gr-libs 0.1.6.post1__tar.gz → 0.1.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/PKG-INFO +1 -1
- gr_libs-0.1.8/evaluation/analyze_results_cross_alg_cross_domain.py +267 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/evaluation/create_minigrid_map_image.py +10 -6
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/evaluation/file_system.py +16 -5
- gr_libs-0.1.8/evaluation/generate_experiments_results.py +141 -0
- gr_libs-0.1.8/evaluation/generate_experiments_results_new_ver1.py +238 -0
- gr_libs-0.1.8/evaluation/generate_experiments_results_new_ver2.py +331 -0
- gr_libs-0.1.8/evaluation/generate_task_specific_statistics_plots.py +500 -0
- gr_libs-0.1.8/evaluation/get_plans_images.py +62 -0
- gr_libs-0.1.8/evaluation/increasing_and_decreasing_.py +104 -0
- gr_libs-0.1.8/gr_libs/__init__.py +7 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/_version.py +2 -2
- gr_libs-0.1.8/gr_libs/environment/__init__.py +30 -0
- gr_libs-0.1.8/gr_libs/environment/environment.py +353 -0
- gr_libs-0.1.8/gr_libs/environment/utils/utils.py +27 -0
- gr_libs-0.1.8/gr_libs/metrics/__init__.py +5 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/metrics/metrics.py +76 -34
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/__init__.py +2 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/agent.py +21 -6
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/base/__init__.py +1 -1
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/base/rl_agent.py +13 -10
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/consts.py +1 -1
- gr_libs-0.1.8/gr_libs/ml/neural/deep_rl_learner.py +474 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/neural/utils/__init__.py +1 -1
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/neural/utils/dictlist.py +3 -3
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/neural/utils/penv.py +5 -2
- gr_libs-0.1.8/gr_libs/ml/planner/mcts/mcts_model.py +552 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/planner/mcts/utils/__init__.py +1 -1
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/planner/mcts/utils/node.py +11 -7
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/planner/mcts/utils/tree.py +14 -10
- gr_libs-0.1.8/gr_libs/ml/sequential/__init__.py +1 -0
- gr_libs-0.1.8/gr_libs/ml/sequential/lstm_model.py +273 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/tabular/state.py +7 -7
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/tabular/tabular_q_learner.py +123 -73
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/tabular/tabular_rl_agent.py +20 -19
- gr_libs-0.1.8/gr_libs/ml/utils/__init__.py +12 -0
- gr_libs-0.1.8/gr_libs/ml/utils/format.py +108 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/utils/math.py +2 -1
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/utils/other.py +1 -1
- gr_libs-0.1.8/gr_libs/ml/utils/storage.py +194 -0
- gr_libs-0.1.8/gr_libs/problems/consts.py +1566 -0
- gr_libs-0.1.8/gr_libs/recognizer/gr_as_rl/gr_as_rl_recognizer.py +167 -0
- gr_libs-0.1.8/gr_libs/recognizer/graml/gr_dataset.py +233 -0
- gr_libs-0.1.8/gr_libs/recognizer/graml/graml_recognizer.py +465 -0
- gr_libs-0.1.8/gr_libs/recognizer/recognizer.py +56 -0
- gr_libs-0.1.8/gr_libs/recognizer/utils/__init__.py +1 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/recognizer/utils/format.py +8 -3
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs.egg-info/PKG-INFO +1 -1
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs.egg-info/SOURCES.txt +3 -10
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs.egg-info/top_level.txt +1 -0
- gr_libs-0.1.8/tests/test_gcdraco.py +10 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/tests/test_graml.py +8 -4
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/tests/test_graql.py +2 -1
- gr_libs-0.1.8/tutorials/gcdraco_panda_tutorial.py +66 -0
- gr_libs-0.1.8/tutorials/gcdraco_parking_tutorial.py +61 -0
- gr_libs-0.1.8/tutorials/graml_minigrid_tutorial.py +64 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/tutorials/graml_panda_tutorial.py +35 -14
- gr_libs-0.1.8/tutorials/graml_parking_tutorial.py +56 -0
- gr_libs-0.1.8/tutorials/graml_point_maze_tutorial.py +59 -0
- gr_libs-0.1.8/tutorials/graql_minigrid_tutorial.py +50 -0
- gr_libs-0.1.6.post1/.github/workflows/common_test_steps.yml +0 -26
- gr_libs-0.1.6.post1/.github/workflows/pr_flow.yml +0 -10
- gr_libs-0.1.6.post1/.github/workflows/release.yml +0 -33
- gr_libs-0.1.6.post1/.gitignore +0 -160
- gr_libs-0.1.6.post1/CI/README.md +0 -12
- gr_libs-0.1.6.post1/CI/docker_build_context/Dockerfile +0 -15
- gr_libs-0.1.6.post1/all_experiments.py +0 -194
- gr_libs-0.1.6.post1/download_dataset.py +0 -19
- gr_libs-0.1.6.post1/evaluation/analyze_results_cross_alg_cross_domain.py +0 -277
- gr_libs-0.1.6.post1/evaluation/generate_experiments_results.py +0 -92
- gr_libs-0.1.6.post1/evaluation/generate_experiments_results_new_ver1.py +0 -254
- gr_libs-0.1.6.post1/evaluation/generate_experiments_results_new_ver2.py +0 -331
- gr_libs-0.1.6.post1/evaluation/generate_task_specific_statistics_plots.py +0 -272
- gr_libs-0.1.6.post1/evaluation/get_plans_images.py +0 -47
- gr_libs-0.1.6.post1/evaluation/increasing_and_decreasing_.py +0 -63
- gr_libs-0.1.6.post1/gr_libs/__init__.py +0 -2
- gr_libs-0.1.6.post1/gr_libs/environment/__init__.py +0 -22
- gr_libs-0.1.6.post1/gr_libs/environment/environment.py +0 -225
- gr_libs-0.1.6.post1/gr_libs/environment/utils/utils.py +0 -17
- gr_libs-0.1.6.post1/gr_libs/ml/neural/deep_rl_learner.py +0 -393
- gr_libs-0.1.6.post1/gr_libs/ml/planner/mcts/mcts_model.py +0 -330
- gr_libs-0.1.6.post1/gr_libs/ml/sequential/__init__.py +0 -1
- gr_libs-0.1.6.post1/gr_libs/ml/sequential/lstm_model.py +0 -192
- gr_libs-0.1.6.post1/gr_libs/ml/utils/__init__.py +0 -6
- gr_libs-0.1.6.post1/gr_libs/ml/utils/format.py +0 -100
- gr_libs-0.1.6.post1/gr_libs/ml/utils/storage.py +0 -127
- gr_libs-0.1.6.post1/gr_libs/problems/consts.py +0 -1244
- gr_libs-0.1.6.post1/gr_libs/recognizer/gr_as_rl/gr_as_rl_recognizer.py +0 -102
- gr_libs-0.1.6.post1/gr_libs/recognizer/graml/__init__.py +0 -0
- gr_libs-0.1.6.post1/gr_libs/recognizer/graml/gr_dataset.py +0 -134
- gr_libs-0.1.6.post1/gr_libs/recognizer/graml/graml_recognizer.py +0 -265
- gr_libs-0.1.6.post1/gr_libs/recognizer/recognizer.py +0 -45
- gr_libs-0.1.6.post1/gr_libs/recognizer/recognizer_doc.md +0 -61
- gr_libs-0.1.6.post1/gr_libs/recognizer/utils/__init__.py +0 -1
- gr_libs-0.1.6.post1/odgr_executor.py +0 -125
- gr_libs-0.1.6.post1/tutorials/graml_minigrid_tutorial.py +0 -34
- gr_libs-0.1.6.post1/tutorials/graml_parking_tutorial.py +0 -38
- gr_libs-0.1.6.post1/tutorials/graml_point_maze_tutorial.py +0 -39
- gr_libs-0.1.6.post1/tutorials/graql_minigrid_tutorial.py +0 -34
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/README.md +0 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/environment/utils/__init__.py +0 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/neural/__init__.py +0 -0
- {gr_libs-0.1.6.post1/gr_libs/metrics → gr_libs-0.1.8/gr_libs/ml/planner}/__init__.py +0 -0
- {gr_libs-0.1.6.post1/gr_libs/ml/planner → gr_libs-0.1.8/gr_libs/ml/planner/mcts}/__init__.py +0 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/tabular/__init__.py +0 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs/ml/utils/env.py +0 -0
- {gr_libs-0.1.6.post1/gr_libs/ml/planner/mcts → gr_libs-0.1.8/gr_libs/problems}/__init__.py +0 -0
- {gr_libs-0.1.6.post1/gr_libs/problems → gr_libs-0.1.8/gr_libs/recognizer}/__init__.py +0 -0
- {gr_libs-0.1.6.post1/gr_libs/recognizer → gr_libs-0.1.8/gr_libs/recognizer/gr_as_rl}/__init__.py +0 -0
- {gr_libs-0.1.6.post1/gr_libs/recognizer/gr_as_rl → gr_libs-0.1.8/gr_libs/recognizer/graml}/__init__.py +0 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs.egg-info/dependency_links.txt +0 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/gr_libs.egg-info/requires.txt +0 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/pyproject.toml +0 -0
- {gr_libs-0.1.6.post1 → gr_libs-0.1.8}/setup.cfg +0 -0
@@ -0,0 +1,267 @@
|
|
1
|
+
import copy
|
2
|
+
import sys
|
3
|
+
import matplotlib.pyplot as plt
|
4
|
+
import numpy as np
|
5
|
+
import os
|
6
|
+
import dill
|
7
|
+
from scipy.interpolate import make_interp_spline
|
8
|
+
from scipy.ndimage import gaussian_filter1d
|
9
|
+
from gr_libs.ml.utils.storage import (
|
10
|
+
get_experiment_results_path,
|
11
|
+
set_global_storage_configs,
|
12
|
+
)
|
13
|
+
from scripts.generate_task_specific_statistics_plots import get_figures_dir_path
|
14
|
+
|
15
|
+
|
16
|
+
def smooth_line(x, y, num_points=300):
|
17
|
+
x_smooth = np.linspace(np.min(x), np.max(x), num_points)
|
18
|
+
spline = make_interp_spline(x, y, k=3) # Cubic spline
|
19
|
+
y_smooth = spline(x_smooth)
|
20
|
+
return x_smooth, y_smooth
|
21
|
+
|
22
|
+
|
23
|
+
if __name__ == "__main__":
|
24
|
+
|
25
|
+
fragmented_accuracies = {
|
26
|
+
"graml": {
|
27
|
+
"panda": {
|
28
|
+
"gd_agent": {
|
29
|
+
"0.3": [], # every list here should have number of tasks accuracies in it, since we done experiments for L111-L555. remember each accuracy is an average of #goals different tasks.
|
30
|
+
"0.5": [],
|
31
|
+
"0.7": [],
|
32
|
+
"0.9": [],
|
33
|
+
"1": [],
|
34
|
+
},
|
35
|
+
"gc_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
36
|
+
},
|
37
|
+
"minigrid": {
|
38
|
+
"obstacles": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
39
|
+
"lava_crossing": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
40
|
+
},
|
41
|
+
"point_maze": {
|
42
|
+
"obstacles": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
43
|
+
"four_rooms": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
44
|
+
},
|
45
|
+
"parking": {
|
46
|
+
"gd_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
47
|
+
"gc_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
48
|
+
},
|
49
|
+
},
|
50
|
+
"graql": {
|
51
|
+
"panda": {
|
52
|
+
"gd_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
53
|
+
"gc_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
54
|
+
},
|
55
|
+
"minigrid": {
|
56
|
+
"obstacles": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
57
|
+
"lava_crossing": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
58
|
+
},
|
59
|
+
"point_maze": {
|
60
|
+
"obstacles": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
61
|
+
"four_rooms": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
62
|
+
},
|
63
|
+
"parking": {
|
64
|
+
"gd_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
65
|
+
"gc_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
66
|
+
},
|
67
|
+
},
|
68
|
+
}
|
69
|
+
|
70
|
+
continuing_accuracies = copy.deepcopy(fragmented_accuracies)
|
71
|
+
|
72
|
+
# domains = ['panda', 'minigrid', 'point_maze', 'parking']
|
73
|
+
domains = ["minigrid", "point_maze", "parking"]
|
74
|
+
tasks = ["L111", "L222", "L333", "L444", "L555"]
|
75
|
+
percentages = ["0.3", "0.5", "1"]
|
76
|
+
|
77
|
+
for partial_obs_type, accuracies, is_same_learn in zip(
|
78
|
+
["fragmented", "continuing"],
|
79
|
+
[fragmented_accuracies, continuing_accuracies],
|
80
|
+
[False, True],
|
81
|
+
):
|
82
|
+
for domain in domains:
|
83
|
+
for env in accuracies["graml"][domain].keys():
|
84
|
+
for task in tasks:
|
85
|
+
set_global_storage_configs(
|
86
|
+
recognizer_str="graml",
|
87
|
+
is_fragmented=partial_obs_type,
|
88
|
+
is_inference_same_length_sequences=True,
|
89
|
+
is_learn_same_length_sequences=is_same_learn,
|
90
|
+
)
|
91
|
+
graml_res_file_path = (
|
92
|
+
f"{get_experiment_results_path(domain, env, task)}.pkl"
|
93
|
+
)
|
94
|
+
set_global_storage_configs(
|
95
|
+
recognizer_str="graql", is_fragmented=partial_obs_type
|
96
|
+
)
|
97
|
+
graql_res_file_path = (
|
98
|
+
f"{get_experiment_results_path(domain, env, task)}.pkl"
|
99
|
+
)
|
100
|
+
if os.path.exists(graml_res_file_path):
|
101
|
+
with open(graml_res_file_path, "rb") as results_file:
|
102
|
+
results = dill.load(results_file)
|
103
|
+
for percentage in accuracies["graml"][domain][env].keys():
|
104
|
+
accuracies["graml"][domain][env][percentage].append(
|
105
|
+
results[percentage]["accuracy"]
|
106
|
+
)
|
107
|
+
else:
|
108
|
+
assert (False, f"no file for {graml_res_file_path}")
|
109
|
+
if os.path.exists(graql_res_file_path):
|
110
|
+
with open(graql_res_file_path, "rb") as results_file:
|
111
|
+
results = dill.load(results_file)
|
112
|
+
for percentage in accuracies["graml"][domain][env].keys():
|
113
|
+
accuracies["graql"][domain][env][percentage].append(
|
114
|
+
results[percentage]["accuracy"]
|
115
|
+
)
|
116
|
+
else:
|
117
|
+
assert (False, f"no file for {graql_res_file_path}")
|
118
|
+
|
119
|
+
plot_styles = {
|
120
|
+
("graml", "fragmented", 0.3): "g--o", # Green dashed line with circle markers
|
121
|
+
("graml", "fragmented", 0.5): "g--s", # Green dashed line with square markers
|
122
|
+
(
|
123
|
+
"graml",
|
124
|
+
"fragmented",
|
125
|
+
0.7,
|
126
|
+
): "g--^", # Green dashed line with triangle-up markers
|
127
|
+
("graml", "fragmented", 0.9): "g--d", # Green dashed line with diamond markers
|
128
|
+
("graml", "fragmented", 1.0): "g--*", # Green dashed line with star markers
|
129
|
+
("graml", "continuing", 0.3): "g-o", # Green solid line with circle markers
|
130
|
+
("graml", "continuing", 0.5): "g-s", # Green solid line with square markers
|
131
|
+
(
|
132
|
+
"graml",
|
133
|
+
"continuing",
|
134
|
+
0.7,
|
135
|
+
): "g-^", # Green solid line with triangle-up markers
|
136
|
+
("graml", "continuing", 0.9): "g-d", # Green solid line with diamond markers
|
137
|
+
("graml", "continuing", 1.0): "g-*", # Green solid line with star markers
|
138
|
+
("graql", "fragmented", 0.3): "b--o", # Blue dashed line with circle markers
|
139
|
+
("graql", "fragmented", 0.5): "b--s", # Blue dashed line with square markers
|
140
|
+
(
|
141
|
+
"graql",
|
142
|
+
"fragmented",
|
143
|
+
0.7,
|
144
|
+
): "b--^", # Blue dashed line with triangle-up markers
|
145
|
+
("graql", "fragmented", 0.9): "b--d", # Blue dashed line with diamond markers
|
146
|
+
("graql", "fragmented", 1.0): "b--*", # Blue dashed line with star markers
|
147
|
+
("graql", "continuing", 0.3): "b-o", # Blue solid line with circle markers
|
148
|
+
("graql", "continuing", 0.5): "b-s", # Blue solid line with square markers
|
149
|
+
("graql", "continuing", 0.7): "b-^", # Blue solid line with triangle-up markers
|
150
|
+
("graql", "continuing", 0.9): "b-d", # Blue solid line with diamond markers
|
151
|
+
("graql", "continuing", 1.0): "b-*", # Blue solid line with star markers
|
152
|
+
}
|
153
|
+
|
154
|
+
def average_accuracies(accuracies, domain):
|
155
|
+
avg_acc = {
|
156
|
+
algo: {perc: [] for perc in percentages} for algo in ["graml", "graql"]
|
157
|
+
}
|
158
|
+
|
159
|
+
for algo in avg_acc.keys():
|
160
|
+
for perc in percentages:
|
161
|
+
for env in accuracies[algo][domain].keys():
|
162
|
+
env_acc = accuracies[algo][domain][env][
|
163
|
+
perc
|
164
|
+
] # list of 5, averages for L111 to L555.
|
165
|
+
if env_acc:
|
166
|
+
avg_acc[algo][perc].append(np.array(env_acc))
|
167
|
+
|
168
|
+
for algo in avg_acc.keys():
|
169
|
+
for perc in percentages:
|
170
|
+
if avg_acc[algo][perc]:
|
171
|
+
avg_acc[algo][perc] = np.mean(np.array(avg_acc[algo][perc]), axis=0)
|
172
|
+
|
173
|
+
return avg_acc
|
174
|
+
|
175
|
+
def plot_domain_accuracies(
|
176
|
+
ax,
|
177
|
+
fragmented_accuracies,
|
178
|
+
continuing_accuracies,
|
179
|
+
domain,
|
180
|
+
sigma=1,
|
181
|
+
line_width=1.5,
|
182
|
+
):
|
183
|
+
fragmented_avg_acc = average_accuracies(fragmented_accuracies, domain)
|
184
|
+
continuing_avg_acc = average_accuracies(continuing_accuracies, domain)
|
185
|
+
|
186
|
+
x_vals = np.arange(1, 6) # Number of goals
|
187
|
+
|
188
|
+
# Create "waves" (shaded regions) for each algorithm
|
189
|
+
for algo in ["graml", "graql"]:
|
190
|
+
fragmented_y_vals_by_percentage = []
|
191
|
+
continuing_y_vals_by_percentage = []
|
192
|
+
|
193
|
+
for perc in percentages:
|
194
|
+
fragmented_y_vals = np.array(fragmented_avg_acc[algo][perc])
|
195
|
+
continuing_y_vals = np.array(continuing_avg_acc[algo][perc])
|
196
|
+
|
197
|
+
# Smooth the trends using Gaussian filtering
|
198
|
+
fragmented_y_smoothed = gaussian_filter1d(
|
199
|
+
fragmented_y_vals, sigma=sigma
|
200
|
+
)
|
201
|
+
continuing_y_smoothed = gaussian_filter1d(
|
202
|
+
continuing_y_vals, sigma=sigma
|
203
|
+
)
|
204
|
+
|
205
|
+
fragmented_y_vals_by_percentage.append(fragmented_y_smoothed)
|
206
|
+
continuing_y_vals_by_percentage.append(continuing_y_smoothed)
|
207
|
+
|
208
|
+
ax.plot(
|
209
|
+
x_vals,
|
210
|
+
fragmented_y_smoothed,
|
211
|
+
plot_styles[(algo, "fragmented", float(perc))],
|
212
|
+
label=f"{algo}, non-consecutive, {perc}",
|
213
|
+
linewidth=0.5, # Control line thickness here
|
214
|
+
)
|
215
|
+
ax.plot(
|
216
|
+
x_vals,
|
217
|
+
continuing_y_smoothed,
|
218
|
+
plot_styles[(algo, "continuing", float(perc))],
|
219
|
+
label=f"{algo}, consecutive, {perc}",
|
220
|
+
linewidth=0.5, # Control line thickness here
|
221
|
+
)
|
222
|
+
|
223
|
+
ax.set_xticks(x_vals)
|
224
|
+
ax.set_yticks(np.linspace(0, 1, 6))
|
225
|
+
ax.set_ylim([0, 1])
|
226
|
+
ax.set_title(f"{domain.capitalize()} Domain", fontsize=16)
|
227
|
+
ax.grid(True)
|
228
|
+
|
229
|
+
fig, axes = plt.subplots(
|
230
|
+
1, 4, figsize=(24, 6)
|
231
|
+
) # Increase the figure size for better spacing (width 24, height 6)
|
232
|
+
|
233
|
+
# Generate each plot in a subplot, including both fragmented and continuing accuracies
|
234
|
+
for i, domain in enumerate(domains):
|
235
|
+
plot_domain_accuracies(
|
236
|
+
axes[i], fragmented_accuracies, continuing_accuracies, domain
|
237
|
+
)
|
238
|
+
|
239
|
+
# Set a single x-axis and y-axis label for the entire figure
|
240
|
+
fig.text(
|
241
|
+
0.5, 0.04, "Number of Goals", ha="center", fontsize=20
|
242
|
+
) # Centered x-axis label
|
243
|
+
fig.text(
|
244
|
+
0.04, 0.5, "Accuracy", va="center", rotation="vertical", fontsize=20
|
245
|
+
) # Reduced spacing for y-axis label
|
246
|
+
|
247
|
+
# Adjust subplot layout to avoid overlap
|
248
|
+
plt.subplots_adjust(
|
249
|
+
left=0.09, right=0.91, top=0.79, bottom=0.21, wspace=0.3
|
250
|
+
) # More space on top (top=0.82)
|
251
|
+
|
252
|
+
# Place the legend above the plots with more space between legend and plots
|
253
|
+
handles, labels = axes[0].get_legend_handles_labels()
|
254
|
+
fig.legend(
|
255
|
+
handles,
|
256
|
+
labels,
|
257
|
+
loc="upper center",
|
258
|
+
ncol=4,
|
259
|
+
bbox_to_anchor=(0.5, 1.05),
|
260
|
+
fontsize=12,
|
261
|
+
) # Moved above with bbox_to_anchor
|
262
|
+
|
263
|
+
# Save the figure and show it
|
264
|
+
save_dir = os.path.join("figures", "all_domains_accuracy_plots")
|
265
|
+
if not os.path.exists(save_dir):
|
266
|
+
os.makedirs(save_dir)
|
267
|
+
plt.savefig(os.path.join(save_dir, "accuracy_plots_smooth.png"), dpi=300)
|
@@ -2,21 +2,25 @@ from minigrid.wrappers import RGBImgPartialObsWrapper, ImgObsWrapper
|
|
2
2
|
import numpy as np
|
3
3
|
import gr_libs.ml as ml
|
4
4
|
from minigrid.core.world_object import Wall
|
5
|
-
|
5
|
+
|
6
|
+
# from q_table_plot import save_q_table_plot_image
|
6
7
|
from gymnasium.envs.registration import register
|
7
8
|
|
8
9
|
env_name = "MiniGrid-SimpleCrossingS13N4-DynamicGoal-5x9-v0"
|
9
10
|
# create an agent and train it (if it is already trained, it will get q-table from cache)
|
10
|
-
agent = ml.TabularQLearner(
|
11
|
+
agent = ml.TabularQLearner(
|
12
|
+
env_name="MiniGrid-Walls-13x13-v0",
|
13
|
+
problem_name="MiniGrid-SimpleCrossingS13N4-DynamicGoal-5x9-v0",
|
14
|
+
)
|
11
15
|
# agent.learn()
|
12
16
|
|
13
17
|
# save_q_table_plot_image(agent.q_table, 15, 15, (10,7))
|
14
18
|
|
15
19
|
# add to the steps list the step the trained agent would take on the env in every state according to the q_table
|
16
20
|
env = agent.env
|
17
|
-
env = RGBImgPartialObsWrapper(env)
|
18
|
-
env = ImgObsWrapper(env)
|
19
|
-
obs, _ = env.reset()
|
21
|
+
env = RGBImgPartialObsWrapper(env) # Get pixel observations
|
22
|
+
env = ImgObsWrapper(env) # Get rid of the 'mission' field
|
23
|
+
obs, _ = env.reset() # This now produces an RGB tensor only
|
20
24
|
|
21
25
|
img = env.get_frame()
|
22
26
|
|
@@ -24,7 +28,7 @@ img = env.get_frame()
|
|
24
28
|
from PIL import Image
|
25
29
|
import numpy as np
|
26
30
|
|
27
|
-
image_pil = Image.fromarray(np.uint8(img)).convert(
|
31
|
+
image_pil = Image.fromarray(np.uint8(img)).convert("RGB")
|
28
32
|
image_pil.save(r"{}.png".format(env_name))
|
29
33
|
|
30
34
|
# ####### show image
|
@@ -4,26 +4,36 @@ import random
|
|
4
4
|
import hashlib
|
5
5
|
from typing import List
|
6
6
|
|
7
|
+
|
7
8
|
def get_observations_path(env_name: str):
|
8
9
|
return f"dataset/{env_name}/observations"
|
9
10
|
|
11
|
+
|
10
12
|
def get_observations_paths(path: str):
|
11
13
|
return [os.path.join(path, file_name) for file_name in os.listdir(path)]
|
12
14
|
|
15
|
+
|
13
16
|
def create_partial_observabilities_files(env_name: str, observabilities: List[float]):
|
14
|
-
with open(
|
17
|
+
with open(
|
18
|
+
r"dataset/{env_name}/observations/obs1.0.pkl".format(env_name=env_name), "rb"
|
19
|
+
) as f:
|
15
20
|
step_1_0 = dill.load(f)
|
16
21
|
|
17
|
-
number_of_items_to_randomize = [
|
22
|
+
number_of_items_to_randomize = [
|
23
|
+
int(observability * len(step_1_0)) for observability in observabilities
|
24
|
+
]
|
18
25
|
obs = []
|
19
26
|
for items_to_randomize in number_of_items_to_randomize:
|
20
27
|
obs.append(random.sample(step_1_0, items_to_randomize))
|
21
28
|
for index, observability in enumerate(observabilities):
|
22
29
|
partial_steps = obs[index]
|
23
|
-
file_path = r"dataset/{env_name}/observations/obs{obs}.pkl".format(
|
30
|
+
file_path = r"dataset/{env_name}/observations/obs{obs}.pkl".format(
|
31
|
+
env_name=env_name, obs=observability
|
32
|
+
)
|
24
33
|
with open(file_path, "wb+") as f:
|
25
34
|
dill.dump(partial_steps, f)
|
26
|
-
|
35
|
+
|
36
|
+
|
27
37
|
def md5(file_path: str):
|
28
38
|
hash_md5 = hashlib.md5()
|
29
39
|
with open(file_path, "rb") as f:
|
@@ -31,6 +41,7 @@ def md5(file_path: str):
|
|
31
41
|
hash_md5.update(chunk)
|
32
42
|
return hash_md5.hexdigest()
|
33
43
|
|
44
|
+
|
34
45
|
def get_md5(file_path_list: List[str]):
|
35
46
|
return [(file_path, md5(file_path=file_path)) for file_path in file_path_list]
|
36
47
|
|
@@ -39,4 +50,4 @@ def print_md5(file_path_list: List[str]):
|
|
39
50
|
md5_of_observations = get_md5(file_path_list=file_path_list)
|
40
51
|
for file_name, file_md5 in md5_of_observations:
|
41
52
|
print(f"{file_name}:{file_md5}")
|
42
|
-
print("")
|
53
|
+
print("")
|
@@ -0,0 +1,141 @@
|
|
1
|
+
import copy
|
2
|
+
import sys
|
3
|
+
import matplotlib.pyplot as plt
|
4
|
+
import numpy as np
|
5
|
+
import os
|
6
|
+
import dill
|
7
|
+
from gr_libs.ml.utils.storage import (
|
8
|
+
get_experiment_results_path,
|
9
|
+
set_global_storage_configs,
|
10
|
+
)
|
11
|
+
from scripts.generate_task_specific_statistics_plots import get_figures_dir_path
|
12
|
+
|
13
|
+
|
14
|
+
def gen_graph(
|
15
|
+
graph_name,
|
16
|
+
x_label_str,
|
17
|
+
tasks,
|
18
|
+
panda_env,
|
19
|
+
minigrid_env,
|
20
|
+
parking_env,
|
21
|
+
maze_env,
|
22
|
+
percentage,
|
23
|
+
):
|
24
|
+
|
25
|
+
fragmented_accuracies = {
|
26
|
+
"graml": {
|
27
|
+
#'panda': [],
|
28
|
+
#'minigrid': [],
|
29
|
+
#'point_maze': [],
|
30
|
+
"parking": []
|
31
|
+
},
|
32
|
+
"graql": {
|
33
|
+
#'panda': [],
|
34
|
+
#'minigrid': [],
|
35
|
+
#'point_maze': [],
|
36
|
+
"parking": []
|
37
|
+
},
|
38
|
+
}
|
39
|
+
|
40
|
+
continuing_accuracies = copy.deepcopy(fragmented_accuracies)
|
41
|
+
|
42
|
+
# domains_envs = [('minigrid', minigrid_env), ('point_maze', maze_env), ('parking', parking_env)]
|
43
|
+
domains_envs = [("parking", parking_env)]
|
44
|
+
|
45
|
+
for partial_obs_type, accuracies, is_same_learn in zip(
|
46
|
+
["fragmented", "continuing"],
|
47
|
+
[fragmented_accuracies, continuing_accuracies],
|
48
|
+
[False, True],
|
49
|
+
):
|
50
|
+
for domain, env in domains_envs:
|
51
|
+
for task in tasks:
|
52
|
+
set_global_storage_configs(
|
53
|
+
recognizer_str="graml",
|
54
|
+
is_fragmented=partial_obs_type,
|
55
|
+
is_inference_same_length_sequences=True,
|
56
|
+
is_learn_same_length_sequences=is_same_learn,
|
57
|
+
)
|
58
|
+
graml_res_file_path = (
|
59
|
+
f"{get_experiment_results_path(domain, env, task)}.pkl"
|
60
|
+
)
|
61
|
+
set_global_storage_configs(
|
62
|
+
recognizer_str="graql", is_fragmented=partial_obs_type
|
63
|
+
)
|
64
|
+
graql_res_file_path = (
|
65
|
+
f"{get_experiment_results_path(domain, env, task)}.pkl"
|
66
|
+
)
|
67
|
+
if os.path.exists(graml_res_file_path):
|
68
|
+
with open(graml_res_file_path, "rb") as results_file:
|
69
|
+
results = dill.load(results_file)
|
70
|
+
accuracies["graml"][domain].append(
|
71
|
+
results[percentage]["accuracy"]
|
72
|
+
)
|
73
|
+
else:
|
74
|
+
assert (False, f"no file for {graml_res_file_path}")
|
75
|
+
if os.path.exists(graql_res_file_path):
|
76
|
+
with open(graql_res_file_path, "rb") as results_file:
|
77
|
+
results = dill.load(results_file)
|
78
|
+
accuracies["graql"][domain].append(
|
79
|
+
results[percentage]["accuracy"]
|
80
|
+
)
|
81
|
+
else:
|
82
|
+
assert (False, f"no file for {graql_res_file_path}")
|
83
|
+
|
84
|
+
def plot_accuracies(accuracies, partial_obs_type):
|
85
|
+
plt.figure(figsize=(10, 6))
|
86
|
+
colors = plt.cm.get_cmap(
|
87
|
+
"tab10", len(accuracies["graml"]) * len(accuracies["graml"]["parking"])
|
88
|
+
)
|
89
|
+
|
90
|
+
# Define different line styles for each algorithm
|
91
|
+
line_styles = {"graml": "-", "graql": "--"}
|
92
|
+
x_vals = np.arange(3, 8)
|
93
|
+
plt.xticks(x_vals)
|
94
|
+
plt.yticks(np.linspace(0, 1, 6))
|
95
|
+
plt.ylim([0, 1])
|
96
|
+
# Plot each domain-env pair's accuracies with different line styles for each algorithm
|
97
|
+
for alg in ["graml", "graql"]:
|
98
|
+
for idx, (domain, acc_values) in enumerate(accuracies[alg].items()):
|
99
|
+
if acc_values and len(acc_values) > 0: # Only plot if there are values
|
100
|
+
x_values = np.arange(3, len(acc_values) + 3)
|
101
|
+
plt.plot(
|
102
|
+
x_values,
|
103
|
+
acc_values,
|
104
|
+
marker="o",
|
105
|
+
linestyle=line_styles[alg],
|
106
|
+
color=colors(idx),
|
107
|
+
label=f"{alg}-{domain}-{partial_obs_type}-{percentage}",
|
108
|
+
)
|
109
|
+
|
110
|
+
# Set labels, title, and grid
|
111
|
+
plt.xlabel(x_label_str)
|
112
|
+
plt.ylabel("Accuracy")
|
113
|
+
plt.grid(True)
|
114
|
+
|
115
|
+
# Add legend to differentiate between domain-env pairs
|
116
|
+
plt.legend()
|
117
|
+
|
118
|
+
# Save the figure
|
119
|
+
fig_path = os.path.join(f"{graph_name}_{partial_obs_type}.png")
|
120
|
+
plt.savefig(fig_path)
|
121
|
+
print(f"Accuracies figure saved at: {fig_path}")
|
122
|
+
|
123
|
+
print(f"fragmented_accuracies: {fragmented_accuracies}")
|
124
|
+
plot_accuracies(fragmented_accuracies, "fragmented")
|
125
|
+
print(f"continuing_accuracies: {continuing_accuracies}")
|
126
|
+
plot_accuracies(continuing_accuracies, "continuing")
|
127
|
+
|
128
|
+
|
129
|
+
if __name__ == "__main__":
|
130
|
+
# gen_graph("increasing_base_goals", "Number of base goals", ['L1', 'L2', 'L3', 'L4', 'L5'], panda_env='gd_agent', minigrid_env='obstacles', parking_env='gd_agent', maze_env='obstacles')
|
131
|
+
# gen_graph("increasing_dynamic_goals", "Number of dynamic goals", ['L1', 'L2', 'L3', 'L4', 'L5'], panda_env='gc_agent', minigrid_env='lava_crossing', parking_env='gc_agent', maze_env='four_rooms')
|
132
|
+
gen_graph(
|
133
|
+
"base_problems",
|
134
|
+
"Number of goals",
|
135
|
+
["L111", "L222", "L333", "L444", "L555"],
|
136
|
+
panda_env="gd_agent",
|
137
|
+
minigrid_env="obstacles",
|
138
|
+
parking_env="gc_agent",
|
139
|
+
maze_env="obstacles",
|
140
|
+
percentage="0.7",
|
141
|
+
)
|