google-news-trends-mcp 0.1.7__tar.gz → 0.1.9__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {google_news_trends_mcp-0.1.7/src/google_news_trends_mcp.egg-info → google_news_trends_mcp-0.1.9}/PKG-INFO +6 -6
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/README.md +6 -6
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/pyproject.toml +5 -2
- google_news_trends_mcp-0.1.9/src/google_news_trends_mcp/__init__.py +2 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp/cli.py +15 -49
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp/news.py +42 -65
- google_news_trends_mcp-0.1.9/src/google_news_trends_mcp/server.py +341 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9/src/google_news_trends_mcp.egg-info}/PKG-INFO +6 -6
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/tests/test_server.py +16 -10
- google_news_trends_mcp-0.1.7/src/google_news_trends_mcp/__init__.py +0 -2
- google_news_trends_mcp-0.1.7/src/google_news_trends_mcp/server.py +0 -329
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/LICENSE +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/setup.cfg +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp/__main__.py +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp.egg-info/SOURCES.txt +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp.egg-info/dependency_links.txt +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp.egg-info/entry_points.txt +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp.egg-info/requires.txt +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: google-news-trends-mcp
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.9
|
4
4
|
Summary: An MCP server to access Google News and Google Trends.
|
5
5
|
Author-email: Jesse Manek <jesse.manek@gmail.com>
|
6
6
|
License-Expression: MIT
|
@@ -35,8 +35,8 @@ An MCP server to access Google News and Google Trends. Does not rely on any pai
|
|
35
35
|
|
36
36
|
- Search Google News articles based on keyword, location, topic
|
37
37
|
- Get top news stories from Google News
|
38
|
-
- Google Trends keywords
|
39
|
-
- Optional NLP to summarize articles and extract keywords
|
38
|
+
- Google Trends keywords based on location
|
39
|
+
- Optional LLM Sampling and NLP to summarize articles and extract keywords
|
40
40
|
|
41
41
|
## Installation
|
42
42
|
|
@@ -70,7 +70,7 @@ Add to your Claude settings:
|
|
70
70
|
"mcpServers": {
|
71
71
|
"google-news-trends": {
|
72
72
|
"command": "uvx",
|
73
|
-
"args": ["google-news-trends-mcp"]
|
73
|
+
"args": ["google-news-trends-mcp@latest"]
|
74
74
|
}
|
75
75
|
}
|
76
76
|
}
|
@@ -103,7 +103,7 @@ Add to your Claude settings:
|
|
103
103
|
"servers": {
|
104
104
|
"google-news-trends": {
|
105
105
|
"command": "uvx",
|
106
|
-
"args": ["google-news-trends-mcp"]
|
106
|
+
"args": ["google-news-trends-mcp@latest"]
|
107
107
|
}
|
108
108
|
}
|
109
109
|
}
|
@@ -141,7 +141,7 @@ The following MCP tools are available:
|
|
141
141
|
| **get_top_news** | Fetch the top news stories from Google News. |
|
142
142
|
| **get_trending_keywords**| Return trending keywords from Google Trends for a specified location.|
|
143
143
|
|
144
|
-
All of the news related tools have an option to summarize the text of the article using
|
144
|
+
All of the news related tools have an option to summarize the text of the article using LLM Sampling (if supported) or NLP
|
145
145
|
|
146
146
|
|
147
147
|
## CLI
|
@@ -6,8 +6,8 @@ An MCP server to access Google News and Google Trends. Does not rely on any pai
|
|
6
6
|
|
7
7
|
- Search Google News articles based on keyword, location, topic
|
8
8
|
- Get top news stories from Google News
|
9
|
-
- Google Trends keywords
|
10
|
-
- Optional NLP to summarize articles and extract keywords
|
9
|
+
- Google Trends keywords based on location
|
10
|
+
- Optional LLM Sampling and NLP to summarize articles and extract keywords
|
11
11
|
|
12
12
|
## Installation
|
13
13
|
|
@@ -41,7 +41,7 @@ Add to your Claude settings:
|
|
41
41
|
"mcpServers": {
|
42
42
|
"google-news-trends": {
|
43
43
|
"command": "uvx",
|
44
|
-
"args": ["google-news-trends-mcp"]
|
44
|
+
"args": ["google-news-trends-mcp@latest"]
|
45
45
|
}
|
46
46
|
}
|
47
47
|
}
|
@@ -74,7 +74,7 @@ Add to your Claude settings:
|
|
74
74
|
"servers": {
|
75
75
|
"google-news-trends": {
|
76
76
|
"command": "uvx",
|
77
|
-
"args": ["google-news-trends-mcp"]
|
77
|
+
"args": ["google-news-trends-mcp@latest"]
|
78
78
|
}
|
79
79
|
}
|
80
80
|
}
|
@@ -112,7 +112,7 @@ The following MCP tools are available:
|
|
112
112
|
| **get_top_news** | Fetch the top news stories from Google News. |
|
113
113
|
| **get_trending_keywords**| Return trending keywords from Google Trends for a specified location.|
|
114
114
|
|
115
|
-
All of the news related tools have an option to summarize the text of the article using
|
115
|
+
All of the news related tools have an option to summarize the text of the article using LLM Sampling (if supported) or NLP
|
116
116
|
|
117
117
|
|
118
118
|
## CLI
|
@@ -153,4 +153,4 @@ npx @modelcontextprotocol/inspector uv run google-news-trends-mcp
|
|
153
153
|
```bash
|
154
154
|
cd path/to/google/news/tends/mcp
|
155
155
|
python -m pytest
|
156
|
-
```
|
156
|
+
```
|
@@ -1,6 +1,6 @@
|
|
1
1
|
[project]
|
2
2
|
name = "google-news-trends-mcp"
|
3
|
-
version = "0.1.
|
3
|
+
version = "0.1.9"
|
4
4
|
description = "An MCP server to access Google News and Google Trends."
|
5
5
|
readme = "README.md"
|
6
6
|
requires-python = ">=3.10.18"
|
@@ -63,4 +63,7 @@ pythonpath = "src"
|
|
63
63
|
[project.urls]
|
64
64
|
Homepage = "https://github.com/jmanek/google-news-trends-mcp"
|
65
65
|
Repository = "https://github.com/jmanek/google-news-trends-mcp"
|
66
|
-
Issues = "https://github.com/jmanek/google-news-trends-mcp/issues"
|
66
|
+
Issues = "https://github.com/jmanek/google-news-trends-mcp/issues"
|
67
|
+
|
68
|
+
[tool.black]
|
69
|
+
line-length = 120
|
{google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp/cli.py
RENAMED
@@ -17,9 +17,7 @@ def cli():
|
|
17
17
|
|
18
18
|
@cli.command(help=get_news_by_keyword.__doc__)
|
19
19
|
@click.argument("keyword")
|
20
|
-
@click.option(
|
21
|
-
"--period", type=int, default=7, help="Period in days to search for articles."
|
22
|
-
)
|
20
|
+
@click.option("--period", type=int, default=7, help="Period in days to search for articles.")
|
23
21
|
@click.option(
|
24
22
|
"--max-results",
|
25
23
|
"max_results",
|
@@ -27,24 +25,16 @@ def cli():
|
|
27
25
|
default=10,
|
28
26
|
help="Maximum number of results to return.",
|
29
27
|
)
|
30
|
-
@click.option(
|
31
|
-
"--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles."
|
32
|
-
)
|
28
|
+
@click.option("--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles.")
|
33
29
|
def keyword(keyword, period, max_results, no_nlp):
|
34
|
-
articles = asyncio.run(
|
35
|
-
get_news_by_keyword(
|
36
|
-
keyword, period=period, max_results=max_results, nlp=not no_nlp
|
37
|
-
)
|
38
|
-
)
|
30
|
+
articles = asyncio.run(get_news_by_keyword(keyword, period=period, max_results=max_results, nlp=not no_nlp))
|
39
31
|
# asyncio.run(articles) # Ensure the articles are fetched asynchronously
|
40
32
|
print_articles(articles)
|
41
33
|
|
42
34
|
|
43
35
|
@cli.command(help=get_news_by_location.__doc__)
|
44
36
|
@click.argument("location")
|
45
|
-
@click.option(
|
46
|
-
"--period", type=int, default=7, help="Period in days to search for articles."
|
47
|
-
)
|
37
|
+
@click.option("--period", type=int, default=7, help="Period in days to search for articles.")
|
48
38
|
@click.option(
|
49
39
|
"--max-results",
|
50
40
|
"max_results",
|
@@ -52,23 +42,15 @@ def keyword(keyword, period, max_results, no_nlp):
|
|
52
42
|
default=10,
|
53
43
|
help="Maximum number of results to return.",
|
54
44
|
)
|
55
|
-
@click.option(
|
56
|
-
"--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles."
|
57
|
-
)
|
45
|
+
@click.option("--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles.")
|
58
46
|
def location(location, period, max_results, no_nlp):
|
59
|
-
articles = asyncio.run(
|
60
|
-
get_news_by_location(
|
61
|
-
location, period=period, max_results=max_results, nlp=not no_nlp
|
62
|
-
)
|
63
|
-
)
|
47
|
+
articles = asyncio.run(get_news_by_location(location, period=period, max_results=max_results, nlp=not no_nlp))
|
64
48
|
print_articles(articles)
|
65
49
|
|
66
50
|
|
67
51
|
@cli.command(help=get_news_by_topic.__doc__)
|
68
52
|
@click.argument("topic")
|
69
|
-
@click.option(
|
70
|
-
"--period", type=int, default=7, help="Period in days to search for articles."
|
71
|
-
)
|
53
|
+
@click.option("--period", type=int, default=7, help="Period in days to search for articles.")
|
72
54
|
@click.option(
|
73
55
|
"--max-results",
|
74
56
|
"max_results",
|
@@ -76,23 +58,15 @@ def location(location, period, max_results, no_nlp):
|
|
76
58
|
default=10,
|
77
59
|
help="Maximum number of results to return.",
|
78
60
|
)
|
79
|
-
@click.option(
|
80
|
-
"--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles."
|
81
|
-
)
|
61
|
+
@click.option("--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles.")
|
82
62
|
def topic(topic, period, max_results, no_nlp):
|
83
|
-
articles = asyncio.run(
|
84
|
-
get_news_by_topic(topic, period=period, max_results=max_results, nlp=not no_nlp)
|
85
|
-
)
|
63
|
+
articles = asyncio.run(get_news_by_topic(topic, period=period, max_results=max_results, nlp=not no_nlp))
|
86
64
|
print_articles(articles)
|
87
65
|
|
88
66
|
|
89
67
|
@cli.command(help=get_trending_terms.__doc__)
|
90
|
-
@click.option(
|
91
|
-
|
92
|
-
)
|
93
|
-
@click.option(
|
94
|
-
"--full-data", is_flag=True, default=False, help="Return full data for each trend."
|
95
|
-
)
|
68
|
+
@click.option("--geo", type=str, default="US", help="Country code, e.g. 'US', 'GB', 'IN', etc.")
|
69
|
+
@click.option("--full-data", is_flag=True, default=False, help="Return full data for each trend.")
|
96
70
|
@click.option(
|
97
71
|
"--max-results",
|
98
72
|
"max_results",
|
@@ -101,9 +75,7 @@ def topic(topic, period, max_results, no_nlp):
|
|
101
75
|
help="Maximum number of results to return.",
|
102
76
|
)
|
103
77
|
def trending(geo, full_data, max_results):
|
104
|
-
trending_terms = asyncio.run(
|
105
|
-
get_trending_terms(geo=geo, full_data=full_data, max_results=max_results)
|
106
|
-
)
|
78
|
+
trending_terms = asyncio.run(get_trending_terms(geo=geo, full_data=full_data, max_results=max_results))
|
107
79
|
if trending_terms:
|
108
80
|
print("Trending terms:")
|
109
81
|
for term in trending_terms:
|
@@ -116,9 +88,7 @@ def trending(geo, full_data, max_results):
|
|
116
88
|
|
117
89
|
|
118
90
|
@cli.command(help=get_top_news.__doc__)
|
119
|
-
@click.option(
|
120
|
-
"--period", type=int, default=3, help="Period in days to search for top articles."
|
121
|
-
)
|
91
|
+
@click.option("--period", type=int, default=3, help="Period in days to search for top articles.")
|
122
92
|
@click.option(
|
123
93
|
"--max-results",
|
124
94
|
"max_results",
|
@@ -126,13 +96,9 @@ def trending(geo, full_data, max_results):
|
|
126
96
|
default=10,
|
127
97
|
help="Maximum number of results to return.",
|
128
98
|
)
|
129
|
-
@click.option(
|
130
|
-
"--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles."
|
131
|
-
)
|
99
|
+
@click.option("--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles.")
|
132
100
|
def top(period, max_results, no_nlp):
|
133
|
-
articles = asyncio.run(
|
134
|
-
get_top_news(max_results=max_results, period=period, nlp=not no_nlp)
|
135
|
-
)
|
101
|
+
articles = asyncio.run(get_top_news(max_results=max_results, period=period, nlp=not no_nlp))
|
136
102
|
print_articles(articles)
|
137
103
|
print(f"Found {len(articles)} top articles.")
|
138
104
|
|
{google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp/news.py
RENAMED
@@ -8,7 +8,6 @@ It will fallback to using Playwright for websites that are difficult to scrape w
|
|
8
8
|
|
9
9
|
import re
|
10
10
|
import json
|
11
|
-
import time
|
12
11
|
import asyncio
|
13
12
|
from gnews import GNews
|
14
13
|
import newspaper # newspaper4k
|
@@ -16,7 +15,6 @@ from googlenewsdecoder import gnewsdecoder
|
|
16
15
|
import cloudscraper
|
17
16
|
from playwright.async_api import async_playwright, Browser, Playwright
|
18
17
|
from trendspy import Trends, TrendKeyword
|
19
|
-
import click
|
20
18
|
from typing import Optional, cast, overload, Literal, Awaitable
|
21
19
|
import atexit
|
22
20
|
from contextlib import asynccontextmanager
|
@@ -97,30 +95,15 @@ async def download_article_with_playwright(url) -> newspaper.Article | None:
|
|
97
95
|
await page.goto(url, wait_until="domcontentloaded")
|
98
96
|
await asyncio.sleep(2) # Wait for the page to load completely
|
99
97
|
content = await page.content()
|
100
|
-
article = newspaper.article(url, input_html=content
|
98
|
+
article = newspaper.article(url, input_html=content)
|
101
99
|
return article
|
102
100
|
except Exception as e:
|
103
|
-
logging.warning(
|
104
|
-
f"Error downloading article with Playwright from {url}\n {e.args}"
|
105
|
-
)
|
101
|
+
logging.warning(f"Error downloading article with Playwright from {url}\n {e.args}")
|
106
102
|
return None
|
107
103
|
|
108
104
|
|
109
|
-
|
110
|
-
"""
|
111
|
-
Download an article from a given URL using newspaper4k and cloudscraper (async).
|
112
|
-
"""
|
105
|
+
def download_article_with_scraper(url) -> newspaper.Article | None:
|
113
106
|
article = None
|
114
|
-
if url.startswith("https://news.google.com/rss/"):
|
115
|
-
try:
|
116
|
-
decoded_url = gnewsdecoder(url)
|
117
|
-
if decoded_url.get("status"):
|
118
|
-
url = decoded_url["decoded_url"]
|
119
|
-
else:
|
120
|
-
logging.debug("Failed to decode Google News RSS link:")
|
121
|
-
return None
|
122
|
-
except Exception as err:
|
123
|
-
logging.warning(f"Error while decoding url {url}\n {err.args}")
|
124
107
|
try:
|
125
108
|
article = newspaper.article(url)
|
126
109
|
except Exception as e:
|
@@ -135,22 +118,33 @@ async def download_article(url: str, nlp: bool = True) -> newspaper.Article | No
|
|
135
118
|
f"Failed to download article with cloudscraper from {url}, status code: {response.status_code}"
|
136
119
|
)
|
137
120
|
except Exception as e:
|
138
|
-
logging.debug(
|
139
|
-
|
140
|
-
)
|
121
|
+
logging.debug(f"Error downloading article with cloudscraper from {url}\n {e.args}")
|
122
|
+
return article
|
141
123
|
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
124
|
+
|
125
|
+
def decode_url(url: str) -> str:
|
126
|
+
if url.startswith("https://news.google.com/rss/"):
|
127
|
+
try:
|
128
|
+
decoded_url = gnewsdecoder(url)
|
129
|
+
if decoded_url.get("status"):
|
130
|
+
url = decoded_url["decoded_url"]
|
131
|
+
else:
|
132
|
+
logging.debug("Failed to decode Google News RSS link:")
|
133
|
+
return ""
|
134
|
+
except Exception as err:
|
135
|
+
logging.warning(f"Error while decoding url {url}\n {err.args}")
|
136
|
+
return url
|
137
|
+
|
138
|
+
|
139
|
+
async def download_article(url: str) -> newspaper.Article | None:
|
140
|
+
"""
|
141
|
+
Download an article from a given URL using newspaper4k and cloudscraper (async).
|
142
|
+
"""
|
143
|
+
if not (url := decode_url(url)):
|
153
144
|
return None
|
145
|
+
article = download_article_with_scraper(url)
|
146
|
+
if article is None or not article.text:
|
147
|
+
article = await download_article_with_playwright(url)
|
154
148
|
return article
|
155
149
|
|
156
150
|
|
@@ -166,12 +160,13 @@ async def process_gnews_articles(
|
|
166
160
|
articles = []
|
167
161
|
total = len(gnews_articles)
|
168
162
|
for idx, gnews_article in enumerate(gnews_articles):
|
169
|
-
article = await download_article(gnews_article["url"]
|
163
|
+
article = await download_article(gnews_article["url"])
|
170
164
|
if article is None or not article.text:
|
171
|
-
logging.debug(
|
172
|
-
f"Failed to download article from {gnews_article['url']}:\n{article}"
|
173
|
-
)
|
165
|
+
logging.debug(f"Failed to download article from {gnews_article['url']}:\n{article}")
|
174
166
|
continue
|
167
|
+
article.parse()
|
168
|
+
if nlp:
|
169
|
+
article.nlp()
|
175
170
|
articles.append(article)
|
176
171
|
if report_progress:
|
177
172
|
await report_progress(idx, total)
|
@@ -196,13 +191,9 @@ async def get_news_by_keyword(
|
|
196
191
|
google_news.max_results = max_results
|
197
192
|
gnews_articles = google_news.get_news(keyword)
|
198
193
|
if not gnews_articles:
|
199
|
-
logging.debug(
|
200
|
-
f"No articles found for keyword '{keyword}' in the last {period} days."
|
201
|
-
)
|
194
|
+
logging.debug(f"No articles found for keyword '{keyword}' in the last {period} days.")
|
202
195
|
return []
|
203
|
-
return await process_gnews_articles(
|
204
|
-
gnews_articles, nlp=nlp, report_progress=report_progress
|
205
|
-
)
|
196
|
+
return await process_gnews_articles(gnews_articles, nlp=nlp, report_progress=report_progress)
|
206
197
|
|
207
198
|
|
208
199
|
async def get_top_news(
|
@@ -223,9 +214,7 @@ async def get_top_news(
|
|
223
214
|
if not gnews_articles:
|
224
215
|
logging.debug("No top news articles found.")
|
225
216
|
return []
|
226
|
-
return await process_gnews_articles(
|
227
|
-
gnews_articles, nlp=nlp, report_progress=report_progress
|
228
|
-
)
|
217
|
+
return await process_gnews_articles(gnews_articles, nlp=nlp, report_progress=report_progress)
|
229
218
|
|
230
219
|
|
231
220
|
async def get_news_by_location(
|
@@ -245,13 +234,9 @@ async def get_news_by_location(
|
|
245
234
|
google_news.max_results = max_results
|
246
235
|
gnews_articles = google_news.get_news_by_location(location)
|
247
236
|
if not gnews_articles:
|
248
|
-
logging.debug(
|
249
|
-
f"No articles found for location '{location}' in the last {period} days."
|
250
|
-
)
|
237
|
+
logging.debug(f"No articles found for location '{location}' in the last {period} days.")
|
251
238
|
return []
|
252
|
-
return await process_gnews_articles(
|
253
|
-
gnews_articles, nlp=nlp, report_progress=report_progress
|
254
|
-
)
|
239
|
+
return await process_gnews_articles(gnews_articles, nlp=nlp, report_progress=report_progress)
|
255
240
|
|
256
241
|
|
257
242
|
async def get_news_by_topic(
|
@@ -279,13 +264,9 @@ async def get_news_by_topic(
|
|
279
264
|
google_news.max_results = max_results
|
280
265
|
gnews_articles = google_news.get_news_by_topic(topic)
|
281
266
|
if not gnews_articles:
|
282
|
-
logging.debug(
|
283
|
-
f"No articles found for topic '{topic}' in the last {period} days."
|
284
|
-
)
|
267
|
+
logging.debug(f"No articles found for topic '{topic}' in the last {period} days.")
|
285
268
|
return []
|
286
|
-
return await process_gnews_articles(
|
287
|
-
gnews_articles, nlp=nlp, report_progress=report_progress
|
288
|
-
)
|
269
|
+
return await process_gnews_articles(gnews_articles, nlp=nlp, report_progress=report_progress)
|
289
270
|
|
290
271
|
|
291
272
|
@overload
|
@@ -314,13 +295,9 @@ async def get_trending_terms(
|
|
314
295
|
"""
|
315
296
|
try:
|
316
297
|
trends = list(tr.trending_now(geo=geo))
|
317
|
-
trends = list(sorted(trends, key=lambda tt: tt.volume, reverse=True))[
|
318
|
-
:max_results
|
319
|
-
]
|
298
|
+
trends = list(sorted(trends, key=lambda tt: tt.volume, reverse=True))[:max_results]
|
320
299
|
if not full_data:
|
321
|
-
return [
|
322
|
-
{"keyword": trend.keyword, "volume": trend.volume} for trend in trends
|
323
|
-
]
|
300
|
+
return [{"keyword": trend.keyword, "volume": trend.volume} for trend in trends]
|
324
301
|
return trends
|
325
302
|
except Exception as e:
|
326
303
|
logging.warning(f"Error fetching trending terms: {e}")
|
@@ -0,0 +1,341 @@
|
|
1
|
+
from typing import Annotated, Optional, Any, TYPE_CHECKING
|
2
|
+
from fastmcp import FastMCP, Context
|
3
|
+
from fastmcp.server.middleware.timing import TimingMiddleware
|
4
|
+
from fastmcp.server.middleware.logging import LoggingMiddleware
|
5
|
+
from fastmcp.server.middleware.rate_limiting import RateLimitingMiddleware
|
6
|
+
from fastmcp.server.middleware.error_handling import ErrorHandlingMiddleware
|
7
|
+
from mcp.types import TextContent
|
8
|
+
from pydantic import BaseModel, Field, model_serializer
|
9
|
+
from google_news_trends_mcp import news
|
10
|
+
from newspaper import settings as newspaper_settings
|
11
|
+
from newspaper.article import Article
|
12
|
+
|
13
|
+
|
14
|
+
class BaseModelClean(BaseModel):
|
15
|
+
@model_serializer
|
16
|
+
def serializer(self, **kwargs) -> dict[str, Any]:
|
17
|
+
return {
|
18
|
+
field: self.__getattribute__(field)
|
19
|
+
for field in self.model_fields_set
|
20
|
+
if self.__getattribute__(field) is not None
|
21
|
+
}
|
22
|
+
|
23
|
+
if TYPE_CHECKING:
|
24
|
+
|
25
|
+
def model_dump(self, **kwargs) -> dict[str, Any]: ...
|
26
|
+
|
27
|
+
|
28
|
+
class ArticleOut(BaseModelClean):
|
29
|
+
title: Annotated[str, Field(description="Title of the article.")]
|
30
|
+
url: Annotated[str, Field(description="Original article URL.")]
|
31
|
+
read_more_link: Annotated[Optional[str], Field(description="Link to read more about the article.")] = None
|
32
|
+
language: Annotated[Optional[str], Field(description="Language code of the article.")] = None
|
33
|
+
meta_img: Annotated[Optional[str], Field(description="Meta image URL.")] = None
|
34
|
+
movies: Annotated[Optional[list[str]], Field(description="List of movie URLs or IDs.")] = None
|
35
|
+
meta_favicon: Annotated[Optional[str], Field(description="Favicon URL from meta data.")] = None
|
36
|
+
meta_site_name: Annotated[Optional[str], Field(description="Site name from meta data.")] = None
|
37
|
+
authors: Annotated[Optional[list[str]], Field(description="list of authors.")] = None
|
38
|
+
publish_date: Annotated[Optional[str], Field(description="Publish date in ISO format.")] = None
|
39
|
+
top_image: Annotated[Optional[str], Field(description="URL of the top image.")] = None
|
40
|
+
images: Annotated[Optional[list[str]], Field(description="list of image URLs.")] = None
|
41
|
+
text: Annotated[Optional[str], Field(description="Full text of the article.")] = None
|
42
|
+
summary: Annotated[Optional[str], Field(description="Summary of the article.")] = None
|
43
|
+
keywords: Annotated[Optional[list[str]], Field(description="Extracted keywords.")] = None
|
44
|
+
tags: Annotated[Optional[list[str]], Field(description="Tags for the article.")] = None
|
45
|
+
meta_keywords: Annotated[Optional[list[str]], Field(description="Meta keywords from the article.")] = None
|
46
|
+
meta_description: Annotated[Optional[str], Field(description="Meta description from the article.")] = None
|
47
|
+
canonical_link: Annotated[Optional[str], Field(description="Canonical link for the article.")] = None
|
48
|
+
meta_data: Annotated[Optional[dict[str, str | int]], Field(description="Meta data dictionary.")] = None
|
49
|
+
meta_lang: Annotated[Optional[str], Field(description="Language of the article.")] = None
|
50
|
+
source_url: Annotated[Optional[str], Field(description="Source URL if different from original.")] = None
|
51
|
+
|
52
|
+
|
53
|
+
class TrendingTermArticleOut(BaseModelClean):
|
54
|
+
title: Annotated[str, Field(description="Article title.")] = ""
|
55
|
+
url: Annotated[str, Field(description="Article URL.")] = ""
|
56
|
+
source: Annotated[Optional[str], Field(description="News source name.")] = None
|
57
|
+
picture: Annotated[Optional[str], Field(description="URL to article image.")] = None
|
58
|
+
time: Annotated[Optional[str | int], Field(description="Publication time or timestamp.")] = None
|
59
|
+
snippet: Annotated[Optional[str], Field(description="Article preview text.")] = None
|
60
|
+
|
61
|
+
|
62
|
+
class TrendingTermOut(BaseModelClean):
|
63
|
+
keyword: Annotated[str, Field(description="Trending keyword.")]
|
64
|
+
volume: Annotated[Optional[int], Field(description="Search volume.")] = None
|
65
|
+
geo: Annotated[Optional[str], Field(description="Geographic location code.")] = None
|
66
|
+
started_timestamp: Annotated[
|
67
|
+
Optional[list],
|
68
|
+
Field(description="When the trend started (year, month, day, hour, minute, second)."),
|
69
|
+
] = None
|
70
|
+
ended_timestamp: Annotated[
|
71
|
+
Optional[list],
|
72
|
+
Field(description="When the trend ended (year, month, day, hour, minute, second)."),
|
73
|
+
] = None
|
74
|
+
volume_growth_pct: Annotated[Optional[float], Field(description="Percentage growth in search volume.")] = None
|
75
|
+
trend_keywords: Annotated[Optional[list[str]], Field(description="Related keywords.")] = None
|
76
|
+
topics: Annotated[Optional[list[str | int]], Field(description="Related topics.")] = None
|
77
|
+
news: Annotated[
|
78
|
+
Optional[list[TrendingTermArticleOut]],
|
79
|
+
Field(description="Related news articles."),
|
80
|
+
] = None
|
81
|
+
news_tokens: Annotated[Optional[list], Field(description="Associated news tokens.")] = None
|
82
|
+
normalized_keyword: Annotated[Optional[str], Field(description="Normalized form of the keyword.")] = None
|
83
|
+
|
84
|
+
|
85
|
+
mcp = FastMCP(
|
86
|
+
name="google-news-trends",
|
87
|
+
instructions="This server provides tools to search, analyze, and summarize Google News articles and Google Trends",
|
88
|
+
on_duplicate_tools="replace",
|
89
|
+
)
|
90
|
+
|
91
|
+
mcp.add_middleware(ErrorHandlingMiddleware()) # Handle errors first
|
92
|
+
mcp.add_middleware(RateLimitingMiddleware(max_requests_per_second=50))
|
93
|
+
mcp.add_middleware(TimingMiddleware()) # Time actual execution
|
94
|
+
mcp.add_middleware(LoggingMiddleware()) # Log everything
|
95
|
+
|
96
|
+
|
97
|
+
def set_newspaper_article_fields(full_data: bool = False):
|
98
|
+
if full_data:
|
99
|
+
newspaper_settings.article_json_fields = [
|
100
|
+
"url",
|
101
|
+
"read_more_link",
|
102
|
+
"language",
|
103
|
+
"title",
|
104
|
+
"top_image",
|
105
|
+
"meta_img",
|
106
|
+
"images",
|
107
|
+
"movies",
|
108
|
+
"keywords",
|
109
|
+
"keyword_scores",
|
110
|
+
"meta_keywords",
|
111
|
+
"tags",
|
112
|
+
"authors",
|
113
|
+
"publish_date",
|
114
|
+
"summary",
|
115
|
+
"meta_description",
|
116
|
+
"meta_lang",
|
117
|
+
"meta_favicon",
|
118
|
+
"meta_site_name",
|
119
|
+
"canonical_link",
|
120
|
+
"text",
|
121
|
+
]
|
122
|
+
else:
|
123
|
+
newspaper_settings.article_json_fields = [
|
124
|
+
"url",
|
125
|
+
"title",
|
126
|
+
"publish_date",
|
127
|
+
"summary",
|
128
|
+
]
|
129
|
+
|
130
|
+
|
131
|
+
async def summarize_article(article: Article, ctx: Context) -> None:
|
132
|
+
if article.text:
|
133
|
+
prompt = f"Please provide a concise summary of the following news article:\n\n{article.text}"
|
134
|
+
response = await ctx.sample(prompt)
|
135
|
+
if isinstance(response, TextContent):
|
136
|
+
if not response.text:
|
137
|
+
await ctx.warning("LLM Sampling response is empty. Unable to summarize article.")
|
138
|
+
article.summary = "No summary available."
|
139
|
+
else:
|
140
|
+
article.summary = response.text
|
141
|
+
else:
|
142
|
+
await ctx.warning("LLM Sampling response is not a TextContent object. Unable to summarize article.")
|
143
|
+
article.summary = "No summary available."
|
144
|
+
else:
|
145
|
+
article.summary = "No summary available."
|
146
|
+
|
147
|
+
|
148
|
+
@mcp.tool(
|
149
|
+
description=news.get_news_by_keyword.__doc__,
|
150
|
+
tags={"news", "articles", "keyword"},
|
151
|
+
)
|
152
|
+
async def get_news_by_keyword(
|
153
|
+
ctx: Context,
|
154
|
+
keyword: Annotated[str, Field(description="Search term to find articles.")],
|
155
|
+
period: Annotated[int, Field(description="Number of days to look back for articles.", ge=1)] = 7,
|
156
|
+
max_results: Annotated[int, Field(description="Maximum number of results to return.", ge=1)] = 10,
|
157
|
+
full_data: Annotated[
|
158
|
+
bool,
|
159
|
+
Field(
|
160
|
+
description="Return full data for each article. If False a summary should be created by setting the summarize flag"
|
161
|
+
),
|
162
|
+
] = False,
|
163
|
+
summarize: Annotated[
|
164
|
+
bool,
|
165
|
+
Field(
|
166
|
+
description="Generate a summary of the article, will first try LLM Sampling but if unavailable will use nlp"
|
167
|
+
),
|
168
|
+
] = True,
|
169
|
+
) -> list[ArticleOut]:
|
170
|
+
set_newspaper_article_fields(full_data)
|
171
|
+
articles = await news.get_news_by_keyword(
|
172
|
+
keyword=keyword,
|
173
|
+
period=period,
|
174
|
+
max_results=max_results,
|
175
|
+
nlp=False,
|
176
|
+
report_progress=ctx.report_progress,
|
177
|
+
)
|
178
|
+
if summarize:
|
179
|
+
total_articles = len(articles)
|
180
|
+
try:
|
181
|
+
for idx, article in enumerate(articles):
|
182
|
+
await summarize_article(article, ctx)
|
183
|
+
await ctx.report_progress(idx, total_articles)
|
184
|
+
except Exception as err:
|
185
|
+
await ctx.debug(f"Failed to use LLM sampling for article summary:\n{err.args}")
|
186
|
+
for idx, article in enumerate(articles):
|
187
|
+
article.nlp()
|
188
|
+
await ctx.report_progress(idx, total_articles)
|
189
|
+
await ctx.report_progress(progress=len(articles), total=len(articles))
|
190
|
+
return [ArticleOut(**a.to_json(False)) for a in articles]
|
191
|
+
|
192
|
+
|
193
|
+
@mcp.tool(
|
194
|
+
description=news.get_news_by_location.__doc__,
|
195
|
+
tags={"news", "articles", "location"},
|
196
|
+
)
|
197
|
+
async def get_news_by_location(
|
198
|
+
ctx: Context,
|
199
|
+
location: Annotated[str, Field(description="Name of city/state/country.")],
|
200
|
+
period: Annotated[int, Field(description="Number of days to look back for articles.", ge=1)] = 7,
|
201
|
+
max_results: Annotated[int, Field(description="Maximum number of results to return.", ge=1)] = 10,
|
202
|
+
full_data: Annotated[
|
203
|
+
bool,
|
204
|
+
Field(
|
205
|
+
description="Return full data for each article. If False a summary should be created by setting the summarize flag"
|
206
|
+
),
|
207
|
+
] = False,
|
208
|
+
summarize: Annotated[
|
209
|
+
bool,
|
210
|
+
Field(
|
211
|
+
description="Generate a summary of the article, will first try LLM Sampling but if unavailable will use nlp"
|
212
|
+
),
|
213
|
+
] = True,
|
214
|
+
) -> list[ArticleOut]:
|
215
|
+
set_newspaper_article_fields(full_data)
|
216
|
+
articles = await news.get_news_by_location(
|
217
|
+
location=location,
|
218
|
+
period=period,
|
219
|
+
max_results=max_results,
|
220
|
+
nlp=False,
|
221
|
+
report_progress=ctx.report_progress,
|
222
|
+
)
|
223
|
+
if summarize:
|
224
|
+
total_articles = len(articles)
|
225
|
+
try:
|
226
|
+
for idx, article in enumerate(articles):
|
227
|
+
await summarize_article(article, ctx)
|
228
|
+
await ctx.report_progress(idx, total_articles)
|
229
|
+
except Exception as err:
|
230
|
+
await ctx.debug(f"Failed to use LLM sampling for article summary:\n{err.args}")
|
231
|
+
for idx, article in enumerate(articles):
|
232
|
+
article.nlp()
|
233
|
+
await ctx.report_progress(idx, total_articles)
|
234
|
+
await ctx.report_progress(progress=len(articles), total=len(articles))
|
235
|
+
return [ArticleOut(**a.to_json(False)) for a in articles]
|
236
|
+
|
237
|
+
|
238
|
+
@mcp.tool(description=news.get_news_by_topic.__doc__, tags={"news", "articles", "topic"})
|
239
|
+
async def get_news_by_topic(
|
240
|
+
ctx: Context,
|
241
|
+
topic: Annotated[str, Field(description="Topic to search for articles.")],
|
242
|
+
period: Annotated[int, Field(description="Number of days to look back for articles.", ge=1)] = 7,
|
243
|
+
max_results: Annotated[int, Field(description="Maximum number of results to return.", ge=1)] = 10,
|
244
|
+
full_data: Annotated[
|
245
|
+
bool,
|
246
|
+
Field(
|
247
|
+
description="Return full data for each article. If False a summary should be created by setting the summarize flag"
|
248
|
+
),
|
249
|
+
] = False,
|
250
|
+
summarize: Annotated[
|
251
|
+
bool,
|
252
|
+
Field(
|
253
|
+
description="Generate a summary of the article, will first try LLM Sampling but if unavailable will use nlp"
|
254
|
+
),
|
255
|
+
] = True,
|
256
|
+
) -> list[ArticleOut]:
|
257
|
+
set_newspaper_article_fields(full_data)
|
258
|
+
articles = await news.get_news_by_topic(
|
259
|
+
topic=topic,
|
260
|
+
period=period,
|
261
|
+
max_results=max_results,
|
262
|
+
nlp=False,
|
263
|
+
report_progress=ctx.report_progress,
|
264
|
+
)
|
265
|
+
if summarize:
|
266
|
+
total_articles = len(articles)
|
267
|
+
try:
|
268
|
+
for idx, article in enumerate(articles):
|
269
|
+
await summarize_article(article, ctx)
|
270
|
+
await ctx.report_progress(idx, total_articles)
|
271
|
+
except Exception as err:
|
272
|
+
await ctx.debug(f"Failed to use LLM sampling for article summary:\n{err.args}")
|
273
|
+
for idx, article in enumerate(articles):
|
274
|
+
article.nlp()
|
275
|
+
await ctx.report_progress(idx, total_articles)
|
276
|
+
|
277
|
+
await ctx.report_progress(progress=len(articles), total=len(articles))
|
278
|
+
return [ArticleOut(**a.to_json(False)) for a in articles]
|
279
|
+
|
280
|
+
|
281
|
+
@mcp.tool(description=news.get_top_news.__doc__, tags={"news", "articles", "top"})
|
282
|
+
async def get_top_news(
|
283
|
+
ctx: Context,
|
284
|
+
period: Annotated[int, Field(description="Number of days to look back for top articles.", ge=1)] = 3,
|
285
|
+
max_results: Annotated[int, Field(description="Maximum number of results to return.", ge=1)] = 10,
|
286
|
+
full_data: Annotated[
|
287
|
+
bool,
|
288
|
+
Field(
|
289
|
+
description="Return full data for each article. If False a summary should be created by setting the summarize flag"
|
290
|
+
),
|
291
|
+
] = False,
|
292
|
+
summarize: Annotated[
|
293
|
+
bool,
|
294
|
+
Field(
|
295
|
+
description="Generate a summary of the article, will first try LLM Sampling but if unavailable will use nlp"
|
296
|
+
),
|
297
|
+
] = True,
|
298
|
+
) -> list[ArticleOut]:
|
299
|
+
set_newspaper_article_fields(full_data)
|
300
|
+
articles = await news.get_top_news(
|
301
|
+
period=period,
|
302
|
+
max_results=max_results,
|
303
|
+
nlp=False,
|
304
|
+
report_progress=ctx.report_progress,
|
305
|
+
)
|
306
|
+
if summarize:
|
307
|
+
total_articles = len(articles)
|
308
|
+
try:
|
309
|
+
for idx, article in enumerate(articles):
|
310
|
+
await summarize_article(article, ctx)
|
311
|
+
await ctx.report_progress(idx, total_articles)
|
312
|
+
except Exception as err:
|
313
|
+
await ctx.debug(f"Failed to use LLM sampling for article summary:\n{err.args}")
|
314
|
+
for idx, article in enumerate(articles):
|
315
|
+
article.nlp()
|
316
|
+
await ctx.report_progress(idx, total_articles)
|
317
|
+
|
318
|
+
await ctx.report_progress(progress=len(articles), total=len(articles))
|
319
|
+
return [ArticleOut(**a.to_json(False)) for a in articles]
|
320
|
+
|
321
|
+
|
322
|
+
@mcp.tool(description=news.get_trending_terms.__doc__, tags={"trends", "google", "trending"})
|
323
|
+
async def get_trending_terms(
|
324
|
+
geo: Annotated[str, Field(description="Country code, e.g. 'US', 'GB', 'IN', etc.")] = "US",
|
325
|
+
full_data: Annotated[
|
326
|
+
bool,
|
327
|
+
Field(description="Return full data for each trend. Should be False for most use cases."),
|
328
|
+
] = False,
|
329
|
+
max_results: Annotated[int, Field(description="Maximum number of results to return.", ge=1)] = 100,
|
330
|
+
) -> list[TrendingTermOut]:
|
331
|
+
|
332
|
+
if not full_data:
|
333
|
+
trends = await news.get_trending_terms(geo=geo, full_data=False, max_results=max_results)
|
334
|
+
return [TrendingTermOut(keyword=str(tt["keyword"]), volume=tt["volume"]) for tt in trends]
|
335
|
+
|
336
|
+
trends = await news.get_trending_terms(geo=geo, full_data=True, max_results=max_results)
|
337
|
+
return [TrendingTermOut(**tt.__dict__) for tt in trends]
|
338
|
+
|
339
|
+
|
340
|
+
def main():
|
341
|
+
mcp.run()
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: google-news-trends-mcp
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.9
|
4
4
|
Summary: An MCP server to access Google News and Google Trends.
|
5
5
|
Author-email: Jesse Manek <jesse.manek@gmail.com>
|
6
6
|
License-Expression: MIT
|
@@ -35,8 +35,8 @@ An MCP server to access Google News and Google Trends. Does not rely on any pai
|
|
35
35
|
|
36
36
|
- Search Google News articles based on keyword, location, topic
|
37
37
|
- Get top news stories from Google News
|
38
|
-
- Google Trends keywords
|
39
|
-
- Optional NLP to summarize articles and extract keywords
|
38
|
+
- Google Trends keywords based on location
|
39
|
+
- Optional LLM Sampling and NLP to summarize articles and extract keywords
|
40
40
|
|
41
41
|
## Installation
|
42
42
|
|
@@ -70,7 +70,7 @@ Add to your Claude settings:
|
|
70
70
|
"mcpServers": {
|
71
71
|
"google-news-trends": {
|
72
72
|
"command": "uvx",
|
73
|
-
"args": ["google-news-trends-mcp"]
|
73
|
+
"args": ["google-news-trends-mcp@latest"]
|
74
74
|
}
|
75
75
|
}
|
76
76
|
}
|
@@ -103,7 +103,7 @@ Add to your Claude settings:
|
|
103
103
|
"servers": {
|
104
104
|
"google-news-trends": {
|
105
105
|
"command": "uvx",
|
106
|
-
"args": ["google-news-trends-mcp"]
|
106
|
+
"args": ["google-news-trends-mcp@latest"]
|
107
107
|
}
|
108
108
|
}
|
109
109
|
}
|
@@ -141,7 +141,7 @@ The following MCP tools are available:
|
|
141
141
|
| **get_top_news** | Fetch the top news stories from Google News. |
|
142
142
|
| **get_trending_keywords**| Return trending keywords from Google Trends for a specified location.|
|
143
143
|
|
144
|
-
All of the news related tools have an option to summarize the text of the article using
|
144
|
+
All of the news related tools have an option to summarize the text of the article using LLM Sampling (if supported) or NLP
|
145
145
|
|
146
146
|
|
147
147
|
## CLI
|
@@ -11,50 +11,56 @@ def mcp_server():
|
|
11
11
|
|
12
12
|
async def test_get_news_by_keyword(mcp_server):
|
13
13
|
async with Client(mcp_server) as client:
|
14
|
-
params = {"keyword": "AI", "period": 3, "max_results": 2
|
14
|
+
params = {"keyword": "AI", "period": 3, "max_results": 2}
|
15
15
|
result = await client.call_tool("get_news_by_keyword", params)
|
16
16
|
assert isinstance(result, list)
|
17
17
|
assert len(result) <= 2
|
18
18
|
for article in result:
|
19
|
-
article = json.loads(article.text)
|
20
|
-
|
21
|
-
|
19
|
+
article = json.loads(article.text)
|
20
|
+
if isinstance(article, list):
|
21
|
+
article = article[0] # Assuming articles are returned as JSON strings
|
22
22
|
assert "title" in article
|
23
23
|
assert "url" in article
|
24
24
|
|
25
25
|
|
26
26
|
async def test_get_news_by_location(mcp_server):
|
27
27
|
async with Client(mcp_server) as client:
|
28
|
-
params = {"location": "California", "period": 3, "max_results": 2
|
28
|
+
params = {"location": "California", "period": 3, "max_results": 2}
|
29
29
|
result = await client.call_tool("get_news_by_location", params)
|
30
30
|
assert isinstance(result, list)
|
31
31
|
assert len(result) <= 2
|
32
32
|
for article in result:
|
33
|
-
article = json.loads(article.text)
|
33
|
+
article = json.loads(article.text)
|
34
|
+
if isinstance(article, list):
|
35
|
+
article = article[0]
|
34
36
|
assert "title" in article
|
35
37
|
assert "url" in article
|
36
38
|
|
37
39
|
|
38
40
|
async def test_get_news_by_topic(mcp_server):
|
39
41
|
async with Client(mcp_server) as client:
|
40
|
-
params = {"topic": "TECHNOLOGY", "period": 3, "max_results": 2
|
42
|
+
params = {"topic": "TECHNOLOGY", "period": 3, "max_results": 2}
|
41
43
|
result = await client.call_tool("get_news_by_topic", params)
|
42
44
|
assert isinstance(result, list)
|
43
45
|
assert len(result) <= 2
|
44
46
|
for article in result:
|
45
|
-
article = json.loads(article.text)
|
47
|
+
article = json.loads(article.text)
|
48
|
+
if isinstance(article, list):
|
49
|
+
article = article[0]
|
46
50
|
assert "title" in article
|
47
51
|
assert "url" in article
|
48
52
|
|
49
53
|
|
50
54
|
async def test_get_top_news(mcp_server):
|
51
55
|
async with Client(mcp_server) as client:
|
52
|
-
params = {"period": 2, "max_results": 2
|
56
|
+
params = {"period": 2, "max_results": 2}
|
53
57
|
result = await client.call_tool("get_top_news", params)
|
54
58
|
assert isinstance(result, list)
|
55
59
|
assert len(result) <= 2
|
56
60
|
for article in result:
|
57
|
-
article = json.loads(article.text)
|
61
|
+
article = json.loads(article.text)
|
62
|
+
if isinstance(article, list):
|
63
|
+
article = article[0]
|
58
64
|
assert "title" in article
|
59
65
|
assert "url" in article
|
60
66
|
|
@@ -1,329 +0,0 @@
|
|
1
|
-
from fastmcp import FastMCP, Context
|
2
|
-
from fastmcp.exceptions import ToolError
|
3
|
-
from fastmcp.server.dependencies import get_context
|
4
|
-
from pydantic import BaseModel, Field
|
5
|
-
from typing import Optional
|
6
|
-
from google_news_trends_mcp import news
|
7
|
-
from typing import Annotated
|
8
|
-
from newspaper import settings as newspaper_settings
|
9
|
-
from fastmcp.server.middleware.timing import TimingMiddleware
|
10
|
-
from fastmcp.server.middleware.logging import LoggingMiddleware
|
11
|
-
from fastmcp.server.middleware.rate_limiting import RateLimitingMiddleware
|
12
|
-
from fastmcp.server.middleware.error_handling import ErrorHandlingMiddleware
|
13
|
-
|
14
|
-
|
15
|
-
class ArticleOut(BaseModel):
|
16
|
-
read_more_link: Annotated[
|
17
|
-
Optional[str], Field(description="Link to read more about the article.")
|
18
|
-
] = None
|
19
|
-
language: Annotated[
|
20
|
-
Optional[str], Field(description="Language code of the article.")
|
21
|
-
] = None
|
22
|
-
meta_img: Annotated[Optional[str], Field(description="Meta image URL.")] = None
|
23
|
-
movies: Annotated[
|
24
|
-
Optional[list[str]], Field(description="List of movie URLs or IDs.")
|
25
|
-
] = None
|
26
|
-
meta_favicon: Annotated[
|
27
|
-
Optional[str], Field(description="Favicon URL from meta data.")
|
28
|
-
] = None
|
29
|
-
meta_site_name: Annotated[
|
30
|
-
Optional[str], Field(description="Site name from meta data.")
|
31
|
-
] = None
|
32
|
-
title: Annotated[str, Field(description="Title of the article.")]
|
33
|
-
authors: Annotated[Optional[list[str]], Field(description="list of authors.")] = (
|
34
|
-
None
|
35
|
-
)
|
36
|
-
publish_date: Annotated[
|
37
|
-
Optional[str], Field(description="Publish date in ISO format.")
|
38
|
-
] = None
|
39
|
-
top_image: Annotated[Optional[str], Field(description="URL of the top image.")] = (
|
40
|
-
None
|
41
|
-
)
|
42
|
-
images: Annotated[Optional[list[str]], Field(description="list of image URLs.")] = (
|
43
|
-
None
|
44
|
-
)
|
45
|
-
text: Annotated[str, Field(description="Full text of the article.")]
|
46
|
-
url: Annotated[str, Field(description="Original article URL.")]
|
47
|
-
summary: Annotated[Optional[str], Field(description="Summary of the article.")] = (
|
48
|
-
None
|
49
|
-
)
|
50
|
-
keywords: Annotated[
|
51
|
-
Optional[list[str]], Field(description="Extracted keywords.")
|
52
|
-
] = None
|
53
|
-
tags: Annotated[Optional[list[str]], Field(description="Tags for the article.")] = (
|
54
|
-
None
|
55
|
-
)
|
56
|
-
meta_keywords: Annotated[
|
57
|
-
Optional[list[str]], Field(description="Meta keywords from the article.")
|
58
|
-
] = None
|
59
|
-
meta_description: Annotated[
|
60
|
-
Optional[str], Field(description="Meta description from the article.")
|
61
|
-
] = None
|
62
|
-
canonical_link: Annotated[
|
63
|
-
Optional[str], Field(description="Canonical link for the article.")
|
64
|
-
] = None
|
65
|
-
meta_data: Annotated[
|
66
|
-
Optional[dict[str, str | int]], Field(description="Meta data dictionary.")
|
67
|
-
] = None
|
68
|
-
meta_lang: Annotated[
|
69
|
-
Optional[str], Field(description="Language of the article.")
|
70
|
-
] = None
|
71
|
-
source_url: Annotated[
|
72
|
-
Optional[str], Field(description="Source URL if different from original.")
|
73
|
-
] = None
|
74
|
-
|
75
|
-
|
76
|
-
class TrendingTermArticleOut(BaseModel):
|
77
|
-
title: Annotated[str, Field(description="Article title.")] = ""
|
78
|
-
url: Annotated[str, Field(description="Article URL.")] = ""
|
79
|
-
source: Annotated[Optional[str], Field(description="News source name.")] = None
|
80
|
-
picture: Annotated[Optional[str], Field(description="URL to article image.")] = None
|
81
|
-
time: Annotated[
|
82
|
-
Optional[str | int], Field(description="Publication time or timestamp.")
|
83
|
-
] = None
|
84
|
-
snippet: Annotated[Optional[str], Field(description="Article preview text.")] = None
|
85
|
-
|
86
|
-
|
87
|
-
class TrendingTermOut(BaseModel):
|
88
|
-
keyword: Annotated[str, Field(description="Trending keyword.")]
|
89
|
-
volume: Annotated[Optional[int], Field(description="Search volume.")] = None
|
90
|
-
geo: Annotated[Optional[str], Field(description="Geographic location code.")] = None
|
91
|
-
started_timestamp: Annotated[
|
92
|
-
Optional[list],
|
93
|
-
Field(
|
94
|
-
description="When the trend started (year, month, day, hour, minute, second)."
|
95
|
-
),
|
96
|
-
] = None
|
97
|
-
ended_timestamp: Annotated[
|
98
|
-
Optional[tuple[int, int]],
|
99
|
-
Field(
|
100
|
-
description="When the trend ended (year, month, day, hour, minute, second)."
|
101
|
-
),
|
102
|
-
] = None
|
103
|
-
volume_growth_pct: Annotated[
|
104
|
-
Optional[float], Field(description="Percentage growth in search volume.")
|
105
|
-
] = None
|
106
|
-
trend_keywords: Annotated[
|
107
|
-
Optional[list[str]], Field(description="Related keywords.")
|
108
|
-
] = None
|
109
|
-
topics: Annotated[
|
110
|
-
Optional[list[str | int]], Field(description="Related topics.")
|
111
|
-
] = None
|
112
|
-
news: Annotated[
|
113
|
-
Optional[list[TrendingTermArticleOut]],
|
114
|
-
Field(description="Related news articles."),
|
115
|
-
] = None
|
116
|
-
news_tokens: Annotated[
|
117
|
-
Optional[list], Field(description="Associated news tokens.")
|
118
|
-
] = None
|
119
|
-
normalized_keyword: Annotated[
|
120
|
-
Optional[str], Field(description="Normalized form of the keyword.")
|
121
|
-
] = None
|
122
|
-
|
123
|
-
|
124
|
-
mcp = FastMCP(
|
125
|
-
name="google-news-trends",
|
126
|
-
instructions="This server provides tools to search, analyze, and summarize Google News articles and Google Trends",
|
127
|
-
on_duplicate_tools="replace",
|
128
|
-
)
|
129
|
-
|
130
|
-
mcp.add_middleware(ErrorHandlingMiddleware()) # Handle errors first
|
131
|
-
mcp.add_middleware(RateLimitingMiddleware(max_requests_per_second=50))
|
132
|
-
mcp.add_middleware(TimingMiddleware()) # Time actual execution
|
133
|
-
mcp.add_middleware(LoggingMiddleware()) # Log everything
|
134
|
-
|
135
|
-
|
136
|
-
# Configure newspaper settings for article extraction
|
137
|
-
def set_newspaper_article_fields(full_data: bool = False):
|
138
|
-
if full_data:
|
139
|
-
newspaper_settings.article_json_fields = [
|
140
|
-
"url",
|
141
|
-
"read_more_link",
|
142
|
-
"language",
|
143
|
-
"title",
|
144
|
-
"top_image",
|
145
|
-
"meta_img",
|
146
|
-
"images",
|
147
|
-
"movies",
|
148
|
-
"keywords",
|
149
|
-
"keyword_scores",
|
150
|
-
"meta_keywords",
|
151
|
-
"tags",
|
152
|
-
"authors",
|
153
|
-
"publish_date",
|
154
|
-
"summary",
|
155
|
-
"meta_description",
|
156
|
-
"meta_lang",
|
157
|
-
"meta_favicon",
|
158
|
-
"meta_site_name",
|
159
|
-
"canonical_link",
|
160
|
-
"text",
|
161
|
-
]
|
162
|
-
else:
|
163
|
-
newspaper_settings.article_json_fields = [
|
164
|
-
"url",
|
165
|
-
"title",
|
166
|
-
"text",
|
167
|
-
"publish_date",
|
168
|
-
"summary",
|
169
|
-
"keywords",
|
170
|
-
]
|
171
|
-
|
172
|
-
|
173
|
-
@mcp.tool(
|
174
|
-
description=news.get_news_by_keyword.__doc__,
|
175
|
-
tags={"news", "articles", "keyword"},
|
176
|
-
)
|
177
|
-
async def get_news_by_keyword(
|
178
|
-
ctx: Context,
|
179
|
-
keyword: Annotated[str, Field(description="Search term to find articles.")],
|
180
|
-
period: Annotated[
|
181
|
-
int, Field(description="Number of days to look back for articles.", ge=1)
|
182
|
-
] = 7,
|
183
|
-
max_results: Annotated[
|
184
|
-
int, Field(description="Maximum number of results to return.", ge=1)
|
185
|
-
] = 10,
|
186
|
-
nlp: Annotated[
|
187
|
-
bool, Field(description="Whether to perform NLP on the articles.")
|
188
|
-
] = False,
|
189
|
-
full_data: Annotated[
|
190
|
-
bool, Field(description="Return full data for each article.")
|
191
|
-
] = False,
|
192
|
-
) -> list[ArticleOut]:
|
193
|
-
set_newspaper_article_fields(full_data)
|
194
|
-
articles = await news.get_news_by_keyword(
|
195
|
-
keyword=keyword,
|
196
|
-
period=period,
|
197
|
-
max_results=max_results,
|
198
|
-
nlp=nlp,
|
199
|
-
report_progress=ctx.report_progress,
|
200
|
-
)
|
201
|
-
await ctx.report_progress(progress=len(articles), total=len(articles))
|
202
|
-
return [ArticleOut(**a.to_json(False)) for a in articles]
|
203
|
-
|
204
|
-
|
205
|
-
@mcp.tool(
|
206
|
-
description=news.get_news_by_location.__doc__,
|
207
|
-
tags={"news", "articles", "location"},
|
208
|
-
)
|
209
|
-
async def get_news_by_location(
|
210
|
-
ctx: Context,
|
211
|
-
location: Annotated[str, Field(description="Name of city/state/country.")],
|
212
|
-
period: Annotated[
|
213
|
-
int, Field(description="Number of days to look back for articles.", ge=1)
|
214
|
-
] = 7,
|
215
|
-
max_results: Annotated[
|
216
|
-
int, Field(description="Maximum number of results to return.", ge=1)
|
217
|
-
] = 10,
|
218
|
-
nlp: Annotated[
|
219
|
-
bool, Field(description="Whether to perform NLP on the articles.")
|
220
|
-
] = False,
|
221
|
-
full_data: Annotated[
|
222
|
-
bool, Field(description="Return full data for each article.")
|
223
|
-
] = False,
|
224
|
-
) -> list[ArticleOut]:
|
225
|
-
set_newspaper_article_fields(full_data)
|
226
|
-
articles = await news.get_news_by_location(
|
227
|
-
location=location,
|
228
|
-
period=period,
|
229
|
-
max_results=max_results,
|
230
|
-
nlp=nlp,
|
231
|
-
report_progress=ctx.report_progress,
|
232
|
-
)
|
233
|
-
await ctx.report_progress(progress=len(articles), total=len(articles))
|
234
|
-
return [ArticleOut(**a.to_json(False)) for a in articles]
|
235
|
-
|
236
|
-
|
237
|
-
@mcp.tool(
|
238
|
-
description=news.get_news_by_topic.__doc__, tags={"news", "articles", "topic"}
|
239
|
-
)
|
240
|
-
async def get_news_by_topic(
|
241
|
-
ctx: Context,
|
242
|
-
topic: Annotated[str, Field(description="Topic to search for articles.")],
|
243
|
-
period: Annotated[
|
244
|
-
int, Field(description="Number of days to look back for articles.", ge=1)
|
245
|
-
] = 7,
|
246
|
-
max_results: Annotated[
|
247
|
-
int, Field(description="Maximum number of results to return.", ge=1)
|
248
|
-
] = 10,
|
249
|
-
nlp: Annotated[
|
250
|
-
bool, Field(description="Whether to perform NLP on the articles.")
|
251
|
-
] = False,
|
252
|
-
full_data: Annotated[
|
253
|
-
bool, Field(description="Return full data for each article.")
|
254
|
-
] = False,
|
255
|
-
) -> list[ArticleOut]:
|
256
|
-
set_newspaper_article_fields(full_data)
|
257
|
-
articles = await news.get_news_by_topic(
|
258
|
-
topic=topic,
|
259
|
-
period=period,
|
260
|
-
max_results=max_results,
|
261
|
-
nlp=nlp,
|
262
|
-
report_progress=ctx.report_progress,
|
263
|
-
)
|
264
|
-
await ctx.report_progress(progress=len(articles), total=len(articles))
|
265
|
-
return [ArticleOut(**a.to_json(False)) for a in articles]
|
266
|
-
|
267
|
-
|
268
|
-
@mcp.tool(description=news.get_top_news.__doc__, tags={"news", "articles", "top"})
|
269
|
-
async def get_top_news(
|
270
|
-
ctx: Context,
|
271
|
-
period: Annotated[
|
272
|
-
int, Field(description="Number of days to look back for top articles.", ge=1)
|
273
|
-
] = 3,
|
274
|
-
max_results: Annotated[
|
275
|
-
int, Field(description="Maximum number of results to return.", ge=1)
|
276
|
-
] = 10,
|
277
|
-
nlp: Annotated[
|
278
|
-
bool, Field(description="Whether to perform NLP on the articles.")
|
279
|
-
] = False,
|
280
|
-
full_data: Annotated[
|
281
|
-
bool, Field(description="Return full data for each article.")
|
282
|
-
] = False,
|
283
|
-
) -> list[ArticleOut]:
|
284
|
-
set_newspaper_article_fields(full_data)
|
285
|
-
articles = await news.get_top_news(
|
286
|
-
period=period,
|
287
|
-
max_results=max_results,
|
288
|
-
nlp=nlp,
|
289
|
-
report_progress=ctx.report_progress,
|
290
|
-
)
|
291
|
-
await ctx.report_progress(progress=len(articles), total=len(articles))
|
292
|
-
return [ArticleOut(**a.to_json(False)) for a in articles]
|
293
|
-
|
294
|
-
|
295
|
-
@mcp.tool(
|
296
|
-
description=news.get_trending_terms.__doc__, tags={"trends", "google", "trending"}
|
297
|
-
)
|
298
|
-
async def get_trending_terms(
|
299
|
-
geo: Annotated[
|
300
|
-
str, Field(description="Country code, e.g. 'US', 'GB', 'IN', etc.")
|
301
|
-
] = "US",
|
302
|
-
full_data: Annotated[
|
303
|
-
bool,
|
304
|
-
Field(
|
305
|
-
description="Return full data for each trend. Should be False for most use cases."
|
306
|
-
),
|
307
|
-
] = False,
|
308
|
-
max_results: Annotated[
|
309
|
-
int, Field(description="Maximum number of results to return.", ge=1)
|
310
|
-
] = 100,
|
311
|
-
) -> list[TrendingTermOut]:
|
312
|
-
|
313
|
-
if not full_data:
|
314
|
-
trends = await news.get_trending_terms(
|
315
|
-
geo=geo, full_data=False, max_results=max_results
|
316
|
-
)
|
317
|
-
return [
|
318
|
-
TrendingTermOut(keyword=str(tt["keyword"]), volume=tt["volume"])
|
319
|
-
for tt in trends
|
320
|
-
]
|
321
|
-
|
322
|
-
trends = await news.get_trending_terms(
|
323
|
-
geo=geo, full_data=True, max_results=max_results
|
324
|
-
)
|
325
|
-
return [TrendingTermOut(**tt.__dict__) for tt in trends]
|
326
|
-
|
327
|
-
|
328
|
-
def main():
|
329
|
-
mcp.run()
|
File without changes
|
File without changes
|
{google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.9}/src/google_news_trends_mcp/__main__.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|