gradboard 0.1.6__tar.gz → 0.1.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gradboard might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: gradboard
3
- Version: 0.1.6
3
+ Version: 0.1.7
4
4
  Summary: Easily snowboard down gnarly loss gradients
5
5
  License: MIT
6
6
  Author: Nicholas Bailey
@@ -139,7 +139,7 @@ class PASS:
139
139
  learning_rates = [t[0] for t in range_test_results]
140
140
  losses = [t[1] for t in self.range_test_results]
141
141
  losses = losses[:-1] + [10 * max(losses)]
142
- smoothed_losses = gaussian_filter1d([t[1] for t in range_test_results][:-1], 3)
142
+ smoothed_losses = gaussian_filter1d([t[1] for t in losses], 3)
143
143
  return list(zip(learning_rates, smoothed_losses, strict=True))
144
144
 
145
145
  def _plot_range_test(self, range_test_results):
@@ -158,8 +158,6 @@ class PASS:
158
158
  ...
159
159
  """
160
160
  range_test_results = self._smoothed_range_test(self.range_test_results)
161
- self._plot_range_test(range_test_results)
162
-
163
161
  minimum = min(range_test_results, key=lambda x: x[1])
164
162
  points_left_of_min = [p for p in range_test_results if p[0] < minimum[0]]
165
163
  highest_point_left_of_min = max(points_left_of_min, key=lambda x: x[1])
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "gradboard"
3
- version = "0.1.6"
3
+ version = "0.1.7"
4
4
  description = "Easily snowboard down gnarly loss gradients"
5
5
  authors = [
6
6
  {name = "Nicholas Bailey"}
File without changes
File without changes
File without changes