gymcts 1.4.0__tar.gz → 1.4.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. {gymcts-1.4.0/src/gymcts.egg-info → gymcts-1.4.2}/PKG-INFO +1 -1
  2. {gymcts-1.4.0 → gymcts-1.4.2}/pyproject.toml +1 -1
  3. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/gymcts_neural_agent.py +10 -10
  4. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/gymcts_node.py +2 -2
  5. {gymcts-1.4.0 → gymcts-1.4.2/src/gymcts.egg-info}/PKG-INFO +1 -1
  6. {gymcts-1.4.0 → gymcts-1.4.2}/LICENSE +0 -0
  7. {gymcts-1.4.0 → gymcts-1.4.2}/MANIFEST.in +0 -0
  8. {gymcts-1.4.0 → gymcts-1.4.2}/README.md +0 -0
  9. {gymcts-1.4.0 → gymcts-1.4.2}/setup.cfg +0 -0
  10. {gymcts-1.4.0 → gymcts-1.4.2}/setup.py +0 -0
  11. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/__init__.py +0 -0
  12. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/colorful_console_utils.py +0 -0
  13. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/gymcts_action_history_wrapper.py +0 -0
  14. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/gymcts_agent.py +0 -0
  15. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/gymcts_deepcopy_wrapper.py +0 -0
  16. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/gymcts_distributed_agent.py +0 -0
  17. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/gymcts_env_abc.py +0 -0
  18. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/gymcts_tree_plotter.py +0 -0
  19. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts/logger.py +0 -0
  20. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts.egg-info/SOURCES.txt +0 -0
  21. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts.egg-info/dependency_links.txt +0 -0
  22. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts.egg-info/not-zip-safe +0 -0
  23. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts.egg-info/requires.txt +0 -0
  24. {gymcts-1.4.0 → gymcts-1.4.2}/src/gymcts.egg-info/top_level.txt +0 -0
  25. {gymcts-1.4.0 → gymcts-1.4.2}/tests/test_graph_matrix_jsp_env.py +0 -0
  26. {gymcts-1.4.0 → gymcts-1.4.2}/tests/test_gymnasium_envs.py +0 -0
  27. {gymcts-1.4.0 → gymcts-1.4.2}/tests/test_number_of_visits.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: gymcts
3
- Version: 1.4.0
3
+ Version: 1.4.2
4
4
  Summary: A minimalistic implementation of the Monte Carlo Tree Search algorithm for planning problems fomulated as gymnaisum reinforcement learning environments.
5
5
  Author: Alexander Nasuta
6
6
  Author-email: Alexander Nasuta <alexander.nasuta@wzl-iqs.rwth-aachen.de>
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "gymcts"
7
- version = "1.4.0"
7
+ version = "1.4.2"
8
8
  description = "A minimalistic implementation of the Monte Carlo Tree Search algorithm for planning problems fomulated as gymnaisum reinforcement learning environments."
9
9
  readme = "README.md"
10
10
  authors = [{ name = "Alexander Nasuta", email = "alexander.nasuta@wzl-iqs.rwth-aachen.de" }]
@@ -126,15 +126,15 @@ class GymctsNeuralNode(GymctsNode):
126
126
  score_variate: Literal[
127
127
  "PUCT_v0",
128
128
  "PUCT_v1",
129
- "PUTC_v2",
130
- "PUTC_v3",
131
- "PUTC_v4",
132
- "PUTC_v5",
133
- "PUTC_v6",
134
- "PUTC_v7",
135
- "PUTC_v8",
136
- "PUTC_v9",
137
- "PUTC_v10",
129
+ "PUCT_v2",
130
+ "PUCT_v3",
131
+ "PUCT_v4",
132
+ "PUCT_v5",
133
+ "PUCT_v6",
134
+ "PUCT_v7",
135
+ "PUCT_v8",
136
+ "PUCT_v9",
137
+ "PUCT_v10",
138
138
  "MuZero_v0",
139
139
  "MuZero_v1",
140
140
  ] = "PUCT_v0"
@@ -227,7 +227,7 @@ class GymctsNeuralNode(GymctsNode):
227
227
  if not colored:
228
228
 
229
229
  if not self.is_root():
230
- return f"(a={self.action}, N={self.visit_count}, Q_v={self.mean_value:.2f}, best={self.max_value:.2f}, ubc={self.tree_policy_score():.2f})"
230
+ return f"(a={self.action}, N={self.visit_count}, Q_v={self.mean_value:.2f}, best={self.max_value:.2f}, {GymctsNeuralNode.score_variate}={self.tree_policy_score():.2f})"
231
231
  else:
232
232
  return f"(N={self.visit_count}, Q_v={self.mean_value:.2f}, best={self.max_value:.2f}) [root]"
233
233
 
@@ -61,7 +61,7 @@ class GymctsNode:
61
61
  if not colored:
62
62
 
63
63
  if not self.is_root():
64
- return f"(a={self.action}, N={self.visit_count}, Q_v={self.mean_value:.2f}, best={self.max_value:.2f}, ubc={self.tree_policy_score():.2f})"
64
+ return f"(a={self.action}, N={self.visit_count}, Q_v={self.mean_value:.2f}, best={self.max_value:.2f}, {GymctsNode.score_variate}={self.tree_policy_score():.2f})"
65
65
  else:
66
66
  return f"(N={self.visit_count}, Q_v={self.mean_value:.2f}, best={self.max_value:.2f}) [root]"
67
67
 
@@ -102,7 +102,7 @@ class GymctsNode:
102
102
  f"{p}N{e}={colorful_value(self.visit_count)}, "
103
103
  f"{p}Q_v{e}={ccu.wrap_with_color_scale(s=mean_val, value=self.mean_value, min_val=root_node.min_value, max_val=root_node.max_value)}, "
104
104
  f"{p}best{e}={colorful_value(self.max_value)}") +
105
- (f", {p}ubc{e}={colorful_value(self.tree_policy_score())})" if not self.is_root() else ")"))
105
+ (f", {p}{GymctsNode.score_variate}{e}={colorful_value(self.tree_policy_score())})" if not self.is_root() else ")"))
106
106
 
107
107
  def traverse_nodes(self) -> Generator[TGymctsNode, None, None]:
108
108
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: gymcts
3
- Version: 1.4.0
3
+ Version: 1.4.2
4
4
  Summary: A minimalistic implementation of the Monte Carlo Tree Search algorithm for planning problems fomulated as gymnaisum reinforcement learning environments.
5
5
  Author: Alexander Nasuta
6
6
  Author-email: Alexander Nasuta <alexander.nasuta@wzl-iqs.rwth-aachen.de>
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes