gyb-classification-model 0.1.2__tar.gz → 0.1.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. gyb_classification_model-0.1.4/GYB_classification_model.egg-info/PKG-INFO +44 -0
  2. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/GYB_classification_model.egg-info/SOURCES.txt +12 -12
  3. gyb_classification_model-0.1.4/PKG-INFO +44 -0
  4. gyb_classification_model-0.1.4/README.md +19 -0
  5. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/gyb_classification_model/predictor.py +6 -6
  6. gyb_classification_model-0.1.4/models/MedicalReportClassifierV8.pkl +0 -0
  7. gyb_classification_model-0.1.2/models/MedicalReportLabelMapV6.pkl → gyb_classification_model-0.1.4/models/MedicalReportLabelMapV8.pkl +0 -0
  8. gyb_classification_model-0.1.4/models/MedicalReportVectorizerV8.pkl +0 -0
  9. gyb_classification_model-0.1.4/models/textClassificationModelV27.pkl +0 -0
  10. gyb_classification_model-0.1.4/models/vectorizerV27.pkl +0 -0
  11. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/setup.py +8 -1
  12. gyb_classification_model-0.1.2/GYB_classification_model.egg-info/PKG-INFO +0 -19
  13. gyb_classification_model-0.1.2/PKG-INFO +0 -19
  14. gyb_classification_model-0.1.2/README.md +0 -14
  15. gyb_classification_model-0.1.2/models/MedicalReportClassifierV6.pkl +0 -0
  16. gyb_classification_model-0.1.2/models/MedicalReportVectorizerV6.pkl +0 -0
  17. gyb_classification_model-0.1.2/models/textClassificationModelV26.pkl +0 -0
  18. gyb_classification_model-0.1.2/models/vectorizerV26.pkl +0 -0
  19. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/GYB_classification_model.egg-info/dependency_links.txt +0 -0
  20. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/GYB_classification_model.egg-info/requires.txt +0 -0
  21. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/GYB_classification_model.egg-info/top_level.txt +0 -0
  22. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/LICENSE +0 -0
  23. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/MANIFEST.in +0 -0
  24. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/gyb_classification_model/__init__.py +0 -0
  25. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/models/OnlyDeliverSlipPharmOrderModelV4.pkl +0 -0
  26. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/models/OnlyDeliverSlipPharmOrderVectorizerV4.pkl +0 -0
  27. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/models/OnlyDeliverSlipPharmOrderlabel_mapV4.pkl +0 -0
  28. /gyb_classification_model-0.1.2/models/label_mapV26.pkl → /gyb_classification_model-0.1.4/models/label_mapV27.pkl +0 -0
  29. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/setup.cfg +0 -0
  30. {gyb_classification_model-0.1.2 → gyb_classification_model-0.1.4}/test/test.py +0 -0
@@ -0,0 +1,44 @@
1
+ Metadata-Version: 2.4
2
+ Name: gyb-classification-model
3
+ Version: 0.1.4
4
+ Summary: ML classification models package
5
+ Home-page: https://github.com/GreenBills/GYB-Classification-Model
6
+ Author: Hrutik-M
7
+ Author-email: hrutik.m@codearray.tech
8
+ Requires-Python: >=3.10
9
+ Description-Content-Type: text/markdown
10
+ License-File: LICENSE
11
+ Requires-Dist: pandas==2.2.3
12
+ Requires-Dist: scikit-learn==1.6.1
13
+ Requires-Dist: seaborn==0.13.2
14
+ Requires-Dist: nltk==3.9.1
15
+ Requires-Dist: xgboost==3.0.0
16
+ Dynamic: author
17
+ Dynamic: author-email
18
+ Dynamic: description
19
+ Dynamic: description-content-type
20
+ Dynamic: home-page
21
+ Dynamic: license-file
22
+ Dynamic: requires-dist
23
+ Dynamic: requires-python
24
+ Dynamic: summary
25
+
26
+ GYB Classification Model
27
+
28
+ gyb_classification_model is a Python package for classifying medical documents.
29
+ It provides a simple interface so you can run predictions directly on raw text.
30
+
31
+ 📦 Installation
32
+ pip install gyb-classification-model
33
+
34
+
35
+ 🚀 Usage
36
+ from gyb_classification_model import predictor
37
+
38
+ text = '''
39
+ 18 19 20 L.HAIG BEMBRY SIDER,JEFFREY # 3 Left Shoulder Arthroscopy 7/24/2025
40
+ '''
41
+
42
+ predictor = predictor.predict_text(text)
43
+
44
+ print(predictor)
@@ -14,22 +14,22 @@ gyb_classification_model.egg-info/SOURCES.txt
14
14
  gyb_classification_model.egg-info/dependency_links.txt
15
15
  gyb_classification_model.egg-info/requires.txt
16
16
  gyb_classification_model.egg-info/top_level.txt
17
- gyb_classification_model/../models/MedicalReportClassifierV6.pkl
18
- gyb_classification_model/../models/MedicalReportLabelMapV6.pkl
19
- gyb_classification_model/../models/MedicalReportVectorizerV6.pkl
17
+ gyb_classification_model/../models/MedicalReportClassifierV8.pkl
18
+ gyb_classification_model/../models/MedicalReportLabelMapV8.pkl
19
+ gyb_classification_model/../models/MedicalReportVectorizerV8.pkl
20
20
  gyb_classification_model/../models/OnlyDeliverSlipPharmOrderModelV4.pkl
21
21
  gyb_classification_model/../models/OnlyDeliverSlipPharmOrderVectorizerV4.pkl
22
22
  gyb_classification_model/../models/OnlyDeliverSlipPharmOrderlabel_mapV4.pkl
23
- gyb_classification_model/../models/label_mapV26.pkl
24
- gyb_classification_model/../models/textClassificationModelV26.pkl
25
- gyb_classification_model/../models/vectorizerV26.pkl
26
- models/MedicalReportClassifierV6.pkl
27
- models/MedicalReportLabelMapV6.pkl
28
- models/MedicalReportVectorizerV6.pkl
23
+ gyb_classification_model/../models/label_mapV27.pkl
24
+ gyb_classification_model/../models/textClassificationModelV27.pkl
25
+ gyb_classification_model/../models/vectorizerV27.pkl
26
+ models/MedicalReportClassifierV8.pkl
27
+ models/MedicalReportLabelMapV8.pkl
28
+ models/MedicalReportVectorizerV8.pkl
29
29
  models/OnlyDeliverSlipPharmOrderModelV4.pkl
30
30
  models/OnlyDeliverSlipPharmOrderVectorizerV4.pkl
31
31
  models/OnlyDeliverSlipPharmOrderlabel_mapV4.pkl
32
- models/label_mapV26.pkl
33
- models/textClassificationModelV26.pkl
34
- models/vectorizerV26.pkl
32
+ models/label_mapV27.pkl
33
+ models/textClassificationModelV27.pkl
34
+ models/vectorizerV27.pkl
35
35
  test/test.py
@@ -0,0 +1,44 @@
1
+ Metadata-Version: 2.4
2
+ Name: gyb-classification-model
3
+ Version: 0.1.4
4
+ Summary: ML classification models package
5
+ Home-page: https://github.com/GreenBills/GYB-Classification-Model
6
+ Author: Hrutik-M
7
+ Author-email: hrutik.m@codearray.tech
8
+ Requires-Python: >=3.10
9
+ Description-Content-Type: text/markdown
10
+ License-File: LICENSE
11
+ Requires-Dist: pandas==2.2.3
12
+ Requires-Dist: scikit-learn==1.6.1
13
+ Requires-Dist: seaborn==0.13.2
14
+ Requires-Dist: nltk==3.9.1
15
+ Requires-Dist: xgboost==3.0.0
16
+ Dynamic: author
17
+ Dynamic: author-email
18
+ Dynamic: description
19
+ Dynamic: description-content-type
20
+ Dynamic: home-page
21
+ Dynamic: license-file
22
+ Dynamic: requires-dist
23
+ Dynamic: requires-python
24
+ Dynamic: summary
25
+
26
+ GYB Classification Model
27
+
28
+ gyb_classification_model is a Python package for classifying medical documents.
29
+ It provides a simple interface so you can run predictions directly on raw text.
30
+
31
+ 📦 Installation
32
+ pip install gyb-classification-model
33
+
34
+
35
+ 🚀 Usage
36
+ from gyb_classification_model import predictor
37
+
38
+ text = '''
39
+ 18 19 20 L.HAIG BEMBRY SIDER,JEFFREY # 3 Left Shoulder Arthroscopy 7/24/2025
40
+ '''
41
+
42
+ predictor = predictor.predict_text(text)
43
+
44
+ print(predictor)
@@ -0,0 +1,19 @@
1
+ GYB Classification Model
2
+
3
+ gyb_classification_model is a Python package for classifying medical documents.
4
+ It provides a simple interface so you can run predictions directly on raw text.
5
+
6
+ 📦 Installation
7
+ pip install gyb-classification-model
8
+
9
+
10
+ 🚀 Usage
11
+ from gyb_classification_model import predictor
12
+
13
+ text = '''
14
+ 18 19 20 L.HAIG BEMBRY SIDER,JEFFREY # 3 Left Shoulder Arthroscopy 7/24/2025
15
+ '''
16
+
17
+ predictor = predictor.predict_text(text)
18
+
19
+ print(predictor)
@@ -17,13 +17,13 @@ script_dir = os.path.dirname(os.path.abspath(__file__))
17
17
  base_path = os.path.abspath(os.path.join(script_dir, '../models'))
18
18
 
19
19
  # Load files
20
- with open(os.path.join(base_path, "vectorizerV26.pkl"), "rb") as f:
20
+ with open(os.path.join(base_path, "vectorizerV27.pkl"), "rb") as f:
21
21
  tfidf_vectorizer = pickle.load(f)
22
22
 
23
- with open(os.path.join(base_path, "label_mapV26.pkl"), "rb") as f:
23
+ with open(os.path.join(base_path, "label_mapV27.pkl"), "rb") as f:
24
24
  reverse_label_map = pickle.load(f)
25
25
 
26
- with open(os.path.join(base_path, "textClassificationModelV26.pkl"), "rb") as f:
26
+ with open(os.path.join(base_path, "textClassificationModelV27.pkl"), "rb") as f:
27
27
  model = pickle.load(f)
28
28
 
29
29
 
@@ -39,13 +39,13 @@ with open(os.path.join(base_path, "OnlyDeliverSlipPharmOrderModelV4.pkl"), "rb")
39
39
 
40
40
 
41
41
  # Load files for Medical Reports
42
- with open(os.path.join(base_path, "MedicalReportVectorizerV6.pkl"), "rb") as f:
42
+ with open(os.path.join(base_path, "MedicalReportVectorizerV8.pkl"), "rb") as f:
43
43
  medical_vectorizer = pickle.load(f)
44
44
 
45
- with open(os.path.join(base_path, "MedicalReportLabelMapV6.pkl"), "rb") as f:
45
+ with open(os.path.join(base_path, "MedicalReportLabelMapV8.pkl"), "rb") as f:
46
46
  reverse_medical_map = pickle.load(f)
47
47
 
48
- with open(os.path.join(base_path, "MedicalReportClassifierV6.pkl"), "rb") as f:
48
+ with open(os.path.join(base_path, "MedicalReportClassifierV8.pkl"), "rb") as f:
49
49
  medical_model = pickle.load(f)
50
50
 
51
51
 
@@ -1,11 +1,18 @@
1
1
  from setuptools import setup, find_packages
2
+ from pathlib import Path
3
+
4
+ curr_directory = Path(__file__).parent
5
+ long_description = (curr_directory / "README.md").read_text()
2
6
 
3
7
  setup(
4
8
  name='gyb-classification-model', # Package name (what you'll pip install)
5
- version='0.1.2',
9
+ version='0.1.4',
6
10
  author='Hrutik-M',
7
11
  author_email='hrutik.m@codearray.tech',
8
12
  description='ML classification models package',
13
+ long_description=long_description,
14
+ long_description_content_type="text/markdown",
15
+ url="https://github.com/GreenBills/GYB-Classification-Model",
9
16
  packages=find_packages(),
10
17
  include_package_data=True,
11
18
  package_data={
@@ -1,19 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: gyb-classification-model
3
- Version: 0.1.2
4
- Summary: ML classification models package
5
- Author: Hrutik-M
6
- Author-email: hrutik.m@codearray.tech
7
- Requires-Python: >=3.10
8
- License-File: LICENSE
9
- Requires-Dist: pandas==2.2.3
10
- Requires-Dist: scikit-learn==1.6.1
11
- Requires-Dist: seaborn==0.13.2
12
- Requires-Dist: nltk==3.9.1
13
- Requires-Dist: xgboost==3.0.0
14
- Dynamic: author
15
- Dynamic: author-email
16
- Dynamic: license-file
17
- Dynamic: requires-dist
18
- Dynamic: requires-python
19
- Dynamic: summary
@@ -1,19 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: gyb-classification-model
3
- Version: 0.1.2
4
- Summary: ML classification models package
5
- Author: Hrutik-M
6
- Author-email: hrutik.m@codearray.tech
7
- Requires-Python: >=3.10
8
- License-File: LICENSE
9
- Requires-Dist: pandas==2.2.3
10
- Requires-Dist: scikit-learn==1.6.1
11
- Requires-Dist: seaborn==0.13.2
12
- Requires-Dist: nltk==3.9.1
13
- Requires-Dist: xgboost==3.0.0
14
- Dynamic: author
15
- Dynamic: author-email
16
- Dynamic: license-file
17
- Dynamic: requires-dist
18
- Dynamic: requires-python
19
- Dynamic: summary
@@ -1,14 +0,0 @@
1
- # GYB-Classification-Model
2
- Classification Model
3
-
4
- Installation steps
5
- - pip install git+https://github.com/GreenBills/GYB-Classification-Model.git@main
6
-
7
- Update Models
8
- - pip install --upgrade build setuptools wheel
9
- - python -m build
10
-
11
- For pypi
12
- - pip install --upgrade build twine
13
- - python -m build
14
- - twine upload dist/*