haiku.rag 0.9.1__tar.gz → 0.9.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of haiku.rag might be problematic. Click here for more details.

Files changed (98) hide show
  1. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/PKG-INFO +1 -1
  2. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/docs/agents.md +4 -2
  3. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/pyproject.toml +2 -1
  4. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/app.py +2 -8
  5. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/client.py +3 -5
  6. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/qa/agent.py +3 -0
  7. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/research/__init__.py +2 -0
  8. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/research/base.py +11 -3
  9. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/research/dependencies.py +24 -0
  10. haiku_rag-0.9.3/src/haiku/rag/research/evaluation_agent.py +85 -0
  11. haiku_rag-0.9.3/src/haiku/rag/research/orchestrator.py +170 -0
  12. haiku_rag-0.9.3/src/haiku/rag/research/presearch_agent.py +39 -0
  13. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/research/prompts.py +13 -0
  14. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/research/search_agent.py +10 -5
  15. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/research/synthesis_agent.py +30 -9
  16. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/store/engine.py +42 -17
  17. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/store/models/chunk.py +1 -0
  18. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/store/repositories/chunk.py +60 -39
  19. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/store/repositories/document.py +2 -2
  20. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/store/repositories/settings.py +12 -5
  21. haiku_rag-0.9.3/src/haiku/rag/store/upgrades/__init__.py +60 -0
  22. haiku_rag-0.9.3/src/haiku/rag/store/upgrades/v0_9_3.py +112 -0
  23. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/generate_benchmark_db.py +1 -1
  24. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/research/test_evaluation_agent.py +6 -3
  25. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/research/test_orchestrator.py +22 -12
  26. haiku_rag-0.9.3/tests/research/test_search_agent.py +14 -0
  27. haiku_rag-0.9.3/tests/research/test_synthesis_agent.py +14 -0
  28. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_app.py +1 -1
  29. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_chunk.py +4 -6
  30. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_client.py +64 -57
  31. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_document.py +2 -3
  32. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/uv.lock +1 -1
  33. haiku_rag-0.9.1/src/haiku/rag/research/evaluation_agent.py +0 -40
  34. haiku_rag-0.9.1/src/haiku/rag/research/orchestrator.py +0 -265
  35. haiku_rag-0.9.1/src/haiku/rag/store/upgrades/__init__.py +0 -1
  36. haiku_rag-0.9.1/tests/research/test_search_agent.py +0 -11
  37. haiku_rag-0.9.1/tests/research/test_synthesis_agent.py +0 -11
  38. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/.github/FUNDING.yml +0 -0
  39. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/.github/workflows/build-docs.yml +0 -0
  40. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/.github/workflows/build-publish.yml +0 -0
  41. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/.gitignore +0 -0
  42. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/.pre-commit-config.yaml +0 -0
  43. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/.python-version +0 -0
  44. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/LICENSE +0 -0
  45. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/README.md +0 -0
  46. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/docs/benchmarks.md +0 -0
  47. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/docs/cli.md +0 -0
  48. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/docs/configuration.md +0 -0
  49. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/docs/index.md +0 -0
  50. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/docs/installation.md +0 -0
  51. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/docs/mcp.md +0 -0
  52. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/docs/python.md +0 -0
  53. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/docs/server.md +0 -0
  54. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/mkdocs.yml +0 -0
  55. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/__init__.py +0 -0
  56. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/chunker.py +0 -0
  57. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/cli.py +0 -0
  58. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/config.py +0 -0
  59. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/embeddings/__init__.py +0 -0
  60. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/embeddings/base.py +0 -0
  61. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/embeddings/ollama.py +0 -0
  62. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/embeddings/openai.py +0 -0
  63. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/embeddings/vllm.py +0 -0
  64. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/embeddings/voyageai.py +0 -0
  65. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/logging.py +0 -0
  66. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/mcp.py +0 -0
  67. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/migration.py +0 -0
  68. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/monitor.py +0 -0
  69. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/qa/__init__.py +0 -0
  70. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/qa/prompts.py +0 -0
  71. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/reader.py +0 -0
  72. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/reranking/__init__.py +0 -0
  73. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/reranking/base.py +0 -0
  74. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/reranking/cohere.py +0 -0
  75. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/reranking/mxbai.py +0 -0
  76. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/reranking/vllm.py +0 -0
  77. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/store/__init__.py +0 -0
  78. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/store/models/__init__.py +0 -0
  79. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/store/models/document.py +0 -0
  80. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/store/repositories/__init__.py +0 -0
  81. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/src/haiku/rag/utils.py +0 -0
  82. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/__init__.py +0 -0
  83. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/conftest.py +0 -0
  84. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/llm_judge.py +0 -0
  85. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_chunker.py +0 -0
  86. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_cli.py +0 -0
  87. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_embedder.py +0 -0
  88. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_lancedb_connection.py +0 -0
  89. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_monitor.py +0 -0
  90. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_preprocessor.py +0 -0
  91. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_qa.py +0 -0
  92. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_reader.py +0 -0
  93. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_rebuild.py +0 -0
  94. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_reranker.py +0 -0
  95. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_search.py +0 -0
  96. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_settings.py +0 -0
  97. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_utils.py +0 -0
  98. {haiku_rag-0.9.1 → haiku_rag-0.9.3}/tests/test_versioning.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: haiku.rag
3
- Version: 0.9.1
3
+ Version: 0.9.3
4
4
  Summary: Agentic Retrieval Augmented Generation (RAG) with LanceDB
5
5
  Author-email: Yiorgis Gozadinos <ggozadinos@gmail.com>
6
6
  License: MIT
@@ -43,6 +43,8 @@ The research workflow coordinates specialized agents to plan, search, analyze, a
43
43
  Components:
44
44
 
45
45
  - Orchestrator: Plans, coordinates, and loops until confidence is sufficient
46
+ - Presearch Survey: Runs a quick KB scan and summarizes relevant chunk text to
47
+ ground the initial plan (plain-text summary; no URIs or scores)
46
48
  - Search Specialist: Performs targeted RAG searches and answers sub‑questions
47
49
  - Analysis & Evaluation: Extracts insights, identifies gaps, proposes new questions
48
50
  - Synthesis: Produces a final structured research report
@@ -68,14 +70,14 @@ from haiku.rag.client import HaikuRAG
68
70
  from haiku.rag.research import ResearchOrchestrator
69
71
 
70
72
  client = HaikuRAG(path_to_db)
71
- orchestrator = ResearchOrchestrator(provider="openai", model="gpt-4o-mini")
73
+ orchestrator = ResearchOrchestrator(provider="ollama", model="gpt-oss")
72
74
 
73
75
  report = await orchestrator.conduct_research(
74
76
  question="What are the main drivers and recent trends of global temperature anomalies since 1990?",
75
77
  client=client,
76
78
  max_iterations=2,
77
79
  confidence_threshold=0.8,
78
- verbose=False,
80
+ verbose=True,
79
81
  )
80
82
 
81
83
  print(report.title)
@@ -1,7 +1,8 @@
1
1
  [project]
2
+
2
3
  name = "haiku.rag"
3
- version = "0.9.1"
4
4
  description = "Agentic Retrieval Augmented Generation (RAG) with LanceDB"
5
+ version = "0.9.3"
5
6
  authors = [{ name = "Yiorgis Gozadinos", email = "ggozadinos@gmail.com" }]
6
7
  license = { text = "MIT" }
7
8
  readme = { file = "README.md", content-type = "text/markdown" }
@@ -101,7 +101,6 @@ class HaikuRAGApp:
101
101
  client=client,
102
102
  max_iterations=max_iterations,
103
103
  verbose=verbose,
104
- console=self.console if verbose else None,
105
104
  )
106
105
 
107
106
  # Display the report
@@ -122,12 +121,7 @@ class HaikuRAGApp:
122
121
  self.console.print(f"• {finding}")
123
122
  self.console.print()
124
123
 
125
- # Themes
126
- if report.themes:
127
- self.console.print("[bold cyan]Key Themes:[/bold cyan]")
128
- for theme, explanation in report.themes.items():
129
- self.console.print(f"• [bold]{theme}[/bold]: {explanation}")
130
- self.console.print()
124
+ # (Themes section removed)
131
125
 
132
126
  # Conclusions
133
127
  if report.conclusions:
@@ -261,7 +255,7 @@ class HaikuRAGApp:
261
255
  elif transport == "sse":
262
256
  await server.run_sse_async()
263
257
  else:
264
- await server.run_http_async("streamable-http")
258
+ await server.run_http_async(transport="streamable-http")
265
259
  except KeyboardInterrupt:
266
260
  pass
267
261
  finally:
@@ -388,7 +388,7 @@ class HaikuRAG:
388
388
  all_chunks = adjacent_chunks + [chunk]
389
389
 
390
390
  # Get the range of orders for this expanded chunk
391
- orders = [c.metadata.get("order", 0) for c in all_chunks]
391
+ orders = [c.order for c in all_chunks]
392
392
  min_order = min(orders)
393
393
  max_order = max(orders)
394
394
 
@@ -398,9 +398,7 @@ class HaikuRAG:
398
398
  "score": score,
399
399
  "min_order": min_order,
400
400
  "max_order": max_order,
401
- "all_chunks": sorted(
402
- all_chunks, key=lambda c: c.metadata.get("order", 0)
403
- ),
401
+ "all_chunks": sorted(all_chunks, key=lambda c: c.order),
404
402
  }
405
403
  )
406
404
 
@@ -459,7 +457,7 @@ class HaikuRAG:
459
457
  # Merge all_chunks and deduplicate by order
460
458
  all_chunks_dict = {}
461
459
  for chunk in current["all_chunks"] + range_info["all_chunks"]:
462
- order = chunk.metadata.get("order", 0)
460
+ order = chunk.order
463
461
  all_chunks_dict[order] = chunk
464
462
  current["all_chunks"] = [
465
463
  all_chunks_dict[order] for order in sorted(all_chunks_dict.keys())
@@ -49,6 +49,9 @@ class QuestionAnswerAgent:
49
49
  limit: int = 3,
50
50
  ) -> list[SearchResult]:
51
51
  """Search the knowledge base for relevant documents."""
52
+
53
+ # Remove quotes from queries as this requires positional indexing in lancedb
54
+ query = query.replace('"', "")
52
55
  search_results = await ctx.deps.client.search(query, limit=limit)
53
56
  expanded_results = await ctx.deps.client.expand_context(search_results)
54
57
 
@@ -12,6 +12,7 @@ from haiku.rag.research.evaluation_agent import (
12
12
  EvaluationResult,
13
13
  )
14
14
  from haiku.rag.research.orchestrator import ResearchOrchestrator, ResearchPlan
15
+ from haiku.rag.research.presearch_agent import PresearchSurveyAgent
15
16
  from haiku.rag.research.search_agent import SearchSpecialistAgent
16
17
  from haiku.rag.research.synthesis_agent import ResearchReport, SynthesisAgent
17
18
 
@@ -25,6 +26,7 @@ __all__ = [
25
26
  # Specialized agents
26
27
  "SearchAnswer",
27
28
  "SearchSpecialistAgent",
29
+ "PresearchSurveyAgent",
28
30
  "AnalysisEvaluationAgent",
29
31
  "EvaluationResult",
30
32
  "SynthesisAgent",
@@ -33,11 +33,20 @@ class BaseResearchAgent[T](ABC):
33
33
  # Import deps type lazily to avoid circular import during module load
34
34
  from haiku.rag.research.dependencies import ResearchDependencies
35
35
 
36
+ # If the agent is expected to return plain text, pass `str` directly.
37
+ # Otherwise, wrap the model with ToolOutput for robust tool-handling retries.
38
+ agent_output_type: Any
39
+ if self.output_type is str: # plain text output
40
+ agent_output_type = str
41
+ else:
42
+ agent_output_type = ToolOutput(self.output_type, max_retries=3)
43
+
36
44
  self._agent = Agent(
37
45
  model=model_obj,
38
46
  deps_type=ResearchDependencies,
39
- output_type=ToolOutput(self.output_type, max_retries=3),
40
- system_prompt=self.get_system_prompt(),
47
+ output_type=agent_output_type,
48
+ instructions=self.get_system_prompt(),
49
+ retries=3,
41
50
  )
42
51
 
43
52
  # Register tools
@@ -67,7 +76,6 @@ class BaseResearchAgent[T](ABC):
67
76
  """Return the system prompt for this agent."""
68
77
  pass
69
78
 
70
- @abstractmethod
71
79
  def register_tools(self) -> None:
72
80
  """Register agent-specific tools."""
73
81
  pass
@@ -1,4 +1,6 @@
1
1
  from pydantic import BaseModel, Field
2
+ from pydantic_ai import format_as_xml
3
+ from rich.console import Console
2
4
 
3
5
  from haiku.rag.client import HaikuRAG
4
6
  from haiku.rag.research.base import SearchAnswer
@@ -43,3 +45,25 @@ class ResearchDependencies(BaseModel):
43
45
 
44
46
  client: HaikuRAG = Field(description="RAG client for document operations")
45
47
  context: ResearchContext = Field(description="Shared research context")
48
+ console: Console | None = None
49
+
50
+
51
+ def _format_context_for_prompt(context: ResearchContext) -> str:
52
+ """Format the research context as XML for inclusion in prompts."""
53
+
54
+ context_data = {
55
+ "original_question": context.original_question,
56
+ "unanswered_questions": context.sub_questions,
57
+ "qa_responses": [
58
+ {
59
+ "question": qa.query,
60
+ "answer": qa.answer,
61
+ "context_snippets": qa.context,
62
+ "sources": qa.sources,
63
+ }
64
+ for qa in context.qa_responses
65
+ ],
66
+ "insights": context.insights,
67
+ "gaps": context.gaps,
68
+ }
69
+ return format_as_xml(context_data, root_tag="research_context")
@@ -0,0 +1,85 @@
1
+ from pydantic import BaseModel, Field
2
+ from pydantic_ai.run import AgentRunResult
3
+
4
+ from haiku.rag.research.base import BaseResearchAgent
5
+ from haiku.rag.research.dependencies import (
6
+ ResearchDependencies,
7
+ _format_context_for_prompt,
8
+ )
9
+ from haiku.rag.research.prompts import EVALUATION_AGENT_PROMPT
10
+
11
+
12
+ class EvaluationResult(BaseModel):
13
+ """Result of analysis and evaluation."""
14
+
15
+ key_insights: list[str] = Field(
16
+ description="Main insights extracted from the research so far"
17
+ )
18
+ new_questions: list[str] = Field(
19
+ description="New sub-questions to add to the research (max 3)",
20
+ max_length=3,
21
+ default=[],
22
+ )
23
+ confidence_score: float = Field(
24
+ description="Confidence level in the completeness of research (0-1)",
25
+ ge=0.0,
26
+ le=1.0,
27
+ )
28
+ is_sufficient: bool = Field(
29
+ description="Whether the research is sufficient to answer the original question"
30
+ )
31
+ reasoning: str = Field(
32
+ description="Explanation of why the research is or isn't complete"
33
+ )
34
+
35
+
36
+ class AnalysisEvaluationAgent(BaseResearchAgent[EvaluationResult]):
37
+ """Agent that analyzes findings and evaluates research completeness."""
38
+
39
+ def __init__(self, provider: str, model: str) -> None:
40
+ super().__init__(provider, model, output_type=EvaluationResult)
41
+
42
+ async def run(
43
+ self, prompt: str, deps: ResearchDependencies, **kwargs
44
+ ) -> AgentRunResult[EvaluationResult]:
45
+ console = deps.console
46
+ if console:
47
+ console.print(
48
+ "\n[bold cyan]📊 Analyzing and evaluating research progress...[/bold cyan]"
49
+ )
50
+
51
+ # Format context for the evaluation agent
52
+ context_xml = _format_context_for_prompt(deps.context)
53
+ evaluation_prompt = f"""Analyze all gathered information and evaluate the completeness of research.
54
+
55
+ {context_xml}
56
+
57
+ Evaluate the research progress for the original question and identify any remaining gaps."""
58
+
59
+ result = await super().run(evaluation_prompt, deps, **kwargs)
60
+ output = result.output
61
+
62
+ # Store insights
63
+ for insight in output.key_insights:
64
+ deps.context.add_insight(insight)
65
+
66
+ # Add new questions to the sub-questions list
67
+ for new_q in output.new_questions:
68
+ if new_q not in deps.context.sub_questions:
69
+ deps.context.sub_questions.append(new_q)
70
+
71
+ if console:
72
+ if output.key_insights:
73
+ console.print(" [bold]Key insights:[/bold]")
74
+ for insight in output.key_insights:
75
+ console.print(f" • {insight}")
76
+ console.print(
77
+ f" Confidence: [yellow]{output.confidence_score:.1%}[/yellow]"
78
+ )
79
+ status = "[green]Yes[/green]" if output.is_sufficient else "[red]No[/red]"
80
+ console.print(f" Sufficient: {status}")
81
+
82
+ return result
83
+
84
+ def get_system_prompt(self) -> str:
85
+ return EVALUATION_AGENT_PROMPT
@@ -0,0 +1,170 @@
1
+ from typing import Any
2
+
3
+ from pydantic import BaseModel, Field
4
+ from pydantic_ai.run import AgentRunResult
5
+ from rich.console import Console
6
+
7
+ from haiku.rag.config import Config
8
+ from haiku.rag.research.base import BaseResearchAgent
9
+ from haiku.rag.research.dependencies import (
10
+ ResearchContext,
11
+ ResearchDependencies,
12
+ )
13
+ from haiku.rag.research.evaluation_agent import (
14
+ AnalysisEvaluationAgent,
15
+ EvaluationResult,
16
+ )
17
+ from haiku.rag.research.presearch_agent import PresearchSurveyAgent
18
+ from haiku.rag.research.prompts import ORCHESTRATOR_PROMPT
19
+ from haiku.rag.research.search_agent import SearchSpecialistAgent
20
+ from haiku.rag.research.synthesis_agent import ResearchReport, SynthesisAgent
21
+
22
+
23
+ class ResearchPlan(BaseModel):
24
+ """Research execution plan."""
25
+
26
+ main_question: str = Field(description="The main research question")
27
+ sub_questions: list[str] = Field(
28
+ description="Decomposed sub-questions to investigate (max 3)", max_length=3
29
+ )
30
+
31
+
32
+ class ResearchOrchestrator(BaseResearchAgent[ResearchPlan]):
33
+ """Orchestrator agent that coordinates the research workflow."""
34
+
35
+ def __init__(
36
+ self,
37
+ provider: str | None = Config.RESEARCH_PROVIDER,
38
+ model: str | None = None,
39
+ ):
40
+ # Use provided values or fall back to config defaults
41
+ provider = provider or Config.RESEARCH_PROVIDER or Config.QA_PROVIDER
42
+ model = model or Config.RESEARCH_MODEL or Config.QA_MODEL
43
+
44
+ super().__init__(provider, model, output_type=ResearchPlan)
45
+
46
+ self.search_agent: SearchSpecialistAgent = SearchSpecialistAgent(
47
+ provider, model
48
+ )
49
+ self.presearch_agent: PresearchSurveyAgent = PresearchSurveyAgent(
50
+ provider, model
51
+ )
52
+ self.evaluation_agent: AnalysisEvaluationAgent = AnalysisEvaluationAgent(
53
+ provider, model
54
+ )
55
+ self.synthesis_agent: SynthesisAgent = SynthesisAgent(provider, model)
56
+
57
+ def get_system_prompt(self) -> str:
58
+ return ORCHESTRATOR_PROMPT
59
+
60
+ def _should_stop_research(
61
+ self,
62
+ evaluation_result: AgentRunResult[EvaluationResult],
63
+ confidence_threshold: float,
64
+ ) -> bool:
65
+ """Determine if research should stop based on evaluation."""
66
+
67
+ result = evaluation_result.output
68
+ return result.is_sufficient and result.confidence_score >= confidence_threshold
69
+
70
+ async def conduct_research(
71
+ self,
72
+ question: str,
73
+ client: Any,
74
+ max_iterations: int = 3,
75
+ confidence_threshold: float = 0.8,
76
+ verbose: bool = False,
77
+ ) -> ResearchReport:
78
+ """Conduct comprehensive research on a question.
79
+
80
+ Args:
81
+ question: The research question to investigate
82
+ client: HaikuRAG client for document operations
83
+ max_iterations: Maximum number of search-analyze-clarify cycles
84
+ confidence_threshold: Minimum confidence level to stop research (0-1)
85
+ verbose: If True, print progress and intermediate results
86
+
87
+ Returns:
88
+ ResearchReport with comprehensive findings
89
+ """
90
+
91
+ # Initialize context
92
+ context = ResearchContext(original_question=question)
93
+ deps = ResearchDependencies(client=client, context=context)
94
+ if verbose:
95
+ deps.console = Console()
96
+
97
+ console = deps.console
98
+ # Create initial research plan
99
+ if console:
100
+ console.print("\n[bold cyan]📋 Creating research plan...[/bold cyan]")
101
+
102
+ # Run a simple presearch survey to summarize KB context
103
+ presearch_result = await self.presearch_agent.run(question, deps=deps)
104
+ plan_prompt = (
105
+ "Create a research plan for the main question below.\n\n"
106
+ f"Main question: {question}\n\n"
107
+ "Use this brief presearch summary to inform the plan. Focus the 3 sub-questions "
108
+ "on the most important aspects not already obvious from the current KB context.\n\n"
109
+ f"{presearch_result.output}"
110
+ )
111
+
112
+ plan_result: AgentRunResult[ResearchPlan] = await self.run(
113
+ plan_prompt, deps=deps
114
+ )
115
+ context.sub_questions = plan_result.output.sub_questions
116
+
117
+ if console:
118
+ console.print("\n[bold green]✅ Research Plan Created:[/bold green]")
119
+ console.print(
120
+ f" [bold]Main Question:[/bold] {plan_result.output.main_question}"
121
+ )
122
+ console.print(" [bold]Sub-questions:[/bold]")
123
+ for i, sq in enumerate(plan_result.output.sub_questions, 1):
124
+ console.print(f" {i}. {sq}")
125
+
126
+ # Execute research iterations
127
+ for iteration in range(max_iterations):
128
+ if console:
129
+ console.rule(
130
+ f"[bold yellow]🔄 Iteration {iteration + 1}/{max_iterations}[/bold yellow]"
131
+ )
132
+
133
+ # Check if we have questions to search
134
+ if not context.sub_questions:
135
+ if console:
136
+ console.print(
137
+ "[yellow]No more questions to explore. Concluding research.[/yellow]"
138
+ )
139
+ break
140
+
141
+ # Use current sub-questions for this iteration
142
+ questions_to_search = context.sub_questions[:]
143
+
144
+ # Search phase - answer all questions in this iteration
145
+ if console:
146
+ console.print(
147
+ f"\n[bold cyan]🔍 Searching & Answering {len(questions_to_search)} questions:[/bold cyan]"
148
+ )
149
+
150
+ for search_question in questions_to_search:
151
+ await self.search_agent.run(search_question, deps=deps)
152
+
153
+ # Analysis and Evaluation phase
154
+
155
+ evaluation_result = await self.evaluation_agent.run("", deps=deps)
156
+
157
+ # Check if research is sufficient
158
+ if self._should_stop_research(evaluation_result, confidence_threshold):
159
+ if console:
160
+ console.print(
161
+ f"\n[bold green]✅ Stopping research:[/bold green] {evaluation_result.output.reasoning}"
162
+ )
163
+ break
164
+
165
+ # Generate final report
166
+ report_result: AgentRunResult[ResearchReport] = await self.synthesis_agent.run(
167
+ "", deps=deps
168
+ )
169
+
170
+ return report_result.output
@@ -0,0 +1,39 @@
1
+ from pydantic_ai import RunContext
2
+ from pydantic_ai.run import AgentRunResult
3
+
4
+ from haiku.rag.research.base import BaseResearchAgent
5
+ from haiku.rag.research.dependencies import ResearchDependencies
6
+ from haiku.rag.research.prompts import PRESEARCH_AGENT_PROMPT
7
+
8
+
9
+ class PresearchSurveyAgent(BaseResearchAgent[str]):
10
+ """Presearch agent that gathers verbatim context and summarizes it."""
11
+
12
+ def __init__(self, provider: str, model: str) -> None:
13
+ super().__init__(provider, model, str)
14
+
15
+ async def run(
16
+ self, prompt: str, deps: ResearchDependencies, **kwargs
17
+ ) -> AgentRunResult[str]:
18
+ console = deps.console
19
+ if console:
20
+ console.print(
21
+ "\n[bold cyan]🔎 Presearch: summarizing KB context...[/bold cyan]"
22
+ )
23
+
24
+ return await super().run(prompt, deps, **kwargs)
25
+
26
+ def get_system_prompt(self) -> str:
27
+ return PRESEARCH_AGENT_PROMPT
28
+
29
+ def register_tools(self) -> None:
30
+ @self.agent.tool
31
+ async def gather_context(
32
+ ctx: RunContext[ResearchDependencies],
33
+ query: str,
34
+ limit: int = 6,
35
+ ) -> str:
36
+ """Return verbatim concatenation of relevant chunk texts."""
37
+ results = await ctx.deps.client.search(query, limit=limit)
38
+ expanded = await ctx.deps.client.expand_context(results)
39
+ return "\n\n".join(chunk.content for chunk, _ in expanded)
@@ -114,3 +114,16 @@ Focus on creating a report that provides clear value to the reader by:
114
114
  - Highlighting the most important findings
115
115
  - Explaining the implications of the research
116
116
  - Suggesting concrete next steps"""
117
+
118
+ PRESEARCH_AGENT_PROMPT = """You are a rapid research surveyor.
119
+
120
+ Task:
121
+ - Call the gather_context tool once with the main question to obtain a
122
+ relevant texts from the Knowledge Base (KB).
123
+ - Read that context and produce a brief natural-language summary describing
124
+ what the KB appears to contain relative to the question.
125
+
126
+ Rules:
127
+ - Base the summary strictly on the provided text; do not invent.
128
+ - Output only the summary as plain text (one short paragraph).
129
+ """
@@ -21,10 +21,17 @@ class SearchSpecialistAgent(BaseResearchAgent[SearchAnswer]):
21
21
  Pydantic AI enforces `SearchAnswer` as the output model; we just store
22
22
  the QA response with the last search results as sources.
23
23
  """
24
- result = await super().run(prompt, deps, **kwargs)
24
+ console = deps.console
25
+ if console:
26
+ console.print(f"\t{prompt}")
25
27
 
26
- if result.output:
27
- deps.context.add_qa_response(result.output)
28
+ result = await super().run(prompt, deps, **kwargs)
29
+ deps.context.add_qa_response(result.output)
30
+ deps.context.sub_questions.remove(prompt)
31
+ if console:
32
+ answer = result.output.answer
33
+ answer_preview = answer[:150] + "…" if len(answer) > 150 else answer
34
+ console.log(f"\n [green]✓[/green] {answer_preview}")
28
35
 
29
36
  return result
30
37
 
@@ -41,8 +48,6 @@ class SearchSpecialistAgent(BaseResearchAgent[SearchAnswer]):
41
48
  limit: int = 5,
42
49
  ) -> str:
43
50
  """Search the KB and return a concise context pack."""
44
- # Remove quotes from queries as this requires positional indexing in lancedb
45
- query = query.replace('"', "")
46
51
  search_results = await ctx.deps.client.search(query, limit=limit)
47
52
  expanded = await ctx.deps.client.expand_context(search_results)
48
53
 
@@ -1,6 +1,11 @@
1
1
  from pydantic import BaseModel, Field
2
+ from pydantic_ai.run import AgentRunResult
2
3
 
3
4
  from haiku.rag.research.base import BaseResearchAgent
5
+ from haiku.rag.research.dependencies import (
6
+ ResearchDependencies,
7
+ _format_context_for_prompt,
8
+ )
4
9
  from haiku.rag.research.prompts import SYNTHESIS_AGENT_PROMPT
5
10
 
6
11
 
@@ -12,11 +17,12 @@ class ResearchReport(BaseModel):
12
17
  main_findings: list[str] = Field(
13
18
  description="Primary research findings with supporting evidence"
14
19
  )
15
- themes: dict[str, str] = Field(description="Major themes and their explanations")
16
20
  conclusions: list[str] = Field(description="Evidence-based conclusions")
17
- limitations: list[str] = Field(description="Limitations of the current research")
21
+ limitations: list[str] = Field(
22
+ description="Limitations of the current research", default=[]
23
+ )
18
24
  recommendations: list[str] = Field(
19
- description="Actionable recommendations based on findings"
25
+ description="Actionable recommendations based on findings", default=[]
20
26
  )
21
27
  sources_summary: str = Field(
22
28
  description="Summary of sources used and their reliability"
@@ -29,11 +35,26 @@ class SynthesisAgent(BaseResearchAgent[ResearchReport]):
29
35
  def __init__(self, provider: str, model: str) -> None:
30
36
  super().__init__(provider, model, output_type=ResearchReport)
31
37
 
38
+ async def run(
39
+ self, prompt: str, deps: ResearchDependencies, **kwargs
40
+ ) -> AgentRunResult[ResearchReport]:
41
+ console = deps.console
42
+ if console:
43
+ console.print(
44
+ "\n[bold cyan]📝 Generating final research report...[/bold cyan]"
45
+ )
46
+
47
+ context_xml = _format_context_for_prompt(deps.context)
48
+ synthesis_prompt = f"""Generate a comprehensive research report based on all gathered information.
49
+
50
+ {context_xml}
51
+
52
+ Create a detailed report that synthesizes all findings into a coherent response."""
53
+ result = await super().run(synthesis_prompt, deps, **kwargs)
54
+ if console:
55
+ console.print("[bold green]✅ Research complete![/bold green]")
56
+
57
+ return result
58
+
32
59
  def get_system_prompt(self) -> str:
33
60
  return SYNTHESIS_AGENT_PROMPT
34
-
35
- def register_tools(self) -> None:
36
- """Register synthesis-specific tools."""
37
- # The agent will use its LLM capabilities directly for synthesis
38
- # The structured output will guide the report generation
39
- pass