gr-libs 0.1.3__tar.gz → 0.1.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. gr_libs-0.1.4/PKG-INFO +211 -0
  2. gr_libs-0.1.4/README.md +183 -0
  3. gr_libs-0.1.4/gr_libs/recognizer/recognizer_doc.md +61 -0
  4. gr_libs-0.1.4/gr_libs.egg-info/PKG-INFO +211 -0
  5. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs.egg-info/SOURCES.txt +1 -0
  6. gr_libs-0.1.4/gr_libs.egg-info/requires.txt +20 -0
  7. {gr_libs-0.1.3 → gr_libs-0.1.4}/pyproject.toml +14 -2
  8. gr_libs-0.1.3/PKG-INFO +0 -197
  9. gr_libs-0.1.3/README.md +0 -182
  10. gr_libs-0.1.3/gr_libs.egg-info/PKG-INFO +0 -197
  11. gr_libs-0.1.3/gr_libs.egg-info/requires.txt +0 -3
  12. {gr_libs-0.1.3 → gr_libs-0.1.4}/.github/workflows/release.yml +0 -0
  13. {gr_libs-0.1.3 → gr_libs-0.1.4}/.gitignore +0 -0
  14. {gr_libs-0.1.3 → gr_libs-0.1.4}/all_experiments.py +0 -0
  15. {gr_libs-0.1.3 → gr_libs-0.1.4}/consts.py +0 -0
  16. {gr_libs-0.1.3 → gr_libs-0.1.4}/evaluation/analyze_results_cross_alg_cross_domain.py +0 -0
  17. {gr_libs-0.1.3 → gr_libs-0.1.4}/evaluation/create_minigrid_map_image.py +0 -0
  18. {gr_libs-0.1.3 → gr_libs-0.1.4}/evaluation/file_system.py +0 -0
  19. {gr_libs-0.1.3 → gr_libs-0.1.4}/evaluation/generate_experiments_results.py +0 -0
  20. {gr_libs-0.1.3 → gr_libs-0.1.4}/evaluation/generate_experiments_results_new_ver1.py +0 -0
  21. {gr_libs-0.1.3 → gr_libs-0.1.4}/evaluation/generate_experiments_results_new_ver2.py +0 -0
  22. {gr_libs-0.1.3 → gr_libs-0.1.4}/evaluation/generate_task_specific_statistics_plots.py +0 -0
  23. {gr_libs-0.1.3 → gr_libs-0.1.4}/evaluation/get_plans_images.py +0 -0
  24. {gr_libs-0.1.3 → gr_libs-0.1.4}/evaluation/increasing_and_decreasing_.py +0 -0
  25. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/__init__.py +0 -0
  26. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/environment/__init__.py +0 -0
  27. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/environment/environment.py +0 -0
  28. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/environment/utils/__init__.py +0 -0
  29. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/environment/utils/utils.py +0 -0
  30. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/metrics/__init__.py +0 -0
  31. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/metrics/metrics.py +0 -0
  32. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/__init__.py +0 -0
  33. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/agent.py +0 -0
  34. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/base/__init__.py +0 -0
  35. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/base/rl_agent.py +0 -0
  36. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/consts.py +0 -0
  37. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/neural/__init__.py +0 -0
  38. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/neural/deep_rl_learner.py +0 -0
  39. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/neural/utils/__init__.py +0 -0
  40. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/neural/utils/dictlist.py +0 -0
  41. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/neural/utils/penv.py +0 -0
  42. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/planner/__init__.py +0 -0
  43. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/planner/mcts/__init__.py +0 -0
  44. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/planner/mcts/mcts_model.py +0 -0
  45. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/planner/mcts/utils/__init__.py +0 -0
  46. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/planner/mcts/utils/node.py +0 -0
  47. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/planner/mcts/utils/tree.py +0 -0
  48. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/sequential/__init__.py +0 -0
  49. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/sequential/lstm_model.py +0 -0
  50. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/tabular/__init__.py +0 -0
  51. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/tabular/state.py +0 -0
  52. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/tabular/tabular_q_learner.py +0 -0
  53. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/tabular/tabular_rl_agent.py +0 -0
  54. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/utils/__init__.py +0 -0
  55. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/utils/env.py +0 -0
  56. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/utils/format.py +0 -0
  57. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/utils/math.py +0 -0
  58. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/utils/other.py +0 -0
  59. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/ml/utils/storage.py +0 -0
  60. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/recognizer/__init__.py +0 -0
  61. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/recognizer/gr_as_rl/__init__.py +0 -0
  62. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/recognizer/gr_as_rl/gr_as_rl_recognizer.py +0 -0
  63. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/recognizer/graml/__init__.py +0 -0
  64. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/recognizer/graml/gr_dataset.py +0 -0
  65. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/recognizer/graml/graml_recognizer.py +0 -0
  66. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/recognizer/recognizer.py +0 -0
  67. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/recognizer/utils/__init__.py +0 -0
  68. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs/recognizer/utils/format.py +0 -0
  69. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs.egg-info/dependency_links.txt +0 -0
  70. {gr_libs-0.1.3 → gr_libs-0.1.4}/gr_libs.egg-info/top_level.txt +0 -0
  71. {gr_libs-0.1.3 → gr_libs-0.1.4}/odgr_executor.py +0 -0
  72. {gr_libs-0.1.3 → gr_libs-0.1.4}/setup.cfg +0 -0
  73. {gr_libs-0.1.3 → gr_libs-0.1.4}/tutorials/graml_minigrid_tutorial.py +0 -0
  74. {gr_libs-0.1.3 → gr_libs-0.1.4}/tutorials/graml_panda_tutorial.py +0 -0
  75. {gr_libs-0.1.3 → gr_libs-0.1.4}/tutorials/graml_parking_tutorial.py +0 -0
  76. {gr_libs-0.1.3 → gr_libs-0.1.4}/tutorials/graml_point_maze_tutorial.py +0 -0
  77. {gr_libs-0.1.3 → gr_libs-0.1.4}/tutorials/graql_minigrid_tutorial.py +0 -0
gr_libs-0.1.4/PKG-INFO ADDED
@@ -0,0 +1,211 @@
1
+ Metadata-Version: 2.4
2
+ Name: gr_libs
3
+ Version: 0.1.4
4
+ Summary: Package with goal recognition frameworks baselines
5
+ Author: Ben Nageris
6
+ Author-email: Matan Shamir <matan.shamir@live.biu.ac.il>, Osher Elhadad <osher.elhadad@live.biu.ac.il>
7
+ License-Expression: MIT
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.11
11
+ Description-Content-Type: text/markdown
12
+ Requires-Dist: gr_envs
13
+ Requires-Dist: dill
14
+ Requires-Dist: opencv-python
15
+ Requires-Dist: tensorboardX
16
+ Requires-Dist: torchvision
17
+ Requires-Dist: rl_zoo3
18
+ Requires-Dist: stable_baselines3[extra]
19
+ Requires-Dist: sb3_contrib
20
+ Provides-Extra: minigrid
21
+ Requires-Dist: gr_envs[minigrid]; extra == "minigrid"
22
+ Provides-Extra: highway
23
+ Requires-Dist: gr_envs[highway]; extra == "highway"
24
+ Provides-Extra: maze
25
+ Requires-Dist: gr_envs[maze]; extra == "maze"
26
+ Provides-Extra: panda
27
+ Requires-Dist: gr_envs[panda]; extra == "panda"
28
+
29
+ # GRLib
30
+ GRLib is a Python package that implements Goal Recognition (GR) algorithms using Markov Decision Processes (MDPs) to model decision-making processes. These implementations adhere to the Gymnasium API. All agents in these algorithms interact with environments registered to the Gym API as part of the initialization process of the `gr_envs` package, on which GRLib depends. More details on `gr_envs` can be found at: [GR Envs Repository](https://github.com/MatanShamir1/GREnvs).
31
+
32
+ ## Setup
33
+
34
+ **Note:** If you are using Windows, use Git Bash for the following commands. Otherwise, any terminal or shell will work.
35
+
36
+ `gr_libs` depends on `gr_envs`, which registers a set of Gym environments. Ensure your Python environment is set up with Python >= 3.11.
37
+
38
+ ### Setting Up a Python Environment (if needed)
39
+ #### Using Pip
40
+ 1. **Find Your Python Installation:**
41
+ To locate your Python 3.12 executable, run:
42
+ ```sh
43
+ py -3.12 -c "import sys; print(sys.executable)"
44
+ ```
45
+ 2. **Create a New Virtual Environment:**
46
+ Using the path found above, create a new empty venv:
47
+ ```sh
48
+ C:/Users/path/to/Programs/Python/Python312/python.exe -m venv test_env
49
+ ```
50
+ 3. **Activate the Virtual Environment:**
51
+ ```sh
52
+ source test_env/Scripts/activate
53
+ ```
54
+ 4. **Verify the Active Environment:**
55
+ Since there is no direct equivalent to `conda env list`, you can check your active environment via:
56
+ ```sh
57
+ echo $VIRTUAL_ENV
58
+ ```
59
+
60
+ #### Using Conda
61
+ If you prefer using Conda, follow these steps:
62
+
63
+ 1. **Create a New Conda Environment:**
64
+ Replace `3.12` with your desired Python version if necessary.
65
+ ```sh
66
+ conda create -n new_env python=3.12
67
+ ```
68
+ 2. **Activate the Environment:**
69
+ ```sh
70
+ conda activate new_env
71
+ ```
72
+
73
+
74
+ ### Upgrade Basic Package Management Modules:
75
+ Run the following command (replace `/path/to/python.exe` with the actual path):
76
+ ```sh
77
+ /path/to/python.exe -m pip install --upgrade pip setuptools wheel versioneer
78
+ ```
79
+ ### Install the `GoalRecognitionLibs` Package:
80
+ The extras install the custom environments defined in `gr_envs`.
81
+ (For editable installation, add the `-e` flag by cloning the repo and cd'ing to it https://github.com/MatanShamir1/GRLib.git)
82
+ - **Minigrid Environment:**
83
+ ```sh
84
+ pip install gr_libs[minigrid]
85
+ ```
86
+ - **Highway Environment (Parking):**
87
+ ```sh
88
+ pip install gr_libs[highway]
89
+ ```
90
+ - **Maze Environment (Point-Maze):**
91
+ ```sh
92
+ pip install gr_libs[maze]
93
+ ```
94
+ - **Panda Environment:**
95
+ ```sh
96
+ pip install gr_libs[panda]
97
+ ```
98
+ (For editable installation, add the `-e` flag.)
99
+ ```sh
100
+ cd /path/to/clone/of/GoalRecognitionLibs
101
+ pip install -e .
102
+ ```
103
+
104
+ ## Issues & Troubleshooting
105
+
106
+ For any issues or troubleshooting, please refer to the repository's issue tracker.
107
+
108
+ ## Usage Guide
109
+
110
+ After installing GRLib, you will have access to custom Gym environments, allowing you to set up and execute an Online Dynamic Goal Recognition (ODGR) scenario with the algorithm of your choice.
111
+
112
+ Tutorials demonstrating basic ODGR scenarios is available in the sub-package `tutorials`. These tutorials walk through the initialization and deployment process, showcasing how different GR algorithms adapt to emerging goals in various Gym environments.
113
+
114
+ ### Method 1: Writing a Custom Script
115
+
116
+ 1. **Create a recognizer**
117
+
118
+ Specify the domain name and specific environment for the recognizer, effectively telling it the domain theory - the collection of states and actions in the environment.
119
+
120
+ ```python
121
+ recognizer = Graql(
122
+ domain_name="minigrid",
123
+ env_name="MiniGrid-SimpleCrossingS13N4"
124
+ )
125
+ ```
126
+
127
+ 2. **Domain Learning Phase** (For GRAQL)
128
+
129
+ GRAQL does not accumulate information about the domain or engage in learning activities during this phase.
130
+ Other algorithms don't require any data for the phase and simply use what's provided in their intialization: the domain and environment specifics, excluding the possible goals.
131
+
132
+ 3. **Goal Adaptation Phase**
133
+
134
+ The recognizer receives new goals and corresponding training configurations. GRAQL trains goal-directed agents and stores their policies for inference.
135
+
136
+ ```python
137
+ recognizer.goals_adaptation_phase(
138
+ dynamic_goals=[(11,1), (11,11), (1,11)],
139
+ dynamic_train_configs=[(QLEARNING, 100000) for _ in range(3)] # For expert sequence generation
140
+ )
141
+ ```
142
+
143
+ 4. **Inference Phase**
144
+
145
+ This phase generates a partial sequence from a trained agent, simulating suboptimal behavior with Gaussian noise.
146
+
147
+ ```python
148
+ actor = TabularQLearner(
149
+ domain_name="minigrid",
150
+ problem_name="MiniGrid-SimpleCrossingS13N4-DynamicGoal-11x1-v0",
151
+ algorithm=QLEARNING,
152
+ num_timesteps=100000
153
+ )
154
+ actor.learn()
155
+ full_sequence = actor.generate_observation(
156
+ action_selection_method=stochastic_amplified_selection,
157
+ random_optimalism=True # Adds noise to action values
158
+ )
159
+ partial_sequence = random_subset_with_order(full_sequence, int(0.5 * len(full_sequence)), is_consecutive=False)
160
+ closest_goal = recognizer.inference_phase(partial_sequence, (11,1), 0.5)
161
+ ```
162
+
163
+ 5. **Evaluate the result**
164
+
165
+ ```python
166
+ print(f"Closest goal returned by Graql: {closest_goal}\nActual goal actor aimed towards: (11, 1)")
167
+ ```
168
+
169
+ ### Method 2: Using a Configuration File
170
+
171
+ The `consts.py` file contains predefined ODGR problem configurations. You can use existing configurations or define new ones.
172
+
173
+ To execute a single task using the configuration file:
174
+ ```sh
175
+ python odgr_executor.py --recognizer MCTSBasedGraml --domain minigrid --task L1 --minigrid_env MinigridSimple
176
+ ```
177
+
178
+ ## Supported Algorithms
179
+
180
+ Successors of algorithms that don't differ in their specifics are added in parentheses after the algorithm name. For example, since GC-DRACO and DRACO share the same column values, they're written on one line as DRACO (GC).
181
+
182
+ | **Algorithm** | **Supervised** | **Reinforcement Learning** | **Discrete States** | **Continuous States** | **Discrete Actions** | **Continuous Actions** | **Model-Based** | **Model-Free** | **Action-Only** |
183
+ |--------------|--------------|------------------------|------------------|------------------|--------------|--------------|--------------|--------------|--------------|
184
+ | GRAQL | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ |
185
+ | DRACO (GC) | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ |
186
+ | GRAML (GC, BG) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
187
+
188
+ ## Supported Domains
189
+
190
+ | **Domain** | **Action Space** | **State Space** |
191
+ |------------|----------------|----------------|
192
+ | Minigrid | Discrete | Discrete |
193
+ | PointMaze | Continuous | Continuous |
194
+ | Parking | Continuous | Continuous |
195
+ | Panda | Continuous | Continuous |
196
+
197
+ ## Running Experiments
198
+
199
+ The repository provides benchmark domains and scripts for analyzing experimental results. The `scripts` directory contains tools for processing and visualizing results.
200
+
201
+ 1. **`analyze_results_cross_alg_cross_domain.py`**
202
+ - Runs without arguments.
203
+ - Reads data from `get_experiment_results_path` (e.g., `dataset/graml/minigrid/continuing/.../experiment_results.pkl`).
204
+ - Generates plots comparing algorithm performance across domains.
205
+
206
+ 2. **`generate_task_specific_statistics_plots.py`**
207
+ - Produces task-specific accuracy and confidence plots.
208
+ - Generates a confusion matrix displaying confidence levels.
209
+ - Example output paths:
210
+ - `figures/point_maze/obstacles/graql_point_maze_obstacles_fragmented_stats.png`
211
+ - `figures/point_maze/obstacles/graml_point_maze_obstacles_conf_mat.png`
@@ -0,0 +1,183 @@
1
+ # GRLib
2
+ GRLib is a Python package that implements Goal Recognition (GR) algorithms using Markov Decision Processes (MDPs) to model decision-making processes. These implementations adhere to the Gymnasium API. All agents in these algorithms interact with environments registered to the Gym API as part of the initialization process of the `gr_envs` package, on which GRLib depends. More details on `gr_envs` can be found at: [GR Envs Repository](https://github.com/MatanShamir1/GREnvs).
3
+
4
+ ## Setup
5
+
6
+ **Note:** If you are using Windows, use Git Bash for the following commands. Otherwise, any terminal or shell will work.
7
+
8
+ `gr_libs` depends on `gr_envs`, which registers a set of Gym environments. Ensure your Python environment is set up with Python >= 3.11.
9
+
10
+ ### Setting Up a Python Environment (if needed)
11
+ #### Using Pip
12
+ 1. **Find Your Python Installation:**
13
+ To locate your Python 3.12 executable, run:
14
+ ```sh
15
+ py -3.12 -c "import sys; print(sys.executable)"
16
+ ```
17
+ 2. **Create a New Virtual Environment:**
18
+ Using the path found above, create a new empty venv:
19
+ ```sh
20
+ C:/Users/path/to/Programs/Python/Python312/python.exe -m venv test_env
21
+ ```
22
+ 3. **Activate the Virtual Environment:**
23
+ ```sh
24
+ source test_env/Scripts/activate
25
+ ```
26
+ 4. **Verify the Active Environment:**
27
+ Since there is no direct equivalent to `conda env list`, you can check your active environment via:
28
+ ```sh
29
+ echo $VIRTUAL_ENV
30
+ ```
31
+
32
+ #### Using Conda
33
+ If you prefer using Conda, follow these steps:
34
+
35
+ 1. **Create a New Conda Environment:**
36
+ Replace `3.12` with your desired Python version if necessary.
37
+ ```sh
38
+ conda create -n new_env python=3.12
39
+ ```
40
+ 2. **Activate the Environment:**
41
+ ```sh
42
+ conda activate new_env
43
+ ```
44
+
45
+
46
+ ### Upgrade Basic Package Management Modules:
47
+ Run the following command (replace `/path/to/python.exe` with the actual path):
48
+ ```sh
49
+ /path/to/python.exe -m pip install --upgrade pip setuptools wheel versioneer
50
+ ```
51
+ ### Install the `GoalRecognitionLibs` Package:
52
+ The extras install the custom environments defined in `gr_envs`.
53
+ (For editable installation, add the `-e` flag by cloning the repo and cd'ing to it https://github.com/MatanShamir1/GRLib.git)
54
+ - **Minigrid Environment:**
55
+ ```sh
56
+ pip install gr_libs[minigrid]
57
+ ```
58
+ - **Highway Environment (Parking):**
59
+ ```sh
60
+ pip install gr_libs[highway]
61
+ ```
62
+ - **Maze Environment (Point-Maze):**
63
+ ```sh
64
+ pip install gr_libs[maze]
65
+ ```
66
+ - **Panda Environment:**
67
+ ```sh
68
+ pip install gr_libs[panda]
69
+ ```
70
+ (For editable installation, add the `-e` flag.)
71
+ ```sh
72
+ cd /path/to/clone/of/GoalRecognitionLibs
73
+ pip install -e .
74
+ ```
75
+
76
+ ## Issues & Troubleshooting
77
+
78
+ For any issues or troubleshooting, please refer to the repository's issue tracker.
79
+
80
+ ## Usage Guide
81
+
82
+ After installing GRLib, you will have access to custom Gym environments, allowing you to set up and execute an Online Dynamic Goal Recognition (ODGR) scenario with the algorithm of your choice.
83
+
84
+ Tutorials demonstrating basic ODGR scenarios is available in the sub-package `tutorials`. These tutorials walk through the initialization and deployment process, showcasing how different GR algorithms adapt to emerging goals in various Gym environments.
85
+
86
+ ### Method 1: Writing a Custom Script
87
+
88
+ 1. **Create a recognizer**
89
+
90
+ Specify the domain name and specific environment for the recognizer, effectively telling it the domain theory - the collection of states and actions in the environment.
91
+
92
+ ```python
93
+ recognizer = Graql(
94
+ domain_name="minigrid",
95
+ env_name="MiniGrid-SimpleCrossingS13N4"
96
+ )
97
+ ```
98
+
99
+ 2. **Domain Learning Phase** (For GRAQL)
100
+
101
+ GRAQL does not accumulate information about the domain or engage in learning activities during this phase.
102
+ Other algorithms don't require any data for the phase and simply use what's provided in their intialization: the domain and environment specifics, excluding the possible goals.
103
+
104
+ 3. **Goal Adaptation Phase**
105
+
106
+ The recognizer receives new goals and corresponding training configurations. GRAQL trains goal-directed agents and stores their policies for inference.
107
+
108
+ ```python
109
+ recognizer.goals_adaptation_phase(
110
+ dynamic_goals=[(11,1), (11,11), (1,11)],
111
+ dynamic_train_configs=[(QLEARNING, 100000) for _ in range(3)] # For expert sequence generation
112
+ )
113
+ ```
114
+
115
+ 4. **Inference Phase**
116
+
117
+ This phase generates a partial sequence from a trained agent, simulating suboptimal behavior with Gaussian noise.
118
+
119
+ ```python
120
+ actor = TabularQLearner(
121
+ domain_name="minigrid",
122
+ problem_name="MiniGrid-SimpleCrossingS13N4-DynamicGoal-11x1-v0",
123
+ algorithm=QLEARNING,
124
+ num_timesteps=100000
125
+ )
126
+ actor.learn()
127
+ full_sequence = actor.generate_observation(
128
+ action_selection_method=stochastic_amplified_selection,
129
+ random_optimalism=True # Adds noise to action values
130
+ )
131
+ partial_sequence = random_subset_with_order(full_sequence, int(0.5 * len(full_sequence)), is_consecutive=False)
132
+ closest_goal = recognizer.inference_phase(partial_sequence, (11,1), 0.5)
133
+ ```
134
+
135
+ 5. **Evaluate the result**
136
+
137
+ ```python
138
+ print(f"Closest goal returned by Graql: {closest_goal}\nActual goal actor aimed towards: (11, 1)")
139
+ ```
140
+
141
+ ### Method 2: Using a Configuration File
142
+
143
+ The `consts.py` file contains predefined ODGR problem configurations. You can use existing configurations or define new ones.
144
+
145
+ To execute a single task using the configuration file:
146
+ ```sh
147
+ python odgr_executor.py --recognizer MCTSBasedGraml --domain minigrid --task L1 --minigrid_env MinigridSimple
148
+ ```
149
+
150
+ ## Supported Algorithms
151
+
152
+ Successors of algorithms that don't differ in their specifics are added in parentheses after the algorithm name. For example, since GC-DRACO and DRACO share the same column values, they're written on one line as DRACO (GC).
153
+
154
+ | **Algorithm** | **Supervised** | **Reinforcement Learning** | **Discrete States** | **Continuous States** | **Discrete Actions** | **Continuous Actions** | **Model-Based** | **Model-Free** | **Action-Only** |
155
+ |--------------|--------------|------------------------|------------------|------------------|--------------|--------------|--------------|--------------|--------------|
156
+ | GRAQL | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ |
157
+ | DRACO (GC) | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ |
158
+ | GRAML (GC, BG) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
159
+
160
+ ## Supported Domains
161
+
162
+ | **Domain** | **Action Space** | **State Space** |
163
+ |------------|----------------|----------------|
164
+ | Minigrid | Discrete | Discrete |
165
+ | PointMaze | Continuous | Continuous |
166
+ | Parking | Continuous | Continuous |
167
+ | Panda | Continuous | Continuous |
168
+
169
+ ## Running Experiments
170
+
171
+ The repository provides benchmark domains and scripts for analyzing experimental results. The `scripts` directory contains tools for processing and visualizing results.
172
+
173
+ 1. **`analyze_results_cross_alg_cross_domain.py`**
174
+ - Runs without arguments.
175
+ - Reads data from `get_experiment_results_path` (e.g., `dataset/graml/minigrid/continuing/.../experiment_results.pkl`).
176
+ - Generates plots comparing algorithm performance across domains.
177
+
178
+ 2. **`generate_task_specific_statistics_plots.py`**
179
+ - Produces task-specific accuracy and confidence plots.
180
+ - Generates a confusion matrix displaying confidence levels.
181
+ - Example output paths:
182
+ - `figures/point_maze/obstacles/graql_point_maze_obstacles_fragmented_stats.png`
183
+ - `figures/point_maze/obstacles/graml_point_maze_obstacles_conf_mat.png`
@@ -0,0 +1,61 @@
1
+ # Recognizer Module Documentation
2
+
3
+ This document provides an overview of the recognizer module, including its class hierarchy and instructions for adding a new class of recognizer.
4
+
5
+ ## Class Hierarchy
6
+
7
+ The recognizer module consists of an abstract base class `Recognizer` and several derived classes, each implementing specific behaviors. The main classes are:
8
+
9
+ 1. **Recognizer (Abstract Base Class)**
10
+ - `inference_phase()` (abstract method)
11
+
12
+ 2. **LearningRecognizer (Extends Recognizer)**
13
+ - `domain_learning_phase()`
14
+
15
+ 3. **GaAgentTrainerRecognizer (Extends Recognizer)**
16
+ - `goals_adaptation_phase()` (abstract method)
17
+ - `domain_learning_phase()`
18
+
19
+ 4. **GaAdaptingRecognizer (Extends Recognizer)**
20
+ - `goals_adaptation_phase()` (abstract method)
21
+
22
+ 5. **GRAsRL (Extends Recognizer)**
23
+ - Implements `goals_adaptation_phase()`
24
+ - Implements `inference_phase()`
25
+
26
+ 6. **Specific Implementations:**
27
+ - `Graql (Extends GRAsRL, GaAgentTrainerRecognizer)`
28
+ - `Draco (Extends GRAsRL, GaAgentTrainerRecognizer)`
29
+ - `GCDraco (Extends GRAsRL, LearningRecognizer, GaAdaptingRecognizer)`
30
+ - `Graml (Extends LearningRecognizer)`
31
+
32
+ ## How to Add a New Recognizer Class
33
+
34
+ To add a new class of recognizer, follow these steps:
35
+
36
+ 1. **Determine the Type of Recognizer:**
37
+ - Will it require learning? Extend `LearningRecognizer`.
38
+ - Will it adapt goals dynamically? Extend `GaAdaptingRecognizer`.
39
+ - Will it train agents for new goals? Extend `GaAgentTrainerRecognizer`.
40
+ - Will it involve RL-based recognition? Extend `GRAsRL`.
41
+
42
+ 2. **Define the Class:**
43
+ - Create a new class that extends the appropriate base class(es).
44
+ - Implement the required abstract methods (`inference_phase()`, `goals_adaptation_phase()`, etc.).
45
+
46
+ 3. **Initialize the Recognizer:**
47
+ - Ensure proper initialization by calling `super().__init__(*args, **kwargs)`.
48
+ - Set up any necessary agent storage or evaluation functions.
49
+
50
+ 4. **Implement Core Methods:**
51
+ - Define how the recognizer processes inference sequences.
52
+ - Implement learning or goal adaptation logic if applicable.
53
+
54
+ 5. **Register the Recognizer:**
55
+ - Ensure it integrates properly with the existing system by using the correct `domain_to_env_property()`.
56
+
57
+ 6. **Test the New Recognizer:**
58
+ - Run experiments to validate its behavior.
59
+ - Compare results against existing recognizers to ensure correctness.
60
+
61
+ By following these steps, you can seamlessly integrate a new recognizer into the framework while maintaining compatibility with the existing structure.
@@ -0,0 +1,211 @@
1
+ Metadata-Version: 2.4
2
+ Name: gr_libs
3
+ Version: 0.1.4
4
+ Summary: Package with goal recognition frameworks baselines
5
+ Author: Ben Nageris
6
+ Author-email: Matan Shamir <matan.shamir@live.biu.ac.il>, Osher Elhadad <osher.elhadad@live.biu.ac.il>
7
+ License-Expression: MIT
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.11
11
+ Description-Content-Type: text/markdown
12
+ Requires-Dist: gr_envs
13
+ Requires-Dist: dill
14
+ Requires-Dist: opencv-python
15
+ Requires-Dist: tensorboardX
16
+ Requires-Dist: torchvision
17
+ Requires-Dist: rl_zoo3
18
+ Requires-Dist: stable_baselines3[extra]
19
+ Requires-Dist: sb3_contrib
20
+ Provides-Extra: minigrid
21
+ Requires-Dist: gr_envs[minigrid]; extra == "minigrid"
22
+ Provides-Extra: highway
23
+ Requires-Dist: gr_envs[highway]; extra == "highway"
24
+ Provides-Extra: maze
25
+ Requires-Dist: gr_envs[maze]; extra == "maze"
26
+ Provides-Extra: panda
27
+ Requires-Dist: gr_envs[panda]; extra == "panda"
28
+
29
+ # GRLib
30
+ GRLib is a Python package that implements Goal Recognition (GR) algorithms using Markov Decision Processes (MDPs) to model decision-making processes. These implementations adhere to the Gymnasium API. All agents in these algorithms interact with environments registered to the Gym API as part of the initialization process of the `gr_envs` package, on which GRLib depends. More details on `gr_envs` can be found at: [GR Envs Repository](https://github.com/MatanShamir1/GREnvs).
31
+
32
+ ## Setup
33
+
34
+ **Note:** If you are using Windows, use Git Bash for the following commands. Otherwise, any terminal or shell will work.
35
+
36
+ `gr_libs` depends on `gr_envs`, which registers a set of Gym environments. Ensure your Python environment is set up with Python >= 3.11.
37
+
38
+ ### Setting Up a Python Environment (if needed)
39
+ #### Using Pip
40
+ 1. **Find Your Python Installation:**
41
+ To locate your Python 3.12 executable, run:
42
+ ```sh
43
+ py -3.12 -c "import sys; print(sys.executable)"
44
+ ```
45
+ 2. **Create a New Virtual Environment:**
46
+ Using the path found above, create a new empty venv:
47
+ ```sh
48
+ C:/Users/path/to/Programs/Python/Python312/python.exe -m venv test_env
49
+ ```
50
+ 3. **Activate the Virtual Environment:**
51
+ ```sh
52
+ source test_env/Scripts/activate
53
+ ```
54
+ 4. **Verify the Active Environment:**
55
+ Since there is no direct equivalent to `conda env list`, you can check your active environment via:
56
+ ```sh
57
+ echo $VIRTUAL_ENV
58
+ ```
59
+
60
+ #### Using Conda
61
+ If you prefer using Conda, follow these steps:
62
+
63
+ 1. **Create a New Conda Environment:**
64
+ Replace `3.12` with your desired Python version if necessary.
65
+ ```sh
66
+ conda create -n new_env python=3.12
67
+ ```
68
+ 2. **Activate the Environment:**
69
+ ```sh
70
+ conda activate new_env
71
+ ```
72
+
73
+
74
+ ### Upgrade Basic Package Management Modules:
75
+ Run the following command (replace `/path/to/python.exe` with the actual path):
76
+ ```sh
77
+ /path/to/python.exe -m pip install --upgrade pip setuptools wheel versioneer
78
+ ```
79
+ ### Install the `GoalRecognitionLibs` Package:
80
+ The extras install the custom environments defined in `gr_envs`.
81
+ (For editable installation, add the `-e` flag by cloning the repo and cd'ing to it https://github.com/MatanShamir1/GRLib.git)
82
+ - **Minigrid Environment:**
83
+ ```sh
84
+ pip install gr_libs[minigrid]
85
+ ```
86
+ - **Highway Environment (Parking):**
87
+ ```sh
88
+ pip install gr_libs[highway]
89
+ ```
90
+ - **Maze Environment (Point-Maze):**
91
+ ```sh
92
+ pip install gr_libs[maze]
93
+ ```
94
+ - **Panda Environment:**
95
+ ```sh
96
+ pip install gr_libs[panda]
97
+ ```
98
+ (For editable installation, add the `-e` flag.)
99
+ ```sh
100
+ cd /path/to/clone/of/GoalRecognitionLibs
101
+ pip install -e .
102
+ ```
103
+
104
+ ## Issues & Troubleshooting
105
+
106
+ For any issues or troubleshooting, please refer to the repository's issue tracker.
107
+
108
+ ## Usage Guide
109
+
110
+ After installing GRLib, you will have access to custom Gym environments, allowing you to set up and execute an Online Dynamic Goal Recognition (ODGR) scenario with the algorithm of your choice.
111
+
112
+ Tutorials demonstrating basic ODGR scenarios is available in the sub-package `tutorials`. These tutorials walk through the initialization and deployment process, showcasing how different GR algorithms adapt to emerging goals in various Gym environments.
113
+
114
+ ### Method 1: Writing a Custom Script
115
+
116
+ 1. **Create a recognizer**
117
+
118
+ Specify the domain name and specific environment for the recognizer, effectively telling it the domain theory - the collection of states and actions in the environment.
119
+
120
+ ```python
121
+ recognizer = Graql(
122
+ domain_name="minigrid",
123
+ env_name="MiniGrid-SimpleCrossingS13N4"
124
+ )
125
+ ```
126
+
127
+ 2. **Domain Learning Phase** (For GRAQL)
128
+
129
+ GRAQL does not accumulate information about the domain or engage in learning activities during this phase.
130
+ Other algorithms don't require any data for the phase and simply use what's provided in their intialization: the domain and environment specifics, excluding the possible goals.
131
+
132
+ 3. **Goal Adaptation Phase**
133
+
134
+ The recognizer receives new goals and corresponding training configurations. GRAQL trains goal-directed agents and stores their policies for inference.
135
+
136
+ ```python
137
+ recognizer.goals_adaptation_phase(
138
+ dynamic_goals=[(11,1), (11,11), (1,11)],
139
+ dynamic_train_configs=[(QLEARNING, 100000) for _ in range(3)] # For expert sequence generation
140
+ )
141
+ ```
142
+
143
+ 4. **Inference Phase**
144
+
145
+ This phase generates a partial sequence from a trained agent, simulating suboptimal behavior with Gaussian noise.
146
+
147
+ ```python
148
+ actor = TabularQLearner(
149
+ domain_name="minigrid",
150
+ problem_name="MiniGrid-SimpleCrossingS13N4-DynamicGoal-11x1-v0",
151
+ algorithm=QLEARNING,
152
+ num_timesteps=100000
153
+ )
154
+ actor.learn()
155
+ full_sequence = actor.generate_observation(
156
+ action_selection_method=stochastic_amplified_selection,
157
+ random_optimalism=True # Adds noise to action values
158
+ )
159
+ partial_sequence = random_subset_with_order(full_sequence, int(0.5 * len(full_sequence)), is_consecutive=False)
160
+ closest_goal = recognizer.inference_phase(partial_sequence, (11,1), 0.5)
161
+ ```
162
+
163
+ 5. **Evaluate the result**
164
+
165
+ ```python
166
+ print(f"Closest goal returned by Graql: {closest_goal}\nActual goal actor aimed towards: (11, 1)")
167
+ ```
168
+
169
+ ### Method 2: Using a Configuration File
170
+
171
+ The `consts.py` file contains predefined ODGR problem configurations. You can use existing configurations or define new ones.
172
+
173
+ To execute a single task using the configuration file:
174
+ ```sh
175
+ python odgr_executor.py --recognizer MCTSBasedGraml --domain minigrid --task L1 --minigrid_env MinigridSimple
176
+ ```
177
+
178
+ ## Supported Algorithms
179
+
180
+ Successors of algorithms that don't differ in their specifics are added in parentheses after the algorithm name. For example, since GC-DRACO and DRACO share the same column values, they're written on one line as DRACO (GC).
181
+
182
+ | **Algorithm** | **Supervised** | **Reinforcement Learning** | **Discrete States** | **Continuous States** | **Discrete Actions** | **Continuous Actions** | **Model-Based** | **Model-Free** | **Action-Only** |
183
+ |--------------|--------------|------------------------|------------------|------------------|--------------|--------------|--------------|--------------|--------------|
184
+ | GRAQL | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ |
185
+ | DRACO (GC) | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ |
186
+ | GRAML (GC, BG) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
187
+
188
+ ## Supported Domains
189
+
190
+ | **Domain** | **Action Space** | **State Space** |
191
+ |------------|----------------|----------------|
192
+ | Minigrid | Discrete | Discrete |
193
+ | PointMaze | Continuous | Continuous |
194
+ | Parking | Continuous | Continuous |
195
+ | Panda | Continuous | Continuous |
196
+
197
+ ## Running Experiments
198
+
199
+ The repository provides benchmark domains and scripts for analyzing experimental results. The `scripts` directory contains tools for processing and visualizing results.
200
+
201
+ 1. **`analyze_results_cross_alg_cross_domain.py`**
202
+ - Runs without arguments.
203
+ - Reads data from `get_experiment_results_path` (e.g., `dataset/graml/minigrid/continuing/.../experiment_results.pkl`).
204
+ - Generates plots comparing algorithm performance across domains.
205
+
206
+ 2. **`generate_task_specific_statistics_plots.py`**
207
+ - Produces task-specific accuracy and confidence plots.
208
+ - Generates a confusion matrix displaying confidence levels.
209
+ - Example output paths:
210
+ - `figures/point_maze/obstacles/graql_point_maze_obstacles_fragmented_stats.png`
211
+ - `figures/point_maze/obstacles/graml_point_maze_obstacles_conf_mat.png`
@@ -56,6 +56,7 @@ gr_libs/ml/utils/other.py
56
56
  gr_libs/ml/utils/storage.py
57
57
  gr_libs/recognizer/__init__.py
58
58
  gr_libs/recognizer/recognizer.py
59
+ gr_libs/recognizer/recognizer_doc.md
59
60
  gr_libs/recognizer/gr_as_rl/__init__.py
60
61
  gr_libs/recognizer/gr_as_rl/gr_as_rl_recognizer.py
61
62
  gr_libs/recognizer/graml/__init__.py