graphiti-core 0.8.1__tar.gz → 0.8.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of graphiti-core might be problematic. Click here for more details.
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/PKG-INFO +35 -32
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/README.md +34 -31
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/models/nodes/node_db_queries.py +2 -2
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/pyproject.toml +1 -1
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/LICENSE +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/cross_encoder/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/cross_encoder/bge_reranker_client.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/cross_encoder/client.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/cross_encoder/openai_reranker_client.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/edges.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/embedder/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/embedder/client.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/embedder/openai.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/embedder/voyage.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/errors.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/graphiti.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/helpers.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/llm_client/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/llm_client/anthropic_client.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/llm_client/client.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/llm_client/config.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/llm_client/errors.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/llm_client/groq_client.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/llm_client/openai_client.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/llm_client/openai_generic_client.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/llm_client/utils.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/models/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/models/edges/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/models/edges/edge_db_queries.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/models/nodes/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/nodes.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/dedupe_edges.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/dedupe_nodes.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/eval.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/extract_edge_dates.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/extract_edges.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/extract_nodes.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/invalidate_edges.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/lib.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/models.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/prompt_helpers.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/prompts/summarize_nodes.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/py.typed +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/search/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/search/search.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/search/search_config.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/search/search_config_recipes.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/search/search_filters.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/search/search_utils.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/bulk_utils.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/datetime_utils.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/__init__.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/community_operations.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/edge_operations.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/graph_data_operations.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/node_operations.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/temporal_operations.py +0 -0
- {graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/utils.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: graphiti-core
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.2
|
|
4
4
|
Summary: A temporal graph building library
|
|
5
5
|
License: Apache-2.0
|
|
6
6
|
Author: Paul Paliychuk
|
|
@@ -29,7 +29,7 @@ Description-Content-Type: text/markdown
|
|
|
29
29
|
<h1 align="center">
|
|
30
30
|
Graphiti
|
|
31
31
|
</h1>
|
|
32
|
-
<h2 align="center">
|
|
32
|
+
<h2 align="center"> Build Real-Time Knowledge Graphs for AI Agents</h2>
|
|
33
33
|
<br />
|
|
34
34
|
|
|
35
35
|
[](https://discord.com/invite/W8Kw6bsgXQ)
|
|
@@ -41,9 +41,13 @@ Graphiti
|
|
|
41
41
|
:star: _Help us reach more developers and grow the Graphiti community. Star this repo!_
|
|
42
42
|
<br />
|
|
43
43
|
|
|
44
|
-
Graphiti
|
|
45
|
-
|
|
46
|
-
|
|
44
|
+
Graphiti is a framework for building and querying temporally-aware knowledge graphs, specifically tailored for AI agents operating in dynamic environments. Unlike traditional retrieval-augmented generation (RAG) methods, Graphiti continuously integrates user interactions, structured and unstructured enterprise data, and external information into a coherent, queryable graph. The framework supports incremental data updates, efficient retrieval, and precise historical queries without requiring complete graph recomputation, making it suitable for developing interactive, context-aware AI applications.
|
|
45
|
+
|
|
46
|
+
Use Graphiti to:
|
|
47
|
+
|
|
48
|
+
- Integrate and maintain dynamic user interactions and business data.
|
|
49
|
+
- Facilitate state-based reasoning and task automation for agents.
|
|
50
|
+
- Query complex, evolving data with semantic, keyword, and graph-based search methods.
|
|
47
51
|
|
|
48
52
|
<br />
|
|
49
53
|
|
|
@@ -53,23 +57,14 @@ a fusion of time, full-text, semantic, and graph algorithm approaches, effective
|
|
|
53
57
|
|
|
54
58
|
<br />
|
|
55
59
|
|
|
56
|
-
|
|
57
|
-
interconnected facts, such as _“Kendra loves Adidas shoes.”_ Each fact is a “triplet” represented by two entities, or
|
|
60
|
+
A knowledge graph is a network of interconnected facts, such as _“Kendra loves Adidas shoes.”_ Each fact is a “triplet” represented by two entities, or
|
|
58
61
|
nodes (_”Kendra”_, _“Adidas shoes”_), and their relationship, or edge (_”loves”_). Knowledge Graphs have been explored
|
|
59
62
|
extensively for information retrieval. What makes Graphiti unique is its ability to autonomously build a knowledge graph
|
|
60
63
|
while handling changing relationships and maintaining historical context.
|
|
61
64
|
|
|
62
|
-
With Graphiti, you can build LLM applications such as:
|
|
63
|
-
|
|
64
|
-
- Assistants that learn from user interactions, fusing personal knowledge with dynamic data from business systems like
|
|
65
|
-
CRMs and billing platforms through robust conversation history management.
|
|
66
|
-
- Agents that autonomously execute complex tasks, reasoning with state changes from multiple dynamic sources through persistent memory.
|
|
67
|
-
|
|
68
|
-
Graphiti supports a wide range of applications in sales, customer service, health, finance, and more, enabling long-term recall and state-based reasoning for both assistants and agents.
|
|
69
|
-
|
|
70
65
|
## Graphiti and Zep Memory
|
|
71
66
|
|
|
72
|
-
Graphiti powers the core of [Zep's memory layer](https://www.getzep.com) for
|
|
67
|
+
Graphiti powers the core of [Zep's memory layer](https://www.getzep.com) for AI Agents.
|
|
73
68
|
|
|
74
69
|
Using Graphiti, we've demonstrated Zep is
|
|
75
70
|
the [State of the Art in Agent Memory](https://blog.getzep.com/state-of-the-art-agent-memory/).
|
|
@@ -84,28 +79,35 @@ We're excited to open-source Graphiti, believing its potential reaches far beyon
|
|
|
84
79
|
|
|
85
80
|
## Why Graphiti?
|
|
86
81
|
|
|
87
|
-
|
|
88
|
-
document corpus and making this representation available via semantic and graph search techniques. However, GraphRAG did
|
|
89
|
-
not address our core problem: It's primarily designed for static documents and doesn't inherently handle temporal
|
|
90
|
-
aspects of data.
|
|
82
|
+
Traditional RAG approaches often rely on batch processing and static data summarization, making them inefficient for frequently changing data. Graphiti addresses these challenges by providing:
|
|
91
83
|
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
- **
|
|
96
|
-
|
|
97
|
-
- **Episodic Processing:** Ingests data as discrete episodes, maintaining data provenance and allowing incremental
|
|
98
|
-
entity and relationship extraction, ideal for chat state management.
|
|
99
|
-
- **Hybrid Search:** Combines semantic and BM25 full-text search, with the ability to rerank results by distance from a
|
|
100
|
-
central node e.g. "Kendra".
|
|
101
|
-
- **Scalable:** Designed for processing large datasets, with parallelization of LLM calls for bulk processing while
|
|
102
|
-
preserving the chronology of events and enabling efficient knowledge retrieval.
|
|
103
|
-
- **Supports Varied Sources:** Can ingest both unstructured text and structured JSON data.
|
|
84
|
+
- **Real-Time Incremental Updates:** Immediate integration of new data episodes without batch recomputation.
|
|
85
|
+
- **Bi-Temporal Data Model:** Explicit tracking of event occurrence and ingestion times, allowing accurate point-in-time queries.
|
|
86
|
+
- **Efficient Hybrid Retrieval:** Combines semantic embeddings, keyword (BM25), and graph traversal to achieve low-latency queries without reliance on LLM summarization.
|
|
87
|
+
- **Custom Entity Definitions:** Flexible ontology creation and support for developer-defined entities through straightforward Pydantic models.
|
|
88
|
+
- **Scalability:** Efficiently manages large datasets with parallel processing, suitable for enterprise environments.
|
|
104
89
|
|
|
105
90
|
<p align="center">
|
|
106
91
|
<img src="/images/graphiti-intro-slides-stock-2.gif" alt="Graphiti structured + unstructured demo" width="700px">
|
|
107
92
|
</p>
|
|
108
93
|
|
|
94
|
+
## Graphiti vs. GraphRAG
|
|
95
|
+
|
|
96
|
+
| Aspect | GraphRAG | Graphiti |
|
|
97
|
+
| -------------------------- | ------------------------------------- | ------------------------------------------------ |
|
|
98
|
+
| **Primary Use** | Static document summarization | Dynamic data management |
|
|
99
|
+
| **Data Handling** | Batch-oriented processing | Continuous, incremental updates |
|
|
100
|
+
| **Knowledge Structure** | Entity clusters & community summaries | Episodic data, semantic entities, communities |
|
|
101
|
+
| **Retrieval Method** | Sequential LLM summarization | Hybrid semantic, keyword, and graph-based search |
|
|
102
|
+
| **Adaptability** | Low | High |
|
|
103
|
+
| **Temporal Handling** | Basic timestamp tracking | Explicit bi-temporal tracking |
|
|
104
|
+
| **Contradiction Handling** | LLM-driven summarization judgments | Temporal edge invalidation |
|
|
105
|
+
| **Query Latency** | Seconds to tens of seconds | Typically sub-second latency |
|
|
106
|
+
| **Custom Entity Types** | No | Yes, customizable |
|
|
107
|
+
| **Scalability** | Moderate | High, optimized for large datasets |
|
|
108
|
+
|
|
109
|
+
Graphiti is specifically designed to address the challenges of dynamic and frequently updated datasets, making it particularly suitable for applications requiring real-time interaction and precise historical queries.
|
|
110
|
+
|
|
109
111
|
## Installation
|
|
110
112
|
|
|
111
113
|
Requirements:
|
|
@@ -280,6 +282,7 @@ Graphiti is under active development. We aim to maintain API stability while wor
|
|
|
280
282
|
- Allow developers to provide their own defined node and edge classes when ingesting episodes
|
|
281
283
|
- Enable more flexible knowledge representation tailored to specific use cases
|
|
282
284
|
- [x] Enhancing retrieval capabilities with more robust and configurable options
|
|
285
|
+
- [ ] Graphiti MCP Server
|
|
283
286
|
- [ ] Expanding test coverage to ensure reliability and catch edge cases
|
|
284
287
|
|
|
285
288
|
## Contributing
|
|
@@ -7,7 +7,7 @@
|
|
|
7
7
|
<h1 align="center">
|
|
8
8
|
Graphiti
|
|
9
9
|
</h1>
|
|
10
|
-
<h2 align="center">
|
|
10
|
+
<h2 align="center"> Build Real-Time Knowledge Graphs for AI Agents</h2>
|
|
11
11
|
<br />
|
|
12
12
|
|
|
13
13
|
[](https://discord.com/invite/W8Kw6bsgXQ)
|
|
@@ -19,9 +19,13 @@ Graphiti
|
|
|
19
19
|
:star: _Help us reach more developers and grow the Graphiti community. Star this repo!_
|
|
20
20
|
<br />
|
|
21
21
|
|
|
22
|
-
Graphiti
|
|
23
|
-
|
|
24
|
-
|
|
22
|
+
Graphiti is a framework for building and querying temporally-aware knowledge graphs, specifically tailored for AI agents operating in dynamic environments. Unlike traditional retrieval-augmented generation (RAG) methods, Graphiti continuously integrates user interactions, structured and unstructured enterprise data, and external information into a coherent, queryable graph. The framework supports incremental data updates, efficient retrieval, and precise historical queries without requiring complete graph recomputation, making it suitable for developing interactive, context-aware AI applications.
|
|
23
|
+
|
|
24
|
+
Use Graphiti to:
|
|
25
|
+
|
|
26
|
+
- Integrate and maintain dynamic user interactions and business data.
|
|
27
|
+
- Facilitate state-based reasoning and task automation for agents.
|
|
28
|
+
- Query complex, evolving data with semantic, keyword, and graph-based search methods.
|
|
25
29
|
|
|
26
30
|
<br />
|
|
27
31
|
|
|
@@ -31,23 +35,14 @@ a fusion of time, full-text, semantic, and graph algorithm approaches, effective
|
|
|
31
35
|
|
|
32
36
|
<br />
|
|
33
37
|
|
|
34
|
-
|
|
35
|
-
interconnected facts, such as _“Kendra loves Adidas shoes.”_ Each fact is a “triplet” represented by two entities, or
|
|
38
|
+
A knowledge graph is a network of interconnected facts, such as _“Kendra loves Adidas shoes.”_ Each fact is a “triplet” represented by two entities, or
|
|
36
39
|
nodes (_”Kendra”_, _“Adidas shoes”_), and their relationship, or edge (_”loves”_). Knowledge Graphs have been explored
|
|
37
40
|
extensively for information retrieval. What makes Graphiti unique is its ability to autonomously build a knowledge graph
|
|
38
41
|
while handling changing relationships and maintaining historical context.
|
|
39
42
|
|
|
40
|
-
With Graphiti, you can build LLM applications such as:
|
|
41
|
-
|
|
42
|
-
- Assistants that learn from user interactions, fusing personal knowledge with dynamic data from business systems like
|
|
43
|
-
CRMs and billing platforms through robust conversation history management.
|
|
44
|
-
- Agents that autonomously execute complex tasks, reasoning with state changes from multiple dynamic sources through persistent memory.
|
|
45
|
-
|
|
46
|
-
Graphiti supports a wide range of applications in sales, customer service, health, finance, and more, enabling long-term recall and state-based reasoning for both assistants and agents.
|
|
47
|
-
|
|
48
43
|
## Graphiti and Zep Memory
|
|
49
44
|
|
|
50
|
-
Graphiti powers the core of [Zep's memory layer](https://www.getzep.com) for
|
|
45
|
+
Graphiti powers the core of [Zep's memory layer](https://www.getzep.com) for AI Agents.
|
|
51
46
|
|
|
52
47
|
Using Graphiti, we've demonstrated Zep is
|
|
53
48
|
the [State of the Art in Agent Memory](https://blog.getzep.com/state-of-the-art-agent-memory/).
|
|
@@ -62,28 +57,35 @@ We're excited to open-source Graphiti, believing its potential reaches far beyon
|
|
|
62
57
|
|
|
63
58
|
## Why Graphiti?
|
|
64
59
|
|
|
65
|
-
|
|
66
|
-
document corpus and making this representation available via semantic and graph search techniques. However, GraphRAG did
|
|
67
|
-
not address our core problem: It's primarily designed for static documents and doesn't inherently handle temporal
|
|
68
|
-
aspects of data.
|
|
60
|
+
Traditional RAG approaches often rely on batch processing and static data summarization, making them inefficient for frequently changing data. Graphiti addresses these challenges by providing:
|
|
69
61
|
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
- **
|
|
74
|
-
|
|
75
|
-
- **Episodic Processing:** Ingests data as discrete episodes, maintaining data provenance and allowing incremental
|
|
76
|
-
entity and relationship extraction, ideal for chat state management.
|
|
77
|
-
- **Hybrid Search:** Combines semantic and BM25 full-text search, with the ability to rerank results by distance from a
|
|
78
|
-
central node e.g. "Kendra".
|
|
79
|
-
- **Scalable:** Designed for processing large datasets, with parallelization of LLM calls for bulk processing while
|
|
80
|
-
preserving the chronology of events and enabling efficient knowledge retrieval.
|
|
81
|
-
- **Supports Varied Sources:** Can ingest both unstructured text and structured JSON data.
|
|
62
|
+
- **Real-Time Incremental Updates:** Immediate integration of new data episodes without batch recomputation.
|
|
63
|
+
- **Bi-Temporal Data Model:** Explicit tracking of event occurrence and ingestion times, allowing accurate point-in-time queries.
|
|
64
|
+
- **Efficient Hybrid Retrieval:** Combines semantic embeddings, keyword (BM25), and graph traversal to achieve low-latency queries without reliance on LLM summarization.
|
|
65
|
+
- **Custom Entity Definitions:** Flexible ontology creation and support for developer-defined entities through straightforward Pydantic models.
|
|
66
|
+
- **Scalability:** Efficiently manages large datasets with parallel processing, suitable for enterprise environments.
|
|
82
67
|
|
|
83
68
|
<p align="center">
|
|
84
69
|
<img src="/images/graphiti-intro-slides-stock-2.gif" alt="Graphiti structured + unstructured demo" width="700px">
|
|
85
70
|
</p>
|
|
86
71
|
|
|
72
|
+
## Graphiti vs. GraphRAG
|
|
73
|
+
|
|
74
|
+
| Aspect | GraphRAG | Graphiti |
|
|
75
|
+
| -------------------------- | ------------------------------------- | ------------------------------------------------ |
|
|
76
|
+
| **Primary Use** | Static document summarization | Dynamic data management |
|
|
77
|
+
| **Data Handling** | Batch-oriented processing | Continuous, incremental updates |
|
|
78
|
+
| **Knowledge Structure** | Entity clusters & community summaries | Episodic data, semantic entities, communities |
|
|
79
|
+
| **Retrieval Method** | Sequential LLM summarization | Hybrid semantic, keyword, and graph-based search |
|
|
80
|
+
| **Adaptability** | Low | High |
|
|
81
|
+
| **Temporal Handling** | Basic timestamp tracking | Explicit bi-temporal tracking |
|
|
82
|
+
| **Contradiction Handling** | LLM-driven summarization judgments | Temporal edge invalidation |
|
|
83
|
+
| **Query Latency** | Seconds to tens of seconds | Typically sub-second latency |
|
|
84
|
+
| **Custom Entity Types** | No | Yes, customizable |
|
|
85
|
+
| **Scalability** | Moderate | High, optimized for large datasets |
|
|
86
|
+
|
|
87
|
+
Graphiti is specifically designed to address the challenges of dynamic and frequently updated datasets, making it particularly suitable for applications requiring real-time interaction and precise historical queries.
|
|
88
|
+
|
|
87
89
|
## Installation
|
|
88
90
|
|
|
89
91
|
Requirements:
|
|
@@ -258,6 +260,7 @@ Graphiti is under active development. We aim to maintain API stability while wor
|
|
|
258
260
|
- Allow developers to provide their own defined node and edge classes when ingesting episodes
|
|
259
261
|
- Enable more flexible knowledge representation tailored to specific use cases
|
|
260
262
|
- [x] Enhancing retrieval capabilities with more robust and configurable options
|
|
263
|
+
- [ ] Graphiti MCP Server
|
|
261
264
|
- [ ] Expanding test coverage to ensure reliability and catch edge cases
|
|
262
265
|
|
|
263
266
|
## Contributing
|
|
@@ -30,10 +30,10 @@ EPISODIC_NODE_SAVE_BULK = """
|
|
|
30
30
|
"""
|
|
31
31
|
|
|
32
32
|
ENTITY_NODE_SAVE = """
|
|
33
|
-
MERGE (n:Entity {uuid: $uuid})
|
|
33
|
+
MERGE (n:Entity {uuid: $entity_data.uuid})
|
|
34
34
|
SET n:$($labels)
|
|
35
35
|
SET n = $entity_data
|
|
36
|
-
WITH n CALL db.create.setNodeVectorProperty(n, "name_embedding", $name_embedding)
|
|
36
|
+
WITH n CALL db.create.setNodeVectorProperty(n, "name_embedding", $entity_data.name_embedding)
|
|
37
37
|
RETURN n.uuid AS uuid"""
|
|
38
38
|
|
|
39
39
|
ENTITY_NODE_SAVE_BULK = """
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/cross_encoder/bge_reranker_client.py
RENAMED
|
File without changes
|
|
File without changes
|
{graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/cross_encoder/openai_reranker_client.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/llm_client/openai_generic_client.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/community_operations.py
RENAMED
|
File without changes
|
{graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/edge_operations.py
RENAMED
|
File without changes
|
{graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/graph_data_operations.py
RENAMED
|
File without changes
|
{graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/node_operations.py
RENAMED
|
File without changes
|
{graphiti_core-0.8.1 → graphiti_core-0.8.2}/graphiti_core/utils/maintenance/temporal_operations.py
RENAMED
|
File without changes
|
|
File without changes
|