|
|
5
|
+
import subprocess
|
|
6
|
+
|
|
7
7
|
from tqdm import tqdm
|
|
8
8
|
from rich.console import Console
|
|
9
|
+
|
|
9
10
|
console = Console()
|
|
10
11
|
|
|
11
12
|
def sync_runs(outdir):
|
|
File without changes
|
|
@@ -1,10 +1,11 @@
|
|
|
1
1
|
import yaml
|
|
2
2
|
from typing import Any
|
|
3
|
+
|
|
3
4
|
from rich.pretty import pprint
|
|
4
|
-
from ..filetype import yamlfile
|
|
5
|
-
# from halib.filetype import yamlfile
|
|
6
5
|
from dataclasses import make_dataclass
|
|
7
6
|
|
|
7
|
+
from ...filetype import yamlfile
|
|
8
|
+
|
|
8
9
|
def dict_to_dataclass(name: str, data: dict):
|
|
9
10
|
fields = []
|
|
10
11
|
values = {}
|
|
@@ -13,8 +13,8 @@ from rich.pretty import pprint
|
|
|
13
13
|
from torchvision.datasets import ImageFolder
|
|
14
14
|
from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit
|
|
15
15
|
|
|
16
|
-
from
|
|
17
|
-
from
|
|
16
|
+
from ...common.common import console, seed_everything, ConsoleLog
|
|
17
|
+
from ...system import filesys as fs
|
|
18
18
|
|
|
19
19
|
def parse_args():
|
|
20
20
|
parser = ArgumentParser(description="desc text")
|
|
@@ -6,19 +6,22 @@
|
|
|
6
6
|
* @desc this module works as a utility tools for finding the best configuration for dataloader (num_workers, batch_size, pin_menory, etc.) that fits your hardware.
|
|
7
7
|
"""
|
|
8
8
|
from argparse import ArgumentParser
|
|
9
|
-
|
|
10
|
-
from ..filetype import csvfile
|
|
11
|
-
from ..filetype.yamlfile import load_yaml
|
|
12
|
-
from rich import inspect
|
|
13
|
-
from torch.utils.data import DataLoader
|
|
14
|
-
from torchvision import datasets, transforms
|
|
15
|
-
from tqdm import tqdm
|
|
16
|
-
from typing import Union
|
|
17
|
-
import itertools as it # for cartesian product
|
|
9
|
+
|
|
18
10
|
import os
|
|
19
11
|
import time
|
|
20
12
|
import traceback
|
|
21
13
|
|
|
14
|
+
from tqdm import tqdm
|
|
15
|
+
from rich import inspect
|
|
16
|
+
from typing import Union
|
|
17
|
+
import itertools as it # for cartesian product
|
|
18
|
+
|
|
19
|
+
from torch.utils.data import DataLoader
|
|
20
|
+
from torchvision import datasets, transforms
|
|
21
|
+
|
|
22
|
+
from ...common.common import *
|
|
23
|
+
from ...filetype import csvfile
|
|
24
|
+
from ...filetype.yamlfile import load_yaml
|
|
22
25
|
|
|
23
26
|
def parse_args():
|
|
24
27
|
parser = ArgumentParser(description="desc text")
|
|
File without changes
|