gyb-classification-model 0.1.4__tar.gz → 0.1.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. {gyb_classification_model-0.1.4/GYB_classification_model.egg-info → gyb_classification_model-0.1.6}/PKG-INFO +14 -10
  2. gyb_classification_model-0.1.6/README.md +23 -0
  3. {gyb_classification_model-0.1.4 → gyb_classification_model-0.1.6}/gyb_classification_model/predictor.py +6 -6
  4. {gyb_classification_model-0.1.4 → gyb_classification_model-0.1.6/gyb_classification_model.egg-info}/PKG-INFO +14 -10
  5. gyb_classification_model-0.1.6/gyb_classification_model.egg-info/SOURCES.txt +30 -0
  6. gyb_classification_model-0.1.6/models/MedicalReportClassifierV9.pkl +0 -0
  7. gyb_classification_model-0.1.6/models/MedicalReportLabelMapV9.pkl +0 -0
  8. gyb_classification_model-0.1.6/models/MedicalReportVectorizerV9.pkl +0 -0
  9. gyb_classification_model-0.1.6/models/textClassificationModelV28.pkl +0 -0
  10. gyb_classification_model-0.1.6/models/vectorizerV28.pkl +0 -0
  11. {gyb_classification_model-0.1.4 → gyb_classification_model-0.1.6}/setup.py +1 -1
  12. gyb_classification_model-0.1.6/test/test.py +9 -0
  13. gyb_classification_model-0.1.4/GYB_classification_model.egg-info/SOURCES.txt +0 -35
  14. gyb_classification_model-0.1.4/README.md +0 -19
  15. gyb_classification_model-0.1.4/models/MedicalReportClassifierV8.pkl +0 -0
  16. gyb_classification_model-0.1.4/models/MedicalReportLabelMapV8.pkl +0 -0
  17. gyb_classification_model-0.1.4/models/MedicalReportVectorizerV8.pkl +0 -0
  18. gyb_classification_model-0.1.4/models/textClassificationModelV27.pkl +0 -0
  19. gyb_classification_model-0.1.4/models/vectorizerV27.pkl +0 -0
  20. gyb_classification_model-0.1.4/test/test.py +0 -9
  21. {gyb_classification_model-0.1.4 → gyb_classification_model-0.1.6}/LICENSE +0 -0
  22. {gyb_classification_model-0.1.4 → gyb_classification_model-0.1.6}/MANIFEST.in +0 -0
  23. {gyb_classification_model-0.1.4 → gyb_classification_model-0.1.6}/gyb_classification_model/__init__.py +0 -0
  24. {gyb_classification_model-0.1.4/GYB_classification_model.egg-info → gyb_classification_model-0.1.6/gyb_classification_model.egg-info}/dependency_links.txt +0 -0
  25. {gyb_classification_model-0.1.4/GYB_classification_model.egg-info → gyb_classification_model-0.1.6/gyb_classification_model.egg-info}/requires.txt +0 -0
  26. {gyb_classification_model-0.1.4/GYB_classification_model.egg-info → gyb_classification_model-0.1.6/gyb_classification_model.egg-info}/top_level.txt +0 -0
  27. {gyb_classification_model-0.1.4 → gyb_classification_model-0.1.6}/models/OnlyDeliverSlipPharmOrderModelV4.pkl +0 -0
  28. {gyb_classification_model-0.1.4 → gyb_classification_model-0.1.6}/models/OnlyDeliverSlipPharmOrderVectorizerV4.pkl +0 -0
  29. {gyb_classification_model-0.1.4 → gyb_classification_model-0.1.6}/models/OnlyDeliverSlipPharmOrderlabel_mapV4.pkl +0 -0
  30. /gyb_classification_model-0.1.4/models/label_mapV27.pkl → /gyb_classification_model-0.1.6/models/label_mapV28.pkl +0 -0
  31. {gyb_classification_model-0.1.4 → gyb_classification_model-0.1.6}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: gyb-classification-model
3
- Version: 0.1.4
3
+ Version: 0.1.6
4
4
  Summary: ML classification models package
5
5
  Home-page: https://github.com/GreenBills/GYB-Classification-Model
6
6
  Author: Hrutik-M
@@ -23,22 +23,26 @@ Dynamic: requires-dist
23
23
  Dynamic: requires-python
24
24
  Dynamic: summary
25
25
 
26
- GYB Classification Model
26
+ # GYB Classification Model
27
27
 
28
- gyb_classification_model is a Python package for classifying medical documents.
29
- It provides a simple interface so you can run predictions directly on raw text.
28
+ `gyb_classification_model` is a Python package for classifying medical documents. It provides a simple interface so you can run predictions directly on raw text.
30
29
 
31
- 📦 Installation
30
+ ## 📦 Installation
31
+
32
+ ```bash
32
33
  pip install gyb-classification-model
34
+ ```
33
35
 
36
+ ## 🚀 Usage
34
37
 
35
- 🚀 Usage
38
+ ```python
36
39
  from gyb_classification_model import predictor
37
40
 
38
41
  text = '''
39
- 18 19 20 L.HAIG BEMBRY SIDER,JEFFREY # 3 Left Shoulder Arthroscopy 7/24/2025
40
- '''
42
+ 18 19 20 L.HAIG BEMBRY SIDER,JEFFREY # 3 Left Shoulder Arthroscopy 7/24/2025
43
+ '''
41
44
 
42
- predictor = predictor.predict_text(text)
45
+ prediction = predictor.predict_text(text)
43
46
 
44
- print(predictor)
47
+ print(prediction)
48
+ ```
@@ -0,0 +1,23 @@
1
+ # GYB Classification Model
2
+
3
+ `gyb_classification_model` is a Python package for classifying medical documents. It provides a simple interface so you can run predictions directly on raw text.
4
+
5
+ ## 📦 Installation
6
+
7
+ ```bash
8
+ pip install gyb-classification-model
9
+ ```
10
+
11
+ ## 🚀 Usage
12
+
13
+ ```python
14
+ from gyb_classification_model import predictor
15
+
16
+ text = '''
17
+ 18 19 20 L.HAIG BEMBRY SIDER,JEFFREY # 3 Left Shoulder Arthroscopy 7/24/2025
18
+ '''
19
+
20
+ prediction = predictor.predict_text(text)
21
+
22
+ print(prediction)
23
+ ```
@@ -17,13 +17,13 @@ script_dir = os.path.dirname(os.path.abspath(__file__))
17
17
  base_path = os.path.abspath(os.path.join(script_dir, '../models'))
18
18
 
19
19
  # Load files
20
- with open(os.path.join(base_path, "vectorizerV27.pkl"), "rb") as f:
20
+ with open(os.path.join(base_path, "vectorizerV28.pkl"), "rb") as f:
21
21
  tfidf_vectorizer = pickle.load(f)
22
22
 
23
- with open(os.path.join(base_path, "label_mapV27.pkl"), "rb") as f:
23
+ with open(os.path.join(base_path, "label_mapV28.pkl"), "rb") as f:
24
24
  reverse_label_map = pickle.load(f)
25
25
 
26
- with open(os.path.join(base_path, "textClassificationModelV27.pkl"), "rb") as f:
26
+ with open(os.path.join(base_path, "textClassificationModelV28.pkl"), "rb") as f:
27
27
  model = pickle.load(f)
28
28
 
29
29
 
@@ -39,13 +39,13 @@ with open(os.path.join(base_path, "OnlyDeliverSlipPharmOrderModelV4.pkl"), "rb")
39
39
 
40
40
 
41
41
  # Load files for Medical Reports
42
- with open(os.path.join(base_path, "MedicalReportVectorizerV8.pkl"), "rb") as f:
42
+ with open(os.path.join(base_path, "MedicalReportVectorizerV9.pkl"), "rb") as f:
43
43
  medical_vectorizer = pickle.load(f)
44
44
 
45
- with open(os.path.join(base_path, "MedicalReportLabelMapV8.pkl"), "rb") as f:
45
+ with open(os.path.join(base_path, "MedicalReportLabelMapV9.pkl"), "rb") as f:
46
46
  reverse_medical_map = pickle.load(f)
47
47
 
48
- with open(os.path.join(base_path, "MedicalReportClassifierV8.pkl"), "rb") as f:
48
+ with open(os.path.join(base_path, "MedicalReportClassifierV9.pkl"), "rb") as f:
49
49
  medical_model = pickle.load(f)
50
50
 
51
51
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: gyb-classification-model
3
- Version: 0.1.4
3
+ Version: 0.1.6
4
4
  Summary: ML classification models package
5
5
  Home-page: https://github.com/GreenBills/GYB-Classification-Model
6
6
  Author: Hrutik-M
@@ -23,22 +23,26 @@ Dynamic: requires-dist
23
23
  Dynamic: requires-python
24
24
  Dynamic: summary
25
25
 
26
- GYB Classification Model
26
+ # GYB Classification Model
27
27
 
28
- gyb_classification_model is a Python package for classifying medical documents.
29
- It provides a simple interface so you can run predictions directly on raw text.
28
+ `gyb_classification_model` is a Python package for classifying medical documents. It provides a simple interface so you can run predictions directly on raw text.
30
29
 
31
- 📦 Installation
30
+ ## 📦 Installation
31
+
32
+ ```bash
32
33
  pip install gyb-classification-model
34
+ ```
33
35
 
36
+ ## 🚀 Usage
34
37
 
35
- 🚀 Usage
38
+ ```python
36
39
  from gyb_classification_model import predictor
37
40
 
38
41
  text = '''
39
- 18 19 20 L.HAIG BEMBRY SIDER,JEFFREY # 3 Left Shoulder Arthroscopy 7/24/2025
40
- '''
42
+ 18 19 20 L.HAIG BEMBRY SIDER,JEFFREY # 3 Left Shoulder Arthroscopy 7/24/2025
43
+ '''
41
44
 
42
- predictor = predictor.predict_text(text)
45
+ prediction = predictor.predict_text(text)
43
46
 
44
- print(predictor)
47
+ print(prediction)
48
+ ```
@@ -0,0 +1,30 @@
1
+ LICENSE
2
+ MANIFEST.in
3
+ README.md
4
+ setup.py
5
+ gyb_classification_model/__init__.py
6
+ gyb_classification_model/predictor.py
7
+ gyb_classification_model.egg-info/PKG-INFO
8
+ gyb_classification_model.egg-info/SOURCES.txt
9
+ gyb_classification_model.egg-info/dependency_links.txt
10
+ gyb_classification_model.egg-info/requires.txt
11
+ gyb_classification_model.egg-info/top_level.txt
12
+ gyb_classification_model/../models/MedicalReportClassifierV9.pkl
13
+ gyb_classification_model/../models/MedicalReportLabelMapV9.pkl
14
+ gyb_classification_model/../models/MedicalReportVectorizerV9.pkl
15
+ gyb_classification_model/../models/OnlyDeliverSlipPharmOrderModelV4.pkl
16
+ gyb_classification_model/../models/OnlyDeliverSlipPharmOrderVectorizerV4.pkl
17
+ gyb_classification_model/../models/OnlyDeliverSlipPharmOrderlabel_mapV4.pkl
18
+ gyb_classification_model/../models/label_mapV28.pkl
19
+ gyb_classification_model/../models/textClassificationModelV28.pkl
20
+ gyb_classification_model/../models/vectorizerV28.pkl
21
+ models/MedicalReportClassifierV9.pkl
22
+ models/MedicalReportLabelMapV9.pkl
23
+ models/MedicalReportVectorizerV9.pkl
24
+ models/OnlyDeliverSlipPharmOrderModelV4.pkl
25
+ models/OnlyDeliverSlipPharmOrderVectorizerV4.pkl
26
+ models/OnlyDeliverSlipPharmOrderlabel_mapV4.pkl
27
+ models/label_mapV28.pkl
28
+ models/textClassificationModelV28.pkl
29
+ models/vectorizerV28.pkl
30
+ test/test.py
@@ -6,7 +6,7 @@ long_description = (curr_directory / "README.md").read_text()
6
6
 
7
7
  setup(
8
8
  name='gyb-classification-model', # Package name (what you'll pip install)
9
- version='0.1.4',
9
+ version='0.1.6',
10
10
  author='Hrutik-M',
11
11
  author_email='hrutik.m@codearray.tech',
12
12
  description='ML classification models package',
@@ -0,0 +1,9 @@
1
+ from gyb_classification_model import predictor
2
+
3
+ text = "WERT MEDICAL CARE P.C. PRIMARY SURGEON: MATTHEW WERT MD, SANFORD WERT MD ASSISTANT SURGEON: MATTHEW WERT MD, SANFORD WERT MD, JESSE INKLES PA-C, HANNAH ECKSTEIN PA-C, CHRISTOPHER CARROLL PA-C, I. Wert PA-C INSURANCE (NF,) WC, PVT, LEIN, FUND) LS FAHMY, DIANA DOB:09/07/1989 (35) DOS:08/11/2025 Sex:Female MRN:4343 Physician: Wert, Matthew CPT SHOULDER (RT or LT or BILATERAL) 1 0.5 23472 Total Shoulder Arthroplasty 23700 Manipulation of shoulder joint (anesthesia) 813.77 406.89 29806 Arthroscopy, shoulder, surgical; capsulorrhaphy (Bankart Arthroscopy) 2698.28 1349.14 29807 Arthroscopy, repair of SLAP lesion 2738.59 1369.30 29819 Arthroscopy, surgical w/ removal of loose body or foreign body 1957.57 978.79 29820 Synovectomy, limited 1791.29 895.65 29821 Synovectomy, complete 1957.57 978.79 29822 Shoulder Arthroscopy / debridement, limited (2-3 Areas) Labrum Tear Chondromalacia GH Joint 1902.15 951.07 29823 Debridement, extensive (3 ormore areas) 2065.91 1032.96 29824 Arthroscopy, shoulder, surgical; distal claviculectomy including distal articular surface (Mumford procedure) 1305.05 652.53 29825 Lysis and resection of adhesions, w/ or w/o manipulation 2060.87 1030.44 29826 Decompression of subacromial space with partial acromioplasty w/ or w/o coracoacromial release 496.32 248.16 29827 Arthroscopy, shoulder, surgical; with rotator cuff repair 2348.08 1174.04 20610 Shoulder Injection 62.99 31.50 OTHER (PLEASE CODE) TOTAL CPT ANKLE / FOOT (RT or LT or BILATERAL) 1 0.5 27814 Open treatment of bimalleolar fracture 2174.24 1087.12 27792 Open treatment of Lateral malleolus fracture 1957.57 978.76 29897 Arthroscopy, ankle, surgical 1791.29 895.65 29894 Arthroscopic removal of loose body or foreign body 1892.07 946.04 29895 Synovectomy, partial 1791.29 895.65 29898 Debridement, extensive 1957.57 978.79 27829 Ankle syndesmosis repair 1305.05 652.53 29891 Excision of OCD lesion 2632.77 1316.39 27650 Achilles tendon repair 1957.57 978.79 OTHER (PLEASE CODE) TOTAL Partial RIC/Subscap Tear Labrum Tear Chondromalacia GH Joint Partial RTC/Subscap Tear "
4
+
5
+ processed_text = predictor.preprocess_text(text)
6
+ category = predictor.predict_text(processed_text)
7
+
8
+ print(category['category'])
9
+
@@ -1,35 +0,0 @@
1
- LICENSE
2
- MANIFEST.in
3
- README.md
4
- setup.py
5
- GYB_classification_model.egg-info/PKG-INFO
6
- GYB_classification_model.egg-info/SOURCES.txt
7
- GYB_classification_model.egg-info/dependency_links.txt
8
- GYB_classification_model.egg-info/requires.txt
9
- GYB_classification_model.egg-info/top_level.txt
10
- gyb_classification_model/__init__.py
11
- gyb_classification_model/predictor.py
12
- gyb_classification_model.egg-info/PKG-INFO
13
- gyb_classification_model.egg-info/SOURCES.txt
14
- gyb_classification_model.egg-info/dependency_links.txt
15
- gyb_classification_model.egg-info/requires.txt
16
- gyb_classification_model.egg-info/top_level.txt
17
- gyb_classification_model/../models/MedicalReportClassifierV8.pkl
18
- gyb_classification_model/../models/MedicalReportLabelMapV8.pkl
19
- gyb_classification_model/../models/MedicalReportVectorizerV8.pkl
20
- gyb_classification_model/../models/OnlyDeliverSlipPharmOrderModelV4.pkl
21
- gyb_classification_model/../models/OnlyDeliverSlipPharmOrderVectorizerV4.pkl
22
- gyb_classification_model/../models/OnlyDeliverSlipPharmOrderlabel_mapV4.pkl
23
- gyb_classification_model/../models/label_mapV27.pkl
24
- gyb_classification_model/../models/textClassificationModelV27.pkl
25
- gyb_classification_model/../models/vectorizerV27.pkl
26
- models/MedicalReportClassifierV8.pkl
27
- models/MedicalReportLabelMapV8.pkl
28
- models/MedicalReportVectorizerV8.pkl
29
- models/OnlyDeliverSlipPharmOrderModelV4.pkl
30
- models/OnlyDeliverSlipPharmOrderVectorizerV4.pkl
31
- models/OnlyDeliverSlipPharmOrderlabel_mapV4.pkl
32
- models/label_mapV27.pkl
33
- models/textClassificationModelV27.pkl
34
- models/vectorizerV27.pkl
35
- test/test.py
@@ -1,19 +0,0 @@
1
- GYB Classification Model
2
-
3
- gyb_classification_model is a Python package for classifying medical documents.
4
- It provides a simple interface so you can run predictions directly on raw text.
5
-
6
- 📦 Installation
7
- pip install gyb-classification-model
8
-
9
-
10
- 🚀 Usage
11
- from gyb_classification_model import predictor
12
-
13
- text = '''
14
- 18 19 20 L.HAIG BEMBRY SIDER,JEFFREY # 3 Left Shoulder Arthroscopy 7/24/2025
15
- '''
16
-
17
- predictor = predictor.predict_text(text)
18
-
19
- print(predictor)
@@ -1,9 +0,0 @@
1
- from gyb_classification_model import predictor
2
-
3
- text = "AOB"
4
-
5
- processed_text = predictor.preprocess_text(text)
6
- category = predictor.predict_text(processed_text)
7
-
8
- print(category['category'])
9
-