haiku.rag 0.11.2__tar.gz → 0.11.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of haiku.rag might be problematic. Click here for more details.

Files changed (81) hide show
  1. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/PKG-INFO +7 -1
  2. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/README.md +6 -0
  3. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/pyproject.toml +1 -1
  4. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/app.py +36 -2
  5. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/cli.py +11 -1
  6. haiku_rag-0.11.3/src/haiku/rag/graph/__init__.py +1 -0
  7. haiku_rag-0.11.3/src/haiku/rag/graph/base.py +31 -0
  8. haiku_rag-0.11.3/src/haiku/rag/graph/common.py +33 -0
  9. haiku_rag-0.11.3/src/haiku/rag/graph/models.py +24 -0
  10. haiku_rag-0.11.3/src/haiku/rag/graph/nodes/__init__.py +0 -0
  11. {haiku_rag-0.11.2/src/haiku/rag/research → haiku_rag-0.11.3/src/haiku/rag/graph}/nodes/analysis.py +5 -4
  12. {haiku_rag-0.11.2/src/haiku/rag/research → haiku_rag-0.11.3/src/haiku/rag/graph}/nodes/plan.py +6 -4
  13. {haiku_rag-0.11.2/src/haiku/rag/research → haiku_rag-0.11.3/src/haiku/rag/graph}/nodes/search.py +5 -4
  14. {haiku_rag-0.11.2/src/haiku/rag/research → haiku_rag-0.11.3/src/haiku/rag/graph}/nodes/synthesize.py +3 -4
  15. haiku_rag-0.11.3/src/haiku/rag/graph/prompts.py +45 -0
  16. haiku_rag-0.11.3/src/haiku/rag/qa/deep/__init__.py +1 -0
  17. haiku_rag-0.11.3/src/haiku/rag/qa/deep/dependencies.py +29 -0
  18. haiku_rag-0.11.3/src/haiku/rag/qa/deep/graph.py +21 -0
  19. haiku_rag-0.11.3/src/haiku/rag/qa/deep/models.py +20 -0
  20. haiku_rag-0.11.3/src/haiku/rag/qa/deep/nodes.py +303 -0
  21. haiku_rag-0.11.3/src/haiku/rag/qa/deep/prompts.py +57 -0
  22. haiku_rag-0.11.3/src/haiku/rag/qa/deep/state.py +25 -0
  23. haiku_rag-0.11.3/src/haiku/rag/research/__init__.py +3 -0
  24. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/research/common.py +0 -31
  25. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/research/dependencies.py +1 -1
  26. haiku_rag-0.11.3/src/haiku/rag/research/graph.py +20 -0
  27. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/research/models.py +0 -25
  28. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/research/prompts.py +0 -46
  29. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/uv.lock +1 -1
  30. haiku_rag-0.11.2/src/haiku/rag/research/__init__.py +0 -28
  31. haiku_rag-0.11.2/src/haiku/rag/research/graph.py +0 -31
  32. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/.gitignore +0 -0
  33. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/.pre-commit-config.yaml +0 -0
  34. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/.python-version +0 -0
  35. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/LICENSE +0 -0
  36. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/mkdocs.yml +0 -0
  37. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/evaluations/__init__.py +0 -0
  38. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/evaluations/benchmark.py +0 -0
  39. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/evaluations/config.py +0 -0
  40. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/evaluations/datasets/__init__.py +0 -0
  41. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/evaluations/datasets/repliqa.py +0 -0
  42. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/evaluations/datasets/wix.py +0 -0
  43. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/evaluations/llm_judge.py +0 -0
  44. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/__init__.py +0 -0
  45. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/chunker.py +0 -0
  46. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/client.py +0 -0
  47. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/config.py +0 -0
  48. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/embeddings/__init__.py +0 -0
  49. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/embeddings/base.py +0 -0
  50. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/embeddings/ollama.py +0 -0
  51. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/embeddings/openai.py +0 -0
  52. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/embeddings/vllm.py +0 -0
  53. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/embeddings/voyageai.py +0 -0
  54. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/logging.py +0 -0
  55. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/mcp.py +0 -0
  56. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/migration.py +0 -0
  57. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/monitor.py +0 -0
  58. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/qa/__init__.py +0 -0
  59. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/qa/agent.py +0 -0
  60. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/qa/prompts.py +0 -0
  61. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/reader.py +0 -0
  62. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/reranking/__init__.py +0 -0
  63. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/reranking/base.py +0 -0
  64. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/reranking/cohere.py +0 -0
  65. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/reranking/mxbai.py +0 -0
  66. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/reranking/vllm.py +0 -0
  67. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/research/state.py +0 -0
  68. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/research/stream.py +0 -0
  69. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/__init__.py +0 -0
  70. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/engine.py +0 -0
  71. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/models/__init__.py +0 -0
  72. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/models/chunk.py +0 -0
  73. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/models/document.py +0 -0
  74. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/repositories/__init__.py +0 -0
  75. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/repositories/chunk.py +0 -0
  76. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/repositories/document.py +0 -0
  77. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/repositories/settings.py +0 -0
  78. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/upgrades/__init__.py +0 -0
  79. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/upgrades/v0_10_1.py +0 -0
  80. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/store/upgrades/v0_9_3.py +0 -0
  81. {haiku_rag-0.11.2 → haiku_rag-0.11.3}/src/haiku/rag/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: haiku.rag
3
- Version: 0.11.2
3
+ Version: 0.11.3
4
4
  Summary: Agentic Retrieval Augmented Generation (RAG) with LanceDB
5
5
  Author-email: Yiorgis Gozadinos <ggozadinos@gmail.com>
6
6
  License: MIT
@@ -78,6 +78,12 @@ haiku-rag ask "Who is the author of haiku.rag?"
78
78
  # Ask questions with citations
79
79
  haiku-rag ask "Who is the author of haiku.rag?" --cite
80
80
 
81
+ # Deep QA (multi-agent question decomposition)
82
+ haiku-rag ask "Who is the author of haiku.rag?" --deep --cite
83
+
84
+ # Deep QA with verbose output
85
+ haiku-rag ask "Who is the author of haiku.rag?" --deep --verbose
86
+
81
87
  # Multi‑agent research (iterative plan/search/evaluate)
82
88
  haiku-rag research \
83
89
  "What are the main drivers and trends of global temperature anomalies since 1990?" \
@@ -40,6 +40,12 @@ haiku-rag ask "Who is the author of haiku.rag?"
40
40
  # Ask questions with citations
41
41
  haiku-rag ask "Who is the author of haiku.rag?" --cite
42
42
 
43
+ # Deep QA (multi-agent question decomposition)
44
+ haiku-rag ask "Who is the author of haiku.rag?" --deep --cite
45
+
46
+ # Deep QA with verbose output
47
+ haiku-rag ask "Who is the author of haiku.rag?" --deep --verbose
48
+
43
49
  # Multi‑agent research (iterative plan/search/evaluate)
44
50
  haiku-rag research \
45
51
  "What are the main drivers and trends of global temperature anomalies since 1990?" \
@@ -2,7 +2,7 @@
2
2
 
3
3
  name = "haiku.rag"
4
4
  description = "Agentic Retrieval Augmented Generation (RAG) with LanceDB"
5
- version = "0.11.2"
5
+ version = "0.11.3"
6
6
  authors = [{ name = "Yiorgis Gozadinos", email = "ggozadinos@gmail.com" }]
7
7
  license = { text = "MIT" }
8
8
  readme = { file = "README.md", content-type = "text/markdown" }
@@ -194,10 +194,44 @@ class HaikuRAGApp:
194
194
  for chunk, score in results:
195
195
  self._rich_print_search_result(chunk, score)
196
196
 
197
- async def ask(self, question: str, cite: bool = False):
197
+ async def ask(
198
+ self,
199
+ question: str,
200
+ cite: bool = False,
201
+ deep: bool = False,
202
+ verbose: bool = False,
203
+ ):
198
204
  async with HaikuRAG(db_path=self.db_path) as self.client:
199
205
  try:
200
- answer = await self.client.ask(question, cite=cite)
206
+ if deep:
207
+ from rich.console import Console
208
+
209
+ from haiku.rag.qa.deep.dependencies import DeepQAContext
210
+ from haiku.rag.qa.deep.graph import build_deep_qa_graph
211
+ from haiku.rag.qa.deep.nodes import DeepQAPlanNode
212
+ from haiku.rag.qa.deep.state import DeepQADeps, DeepQAState
213
+
214
+ graph = build_deep_qa_graph()
215
+ context = DeepQAContext(
216
+ original_question=question, use_citations=cite
217
+ )
218
+ state = DeepQAState(context=context)
219
+ deps = DeepQADeps(
220
+ client=self.client, console=Console() if verbose else None
221
+ )
222
+
223
+ start_node = DeepQAPlanNode(
224
+ provider=Config.QA_PROVIDER,
225
+ model=Config.QA_MODEL,
226
+ )
227
+
228
+ result = await graph.run(
229
+ start_node=start_node, state=state, deps=deps
230
+ )
231
+ answer = result.output.answer
232
+ else:
233
+ answer = await self.client.ask(question, cite=cite)
234
+
201
235
  self.console.print(f"[bold blue]Question:[/bold blue] {question}")
202
236
  self.console.print()
203
237
  self.console.print("[bold green]Answer:[/bold green]")
@@ -299,11 +299,21 @@ def ask(
299
299
  "--cite",
300
300
  help="Include citations in the response",
301
301
  ),
302
+ deep: bool = typer.Option(
303
+ False,
304
+ "--deep",
305
+ help="Use deep multi-agent QA for complex questions",
306
+ ),
307
+ verbose: bool = typer.Option(
308
+ False,
309
+ "--verbose",
310
+ help="Show verbose progress output (only with --deep)",
311
+ ),
302
312
  ):
303
313
  from haiku.rag.app import HaikuRAGApp
304
314
 
305
315
  app = HaikuRAGApp(db_path=db)
306
- asyncio.run(app.ask(question=question, cite=cite))
316
+ asyncio.run(app.ask(question=question, cite=cite, deep=deep, verbose=verbose))
307
317
 
308
318
 
309
319
  @cli.command("research", help="Run multi-agent research and output a concise report")
@@ -0,0 +1 @@
1
+ from haiku.rag.graph.models import ResearchPlan, SearchAnswer
@@ -0,0 +1,31 @@
1
+ from typing import Protocol, runtime_checkable
2
+
3
+ from pydantic import BaseModel, Field
4
+ from rich.console import Console
5
+
6
+ from haiku.rag.client import HaikuRAG
7
+ from haiku.rag.graph.models import SearchAnswer
8
+
9
+
10
+ @runtime_checkable
11
+ class GraphContext(Protocol):
12
+ """Protocol for graph context objects."""
13
+
14
+ original_question: str
15
+ sub_questions: list[str]
16
+ qa_responses: list[SearchAnswer]
17
+
18
+ def add_qa_response(self, qa: SearchAnswer) -> None: ...
19
+
20
+
21
+ class BaseGraphDeps(BaseModel):
22
+ """Base dependencies for graph nodes."""
23
+
24
+ model_config = {"arbitrary_types_allowed": True}
25
+
26
+ client: HaikuRAG = Field(description="RAG client for document operations")
27
+ console: Console | None = None
28
+
29
+ def emit_log(self, message: str) -> None:
30
+ if self.console:
31
+ self.console.print(message)
@@ -0,0 +1,33 @@
1
+ from typing import Any, Protocol
2
+
3
+ from pydantic_ai.models.openai import OpenAIChatModel
4
+ from pydantic_ai.providers.ollama import OllamaProvider
5
+ from pydantic_ai.providers.openai import OpenAIProvider
6
+
7
+ from haiku.rag.config import Config
8
+
9
+
10
+ class HasEmitLog(Protocol):
11
+ def emit_log(self, message: str, state: Any = None) -> None: ...
12
+
13
+
14
+ def get_model(provider: str, model: str) -> Any:
15
+ if provider == "ollama":
16
+ return OpenAIChatModel(
17
+ model_name=model,
18
+ provider=OllamaProvider(base_url=f"{Config.OLLAMA_BASE_URL}/v1"),
19
+ )
20
+ elif provider == "vllm":
21
+ return OpenAIChatModel(
22
+ model_name=model,
23
+ provider=OpenAIProvider(
24
+ base_url=f"{Config.VLLM_RESEARCH_BASE_URL or Config.VLLM_QA_BASE_URL}/v1",
25
+ api_key="none",
26
+ ),
27
+ )
28
+ else:
29
+ return f"{provider}:{model}"
30
+
31
+
32
+ def log(deps: HasEmitLog, state: Any, message: str) -> None:
33
+ deps.emit_log(message, state)
@@ -0,0 +1,24 @@
1
+ from pydantic import BaseModel, Field
2
+
3
+
4
+ class ResearchPlan(BaseModel):
5
+ main_question: str
6
+ sub_questions: list[str]
7
+
8
+
9
+ class SearchAnswer(BaseModel):
10
+ query: str = Field(description="The search query that was performed")
11
+ answer: str = Field(description="The answer generated based on the context")
12
+ context: list[str] = Field(
13
+ description=(
14
+ "Only the minimal set of relevant snippets (verbatim) that directly "
15
+ "support the answer"
16
+ )
17
+ )
18
+ sources: list[str] = Field(
19
+ description=(
20
+ "Document titles (if available) or URIs corresponding to the"
21
+ " snippets actually used in the answer (one per snippet; omit if none)"
22
+ ),
23
+ default_factory=list,
24
+ )
File without changes
@@ -3,15 +3,13 @@ from dataclasses import dataclass
3
3
  from pydantic_ai import Agent
4
4
  from pydantic_graph import BaseNode, GraphRunContext
5
5
 
6
+ from haiku.rag.graph.common import get_model, log
6
7
  from haiku.rag.research.common import (
7
8
  format_analysis_for_prompt,
8
9
  format_context_for_prompt,
9
- get_model,
10
- log,
11
10
  )
12
11
  from haiku.rag.research.dependencies import ResearchDependencies
13
12
  from haiku.rag.research.models import EvaluationResult, InsightAnalysis, ResearchReport
14
- from haiku.rag.research.nodes.synthesize import SynthesizeNode
15
13
  from haiku.rag.research.prompts import DECISION_AGENT_PROMPT, INSIGHT_AGENT_PROMPT
16
14
  from haiku.rag.research.state import ResearchDeps, ResearchState
17
15
 
@@ -89,6 +87,8 @@ class AnalyzeInsightsNode(BaseNode[ResearchState, ResearchDeps, ResearchReport])
89
87
  for question in analysis.new_questions:
90
88
  log(deps, state, f" • {question}")
91
89
 
90
+ from haiku.rag.graph.nodes.analysis import DecisionNode
91
+
92
92
  return DecisionNode(self.provider, self.model)
93
93
 
94
94
 
@@ -169,7 +169,8 @@ class DecisionNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
169
169
  status = "[green]Yes[/green]" if output.is_sufficient else "[red]No[/red]"
170
170
  log(deps, state, f" Sufficient: {status}")
171
171
 
172
- from haiku.rag.research.nodes.search import SearchDispatchNode
172
+ from haiku.rag.graph.nodes.search import SearchDispatchNode
173
+ from haiku.rag.graph.nodes.synthesize import SynthesizeNode
173
174
 
174
175
  if (
175
176
  output.is_sufficient
@@ -3,11 +3,11 @@ from dataclasses import dataclass
3
3
  from pydantic_ai import Agent, RunContext
4
4
  from pydantic_graph import BaseNode, GraphRunContext
5
5
 
6
- from haiku.rag.research.common import get_model, log
6
+ from haiku.rag.graph.common import get_model, log
7
+ from haiku.rag.graph.models import ResearchPlan
8
+ from haiku.rag.graph.prompts import PLAN_PROMPT
7
9
  from haiku.rag.research.dependencies import ResearchDependencies
8
- from haiku.rag.research.models import ResearchPlan, ResearchReport
9
- from haiku.rag.research.nodes.search import SearchDispatchNode
10
- from haiku.rag.research.prompts import PLAN_PROMPT
10
+ from haiku.rag.research.models import ResearchReport
11
11
  from haiku.rag.research.state import ResearchDeps, ResearchState
12
12
 
13
13
 
@@ -67,4 +67,6 @@ class PlanNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
67
67
  for i, sq in enumerate(state.context.sub_questions, 1):
68
68
  log(deps, state, f" {i}. {sq}")
69
69
 
70
+ from haiku.rag.graph.nodes.search import SearchDispatchNode
71
+
70
72
  return SearchDispatchNode(self.provider, self.model)
@@ -7,10 +7,11 @@ from pydantic_ai.format_prompt import format_as_xml
7
7
  from pydantic_ai.output import ToolOutput
8
8
  from pydantic_graph import BaseNode, GraphRunContext
9
9
 
10
- from haiku.rag.research.common import get_model, log
10
+ from haiku.rag.graph.common import get_model, log
11
+ from haiku.rag.graph.models import SearchAnswer
12
+ from haiku.rag.graph.prompts import SEARCH_AGENT_PROMPT
11
13
  from haiku.rag.research.dependencies import ResearchDependencies
12
- from haiku.rag.research.models import ResearchReport, SearchAnswer
13
- from haiku.rag.research.prompts import SEARCH_AGENT_PROMPT
14
+ from haiku.rag.research.models import ResearchReport
14
15
  from haiku.rag.research.state import ResearchDeps, ResearchState
15
16
 
16
17
 
@@ -25,7 +26,7 @@ class SearchDispatchNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
25
26
  state = ctx.state
26
27
  deps = ctx.deps
27
28
  if not state.context.sub_questions:
28
- from haiku.rag.research.nodes.analysis import AnalyzeInsightsNode
29
+ from haiku.rag.graph.nodes.analysis import AnalyzeInsightsNode
29
30
 
30
31
  return AnalyzeInsightsNode(self.provider, self.model)
31
32
 
@@ -3,10 +3,9 @@ from dataclasses import dataclass
3
3
  from pydantic_ai import Agent
4
4
  from pydantic_graph import BaseNode, End, GraphRunContext
5
5
 
6
- from haiku.rag.research.common import format_context_for_prompt, get_model, log
7
- from haiku.rag.research.dependencies import (
8
- ResearchDependencies,
9
- )
6
+ from haiku.rag.graph.common import get_model, log
7
+ from haiku.rag.research.common import format_context_for_prompt
8
+ from haiku.rag.research.dependencies import ResearchDependencies
10
9
  from haiku.rag.research.models import ResearchReport
11
10
  from haiku.rag.research.prompts import SYNTHESIS_AGENT_PROMPT
12
11
  from haiku.rag.research.state import ResearchDeps, ResearchState
@@ -0,0 +1,45 @@
1
+ PLAN_PROMPT = """You are the research orchestrator for a focused, iterative
2
+ workflow.
3
+
4
+ Responsibilities:
5
+ 1. Understand and decompose the main question
6
+ 2. Propose a minimal, high‑leverage plan
7
+ 3. Coordinate specialized agents to gather evidence
8
+ 4. Iterate based on gaps and new findings
9
+
10
+ Plan requirements:
11
+ - Produce at most 3 sub_questions that together cover the main question.
12
+ - Each sub_question must be a standalone, self‑contained query that can run
13
+ without extra context. Include concrete entities, scope, timeframe, and any
14
+ qualifiers. Avoid ambiguous pronouns (it/they/this/that).
15
+ - Prioritize the highest‑value aspects first; avoid redundancy and overlap.
16
+ - Prefer questions that are likely answerable from the current knowledge base;
17
+ if coverage is uncertain, make scopes narrower and specific.
18
+ - Order sub_questions by execution priority (most valuable first)."""
19
+
20
+ SEARCH_AGENT_PROMPT = """You are a search and question‑answering specialist.
21
+
22
+ Tasks:
23
+ 1. Search the knowledge base for relevant evidence.
24
+ 2. Analyze retrieved snippets.
25
+ 3. Provide an answer strictly grounded in that evidence.
26
+
27
+ Tool usage:
28
+ - Always call search_and_answer before drafting any answer.
29
+ - The tool returns snippets with verbatim `text`, a relevance `score`, and the
30
+ originating document identifier (document title if available, otherwise URI).
31
+ - You may call the tool multiple times to refine or broaden context, but do not
32
+ exceed 3 total calls. Favor precision over volume.
33
+ - Use scores to prioritize evidence, but include only the minimal subset of
34
+ snippet texts (verbatim) in SearchAnswer.context (typically 1‑4).
35
+ - Set SearchAnswer.sources to the corresponding document identifiers for the
36
+ snippets you used (title if available, otherwise URI; one per snippet; same
37
+ order as context). Context must be text‑only.
38
+ - If no relevant information is found, clearly say so and return an empty
39
+ context list and sources list.
40
+
41
+ Answering rules:
42
+ - Be direct and specific; avoid meta commentary about the process.
43
+ - Do not include any claims not supported by the provided snippets.
44
+ - Prefer concise phrasing; avoid copying long passages.
45
+ - When evidence is partial, state the limits explicitly in the answer."""
@@ -0,0 +1 @@
1
+ from haiku.rag.qa.deep.models import DeepQAAnswer
@@ -0,0 +1,29 @@
1
+ from pydantic import BaseModel, Field
2
+ from rich.console import Console
3
+
4
+ from haiku.rag.client import HaikuRAG
5
+ from haiku.rag.graph.models import SearchAnswer
6
+
7
+
8
+ class DeepQAContext(BaseModel):
9
+ original_question: str = Field(description="The original question")
10
+ sub_questions: list[str] = Field(
11
+ default_factory=list, description="Decomposed sub-questions"
12
+ )
13
+ qa_responses: list[SearchAnswer] = Field(
14
+ default_factory=list, description="QA pairs collected during answering"
15
+ )
16
+ use_citations: bool = Field(
17
+ default=False, description="Whether to include citations in the answer"
18
+ )
19
+
20
+ def add_qa_response(self, qa: SearchAnswer) -> None:
21
+ self.qa_responses.append(qa)
22
+
23
+
24
+ class DeepQADependencies(BaseModel):
25
+ model_config = {"arbitrary_types_allowed": True}
26
+
27
+ client: HaikuRAG = Field(description="RAG client for document operations")
28
+ context: DeepQAContext = Field(description="Shared QA context")
29
+ console: Console | None = None
@@ -0,0 +1,21 @@
1
+ from pydantic_graph import Graph
2
+
3
+ from haiku.rag.qa.deep.models import DeepQAAnswer
4
+ from haiku.rag.qa.deep.nodes import (
5
+ DeepQADecisionNode,
6
+ DeepQAPlanNode,
7
+ DeepQASearchDispatchNode,
8
+ DeepQASynthesizeNode,
9
+ )
10
+ from haiku.rag.qa.deep.state import DeepQADeps, DeepQAState
11
+
12
+
13
+ def build_deep_qa_graph() -> Graph[DeepQAState, DeepQADeps, DeepQAAnswer]:
14
+ return Graph(
15
+ nodes=[
16
+ DeepQAPlanNode,
17
+ DeepQASearchDispatchNode,
18
+ DeepQADecisionNode,
19
+ DeepQASynthesizeNode,
20
+ ]
21
+ )
@@ -0,0 +1,20 @@
1
+ from pydantic import BaseModel, Field
2
+
3
+
4
+ class DeepQAEvaluation(BaseModel):
5
+ is_sufficient: bool = Field(
6
+ description="Whether we have sufficient information to answer the question"
7
+ )
8
+ reasoning: str = Field(description="Explanation of the sufficiency assessment")
9
+ new_questions: list[str] = Field(
10
+ description="Additional sub-questions needed if insufficient",
11
+ default_factory=list,
12
+ )
13
+
14
+
15
+ class DeepQAAnswer(BaseModel):
16
+ answer: str = Field(description="The comprehensive answer to the question")
17
+ sources: list[str] = Field(
18
+ description="Document titles or URIs used to generate the answer",
19
+ default_factory=list,
20
+ )
@@ -0,0 +1,303 @@
1
+ import asyncio
2
+ from dataclasses import dataclass
3
+ from typing import Any
4
+
5
+ from pydantic_ai import Agent, RunContext
6
+ from pydantic_ai.format_prompt import format_as_xml
7
+ from pydantic_ai.output import ToolOutput
8
+ from pydantic_graph import BaseNode, End, GraphRunContext
9
+
10
+ from haiku.rag.graph.common import get_model, log
11
+ from haiku.rag.graph.models import ResearchPlan, SearchAnswer
12
+ from haiku.rag.graph.prompts import PLAN_PROMPT, SEARCH_AGENT_PROMPT
13
+ from haiku.rag.qa.deep.dependencies import DeepQADependencies
14
+ from haiku.rag.qa.deep.models import DeepQAAnswer, DeepQAEvaluation
15
+ from haiku.rag.qa.deep.prompts import (
16
+ DECISION_PROMPT,
17
+ SYNTHESIS_PROMPT,
18
+ SYNTHESIS_PROMPT_WITH_CITATIONS,
19
+ )
20
+ from haiku.rag.qa.deep.state import DeepQADeps, DeepQAState
21
+
22
+
23
+ @dataclass
24
+ class DeepQAPlanNode(BaseNode[DeepQAState, DeepQADeps, DeepQAAnswer]):
25
+ provider: str
26
+ model: str
27
+
28
+ async def run(
29
+ self, ctx: GraphRunContext[DeepQAState, DeepQADeps]
30
+ ) -> BaseNode[DeepQAState, DeepQADeps, DeepQAAnswer]:
31
+ state = ctx.state
32
+ deps = ctx.deps
33
+
34
+ log(deps, state, "\n[bold cyan]📋 Planning approach...[/bold cyan]")
35
+
36
+ plan_agent = Agent(
37
+ model=get_model(self.provider, self.model),
38
+ output_type=ResearchPlan,
39
+ instructions=(
40
+ PLAN_PROMPT
41
+ + "\n\nUse the gather_context tool once on the main question before planning."
42
+ ),
43
+ retries=3,
44
+ deps_type=DeepQADependencies,
45
+ )
46
+
47
+ @plan_agent.tool
48
+ async def gather_context(
49
+ ctx2: RunContext[DeepQADependencies], query: str, limit: int = 6
50
+ ) -> str:
51
+ results = await ctx2.deps.client.search(query, limit=limit)
52
+ expanded = await ctx2.deps.client.expand_context(results)
53
+ return "\n\n".join(chunk.content for chunk, _ in expanded)
54
+
55
+ prompt = (
56
+ "Plan a focused approach for answering the main question.\n\n"
57
+ f"Main question: {state.context.original_question}"
58
+ )
59
+
60
+ agent_deps = DeepQADependencies(
61
+ client=deps.client,
62
+ context=state.context,
63
+ console=deps.console,
64
+ )
65
+ plan_result = await plan_agent.run(prompt, deps=agent_deps)
66
+ state.context.sub_questions = list(plan_result.output.sub_questions)[
67
+ : state.max_sub_questions
68
+ ]
69
+
70
+ log(deps, state, "\n[bold green]✅ Plan Created:[/bold green]")
71
+ log(
72
+ deps,
73
+ state,
74
+ f" [bold]Main Question:[/bold] {state.context.original_question}",
75
+ )
76
+ log(deps, state, " [bold]Sub-questions:[/bold]")
77
+ for i, sq in enumerate(state.context.sub_questions, 1):
78
+ log(deps, state, f" {i}. {sq}")
79
+
80
+ return DeepQASearchDispatchNode(self.provider, self.model)
81
+
82
+
83
+ @dataclass
84
+ class DeepQASearchDispatchNode(BaseNode[DeepQAState, DeepQADeps, DeepQAAnswer]):
85
+ provider: str
86
+ model: str
87
+
88
+ async def run(
89
+ self, ctx: GraphRunContext[DeepQAState, DeepQADeps]
90
+ ) -> BaseNode[DeepQAState, DeepQADeps, DeepQAAnswer]:
91
+ state = ctx.state
92
+ deps = ctx.deps
93
+
94
+ if not state.context.sub_questions:
95
+ return DeepQADecisionNode(self.provider, self.model)
96
+
97
+ # Take up to max_concurrency questions and answer them concurrently
98
+ take = max(1, state.max_concurrency)
99
+ batch: list[str] = []
100
+ while state.context.sub_questions and len(batch) < take:
101
+ batch.append(state.context.sub_questions.pop(0))
102
+
103
+ async def answer_one(sub_q: str) -> SearchAnswer | None:
104
+ log(
105
+ deps,
106
+ state,
107
+ f"\n[bold cyan]🔍 Searching & Answering:[/bold cyan] {sub_q}",
108
+ )
109
+ agent = Agent(
110
+ model=get_model(self.provider, self.model),
111
+ output_type=ToolOutput(SearchAnswer, max_retries=3),
112
+ instructions=SEARCH_AGENT_PROMPT,
113
+ retries=3,
114
+ deps_type=DeepQADependencies,
115
+ )
116
+
117
+ @agent.tool
118
+ async def search_and_answer(
119
+ ctx2: RunContext[DeepQADependencies], query: str, limit: int = 5
120
+ ) -> str:
121
+ search_results = await ctx2.deps.client.search(query, limit=limit)
122
+ expanded = await ctx2.deps.client.expand_context(search_results)
123
+
124
+ entries: list[dict[str, Any]] = [
125
+ {
126
+ "text": chunk.content,
127
+ "score": score,
128
+ "document_uri": (
129
+ chunk.document_title or chunk.document_uri or ""
130
+ ),
131
+ }
132
+ for chunk, score in expanded
133
+ ]
134
+ if not entries:
135
+ return f"No relevant information found in the knowledge base for: {query}"
136
+
137
+ return format_as_xml(entries, root_tag="snippets")
138
+
139
+ agent_deps = DeepQADependencies(
140
+ client=deps.client,
141
+ context=state.context,
142
+ console=deps.console,
143
+ )
144
+ try:
145
+ result = await agent.run(sub_q, deps=agent_deps)
146
+ except Exception as e:
147
+ log(deps, state, f"[red]Search failed:[/red] {e}")
148
+ return None
149
+
150
+ return result.output
151
+
152
+ answers = await asyncio.gather(*(answer_one(q) for q in batch))
153
+ for ans in answers:
154
+ if ans is None:
155
+ continue
156
+ state.context.add_qa_response(ans)
157
+ preview = ans.answer[:150] + ("…" if len(ans.answer) > 150 else "")
158
+ log(deps, state, f" [green]✓[/green] {preview}")
159
+
160
+ return DeepQASearchDispatchNode(self.provider, self.model)
161
+
162
+
163
+ @dataclass
164
+ class DeepQADecisionNode(BaseNode[DeepQAState, DeepQADeps, DeepQAAnswer]):
165
+ provider: str
166
+ model: str
167
+
168
+ async def run(
169
+ self, ctx: GraphRunContext[DeepQAState, DeepQADeps]
170
+ ) -> BaseNode[DeepQAState, DeepQADeps, DeepQAAnswer]:
171
+ state = ctx.state
172
+ deps = ctx.deps
173
+
174
+ log(
175
+ deps,
176
+ state,
177
+ "\n[bold cyan]📊 Evaluating information sufficiency...[/bold cyan]",
178
+ )
179
+
180
+ agent = Agent(
181
+ model=get_model(self.provider, self.model),
182
+ output_type=DeepQAEvaluation,
183
+ instructions=DECISION_PROMPT,
184
+ retries=3,
185
+ deps_type=DeepQADependencies,
186
+ )
187
+
188
+ context_data = {
189
+ "original_question": state.context.original_question,
190
+ "gathered_answers": [
191
+ {
192
+ "question": qa.query,
193
+ "answer": qa.answer,
194
+ "sources": qa.sources,
195
+ }
196
+ for qa in state.context.qa_responses
197
+ ],
198
+ }
199
+ context_xml = format_as_xml(context_data, root_tag="gathered_information")
200
+
201
+ prompt = (
202
+ "Evaluate whether we have sufficient information to answer the question.\n\n"
203
+ f"{context_xml}"
204
+ )
205
+
206
+ agent_deps = DeepQADependencies(
207
+ client=deps.client,
208
+ context=state.context,
209
+ console=deps.console,
210
+ )
211
+ result = await agent.run(prompt, deps=agent_deps)
212
+ evaluation = result.output
213
+
214
+ state.iterations += 1
215
+
216
+ log(deps, state, f" [bold]Assessment:[/bold] {evaluation.reasoning}")
217
+ status = "[green]Yes[/green]" if evaluation.is_sufficient else "[red]No[/red]"
218
+ log(deps, state, f" Sufficient: {status}")
219
+
220
+ # Add new questions if not sufficient
221
+ for new_q in evaluation.new_questions:
222
+ if new_q not in state.context.sub_questions:
223
+ state.context.sub_questions.append(new_q)
224
+
225
+ if evaluation.new_questions:
226
+ log(deps, state, " [cyan]New questions:[/cyan]")
227
+ for question in evaluation.new_questions:
228
+ log(deps, state, f" • {question}")
229
+
230
+ # Decide next step
231
+ if evaluation.is_sufficient or state.iterations >= state.max_iterations:
232
+ if state.iterations >= state.max_iterations:
233
+ log(
234
+ deps,
235
+ state,
236
+ f"\n[bold yellow]⚠️ Reached max iterations ({state.max_iterations})[/bold yellow]",
237
+ )
238
+ log(deps, state, "\n[bold green]✅ Moving to synthesis.[/bold green]")
239
+ return DeepQASynthesizeNode(self.provider, self.model)
240
+
241
+ log(
242
+ deps,
243
+ state,
244
+ f"\n[bold cyan]🔄 Starting iteration {state.iterations + 1}...[/bold cyan]",
245
+ )
246
+ return DeepQASearchDispatchNode(self.provider, self.model)
247
+
248
+
249
+ @dataclass
250
+ class DeepQASynthesizeNode(BaseNode[DeepQAState, DeepQADeps, DeepQAAnswer]):
251
+ provider: str
252
+ model: str
253
+
254
+ async def run(
255
+ self, ctx: GraphRunContext[DeepQAState, DeepQADeps]
256
+ ) -> End[DeepQAAnswer]:
257
+ state = ctx.state
258
+ deps = ctx.deps
259
+
260
+ log(
261
+ deps,
262
+ state,
263
+ "\n[bold cyan]📝 Synthesizing final answer...[/bold cyan]",
264
+ )
265
+
266
+ prompt_template = (
267
+ SYNTHESIS_PROMPT_WITH_CITATIONS
268
+ if state.context.use_citations
269
+ else SYNTHESIS_PROMPT
270
+ )
271
+
272
+ agent = Agent(
273
+ model=get_model(self.provider, self.model),
274
+ output_type=DeepQAAnswer,
275
+ instructions=prompt_template,
276
+ retries=3,
277
+ deps_type=DeepQADependencies,
278
+ )
279
+
280
+ context_data = {
281
+ "original_question": state.context.original_question,
282
+ "sub_answers": [
283
+ {
284
+ "question": qa.query,
285
+ "answer": qa.answer,
286
+ "sources": qa.sources,
287
+ }
288
+ for qa in state.context.qa_responses
289
+ ],
290
+ }
291
+ context_xml = format_as_xml(context_data, root_tag="gathered_information")
292
+
293
+ prompt = f"Synthesize a comprehensive answer to the original question.\n\n{context_xml}"
294
+
295
+ agent_deps = DeepQADependencies(
296
+ client=deps.client,
297
+ context=state.context,
298
+ console=deps.console,
299
+ )
300
+ result = await agent.run(prompt, deps=agent_deps)
301
+
302
+ log(deps, state, "[bold green]✅ Answer complete![/bold green]")
303
+ return End(result.output)
@@ -0,0 +1,57 @@
1
+ SYNTHESIS_PROMPT = """You are an expert at synthesizing information into clear, concise answers.
2
+
3
+ Task:
4
+ - Combine the gathered information from sub-questions into a single comprehensive answer
5
+ - Answer the original question directly and completely
6
+ - Base your answer strictly on the provided evidence
7
+ - Be clear, accurate, and well-structured
8
+
9
+ Output format:
10
+ - answer: The complete answer to the original question (2-4 paragraphs)
11
+ - sources: List of document titles/URIs used (extract from the sub-answers)
12
+
13
+ Guidelines:
14
+ - Start directly with the answer - no preamble like "Based on the research..."
15
+ - Use a clear, professional tone
16
+ - Organize information logically
17
+ - If evidence is incomplete, state limitations clearly
18
+ - Do not include any claims not supported by the gathered information"""
19
+
20
+ SYNTHESIS_PROMPT_WITH_CITATIONS = """You are an expert at synthesizing information into clear, concise answers with proper citations.
21
+
22
+ Task:
23
+ - Combine the gathered information from sub-questions into a single comprehensive answer
24
+ - Answer the original question directly and completely
25
+ - Base your answer strictly on the provided evidence
26
+ - Include inline citations using [Source Title] format
27
+
28
+ Output format:
29
+ - answer: The complete answer with inline citations (2-4 paragraphs)
30
+ - sources: List of document titles/URIs used (extract from the sub-answers)
31
+
32
+ Guidelines:
33
+ - Start directly with the answer - no preamble like "Based on the research..."
34
+ - Add citations after each claim: [Source Title]
35
+ - Use a clear, professional tone
36
+ - Organize information logically
37
+ - If evidence is incomplete, state limitations clearly
38
+ - Do not include any claims not supported by the gathered information"""
39
+
40
+ DECISION_PROMPT = """You are an expert at evaluating whether gathered information is sufficient to answer a question.
41
+
42
+ Task:
43
+ - Review the original question and all gathered sub-question answers
44
+ - Determine if we have enough information to provide a comprehensive answer
45
+ - If insufficient, suggest specific new sub-questions to fill the gaps
46
+
47
+ Output format:
48
+ - is_sufficient: Boolean indicating if we can answer the question comprehensively
49
+ - reasoning: Clear explanation of your assessment
50
+ - new_questions: List of specific follow-up questions needed (empty if sufficient)
51
+
52
+ Guidelines:
53
+ - Be strict but reasonable in your assessment
54
+ - Focus on whether core aspects of the question are addressed
55
+ - New questions should be specific and distinct from what's been asked
56
+ - Limit new questions to 2-3 maximum
57
+ - Consider whether additional searches would meaningfully improve the answer"""
@@ -0,0 +1,25 @@
1
+ from dataclasses import dataclass
2
+
3
+ from rich.console import Console
4
+
5
+ from haiku.rag.client import HaikuRAG
6
+ from haiku.rag.qa.deep.dependencies import DeepQAContext
7
+
8
+
9
+ @dataclass
10
+ class DeepQADeps:
11
+ client: HaikuRAG
12
+ console: Console | None = None
13
+
14
+ def emit_log(self, message: str, state: "DeepQAState | None" = None) -> None:
15
+ if self.console:
16
+ self.console.print(message)
17
+
18
+
19
+ @dataclass
20
+ class DeepQAState:
21
+ context: DeepQAContext
22
+ max_sub_questions: int = 3
23
+ max_iterations: int = 2
24
+ max_concurrency: int = 3
25
+ iterations: int = 0
@@ -0,0 +1,3 @@
1
+ from haiku.rag.graph.models import SearchAnswer
2
+ from haiku.rag.research.dependencies import ResearchContext, ResearchDependencies
3
+ from haiku.rag.research.models import EvaluationResult, ResearchReport
@@ -1,39 +1,8 @@
1
- from typing import TYPE_CHECKING, Any
2
-
3
1
  from pydantic_ai import format_as_xml
4
- from pydantic_ai.models.openai import OpenAIChatModel
5
- from pydantic_ai.providers.ollama import OllamaProvider
6
- from pydantic_ai.providers.openai import OpenAIProvider
7
2
 
8
- from haiku.rag.config import Config
9
3
  from haiku.rag.research.dependencies import ResearchContext
10
4
  from haiku.rag.research.models import InsightAnalysis
11
5
 
12
- if TYPE_CHECKING: # pragma: no cover
13
- from haiku.rag.research.state import ResearchDeps, ResearchState
14
-
15
-
16
- def get_model(provider: str, model: str) -> Any:
17
- if provider == "ollama":
18
- return OpenAIChatModel(
19
- model_name=model,
20
- provider=OllamaProvider(base_url=f"{Config.OLLAMA_BASE_URL}/v1"),
21
- )
22
- elif provider == "vllm":
23
- return OpenAIChatModel(
24
- model_name=model,
25
- provider=OpenAIProvider(
26
- base_url=f"{Config.VLLM_RESEARCH_BASE_URL or Config.VLLM_QA_BASE_URL}/v1",
27
- api_key="none",
28
- ),
29
- )
30
- else:
31
- return f"{provider}:{model}"
32
-
33
-
34
- def log(deps: "ResearchDeps", state: "ResearchState", msg: str) -> None:
35
- deps.emit_log(msg, state)
36
-
37
6
 
38
7
  def format_context_for_prompt(context: ResearchContext) -> str:
39
8
  """Format the research context as XML for inclusion in prompts."""
@@ -4,11 +4,11 @@ from pydantic import BaseModel, Field
4
4
  from rich.console import Console
5
5
 
6
6
  from haiku.rag.client import HaikuRAG
7
+ from haiku.rag.graph.models import SearchAnswer
7
8
  from haiku.rag.research.models import (
8
9
  GapRecord,
9
10
  InsightAnalysis,
10
11
  InsightRecord,
11
- SearchAnswer,
12
12
  )
13
13
  from haiku.rag.research.stream import ResearchStream
14
14
 
@@ -0,0 +1,20 @@
1
+ from pydantic_graph import Graph
2
+
3
+ from haiku.rag.graph.nodes.analysis import AnalyzeInsightsNode, DecisionNode
4
+ from haiku.rag.graph.nodes.plan import PlanNode
5
+ from haiku.rag.graph.nodes.search import SearchDispatchNode
6
+ from haiku.rag.graph.nodes.synthesize import SynthesizeNode
7
+ from haiku.rag.research.models import ResearchReport
8
+ from haiku.rag.research.state import ResearchDeps, ResearchState
9
+
10
+
11
+ def build_research_graph() -> Graph[ResearchState, ResearchDeps, ResearchReport]:
12
+ return Graph(
13
+ nodes=[
14
+ PlanNode,
15
+ SearchDispatchNode,
16
+ AnalyzeInsightsNode,
17
+ DecisionNode,
18
+ SynthesizeNode,
19
+ ]
20
+ )
@@ -131,31 +131,6 @@ class InsightAnalysis(BaseModel):
131
131
  )
132
132
 
133
133
 
134
- class ResearchPlan(BaseModel):
135
- main_question: str
136
- sub_questions: list[str]
137
-
138
-
139
- class SearchAnswer(BaseModel):
140
- """Structured output for the SearchSpecialist agent."""
141
-
142
- query: str = Field(description="The search query that was performed")
143
- answer: str = Field(description="The answer generated based on the context")
144
- context: list[str] = Field(
145
- description=(
146
- "Only the minimal set of relevant snippets (verbatim) that directly "
147
- "support the answer"
148
- )
149
- )
150
- sources: list[str] = Field(
151
- description=(
152
- "Document titles (if available) or URIs corresponding to the"
153
- " snippets actually used in the answer (one per snippet; omit if none)"
154
- ),
155
- default_factory=list,
156
- )
157
-
158
-
159
134
  class EvaluationResult(BaseModel):
160
135
  """Result of analysis and evaluation."""
161
136
 
@@ -1,49 +1,3 @@
1
- PLAN_PROMPT = """You are the research orchestrator for a focused, iterative
2
- workflow.
3
-
4
- Responsibilities:
5
- 1. Understand and decompose the main question
6
- 2. Propose a minimal, high‑leverage plan
7
- 3. Coordinate specialized agents to gather evidence
8
- 4. Iterate based on gaps and new findings
9
-
10
- Plan requirements:
11
- - Produce at most 3 sub_questions that together cover the main question.
12
- - Each sub_question must be a standalone, self‑contained query that can run
13
- without extra context. Include concrete entities, scope, timeframe, and any
14
- qualifiers. Avoid ambiguous pronouns (it/they/this/that).
15
- - Prioritize the highest‑value aspects first; avoid redundancy and overlap.
16
- - Prefer questions that are likely answerable from the current knowledge base;
17
- if coverage is uncertain, make scopes narrower and specific.
18
- - Order sub_questions by execution priority (most valuable first)."""
19
-
20
- SEARCH_AGENT_PROMPT = """You are a search and question‑answering specialist.
21
-
22
- Tasks:
23
- 1. Search the knowledge base for relevant evidence.
24
- 2. Analyze retrieved snippets.
25
- 3. Provide an answer strictly grounded in that evidence.
26
-
27
- Tool usage:
28
- - Always call search_and_answer before drafting any answer.
29
- - The tool returns snippets with verbatim `text`, a relevance `score`, and the
30
- originating document identifier (document title if available, otherwise URI).
31
- - You may call the tool multiple times to refine or broaden context, but do not
32
- exceed 3 total calls. Favor precision over volume.
33
- - Use scores to prioritize evidence, but include only the minimal subset of
34
- snippet texts (verbatim) in SearchAnswer.context (typically 1‑4).
35
- - Set SearchAnswer.sources to the corresponding document identifiers for the
36
- snippets you used (title if available, otherwise URI; one per snippet; same
37
- order as context). Context must be text‑only.
38
- - If no relevant information is found, clearly say so and return an empty
39
- context list and sources list.
40
-
41
- Answering rules:
42
- - Be direct and specific; avoid meta commentary about the process.
43
- - Do not include any claims not supported by the provided snippets.
44
- - Prefer concise phrasing; avoid copying long passages.
45
- - When evidence is partial, state the limits explicitly in the answer."""
46
-
47
1
  INSIGHT_AGENT_PROMPT = """You are the insight aggregation specialist for the
48
2
  research workflow.
49
3
 
@@ -1111,7 +1111,7 @@ wheels = [
1111
1111
 
1112
1112
  [[package]]
1113
1113
  name = "haiku-rag"
1114
- version = "0.11.2"
1114
+ version = "0.11.3"
1115
1115
  source = { editable = "." }
1116
1116
  dependencies = [
1117
1117
  { name = "docling" },
@@ -1,28 +0,0 @@
1
- from haiku.rag.research.dependencies import ResearchContext, ResearchDependencies
2
- from haiku.rag.research.graph import (
3
- PlanNode,
4
- ResearchDeps,
5
- ResearchState,
6
- build_research_graph,
7
- )
8
- from haiku.rag.research.models import EvaluationResult, ResearchReport, SearchAnswer
9
- from haiku.rag.research.stream import (
10
- ResearchStateSnapshot,
11
- ResearchStreamEvent,
12
- stream_research_graph,
13
- )
14
-
15
- __all__ = [
16
- "ResearchDependencies",
17
- "ResearchContext",
18
- "SearchAnswer",
19
- "EvaluationResult",
20
- "ResearchReport",
21
- "ResearchDeps",
22
- "ResearchState",
23
- "PlanNode",
24
- "build_research_graph",
25
- "stream_research_graph",
26
- "ResearchStreamEvent",
27
- "ResearchStateSnapshot",
28
- ]
@@ -1,31 +0,0 @@
1
- from pydantic_graph import Graph
2
-
3
- from haiku.rag.research.models import ResearchReport
4
- from haiku.rag.research.nodes.analysis import AnalyzeInsightsNode, DecisionNode
5
- from haiku.rag.research.nodes.plan import PlanNode
6
- from haiku.rag.research.nodes.search import SearchDispatchNode
7
- from haiku.rag.research.nodes.synthesize import SynthesizeNode
8
- from haiku.rag.research.state import ResearchDeps, ResearchState
9
-
10
- __all__ = [
11
- "PlanNode",
12
- "SearchDispatchNode",
13
- "AnalyzeInsightsNode",
14
- "DecisionNode",
15
- "SynthesizeNode",
16
- "ResearchState",
17
- "ResearchDeps",
18
- "build_research_graph",
19
- ]
20
-
21
-
22
- def build_research_graph() -> Graph[ResearchState, ResearchDeps, ResearchReport]:
23
- return Graph(
24
- nodes=[
25
- PlanNode,
26
- SearchDispatchNode,
27
- AnalyzeInsightsNode,
28
- DecisionNode,
29
- SynthesizeNode,
30
- ]
31
- )
File without changes
File without changes
File without changes
File without changes