google-news-trends-mcp 0.1.7__tar.gz → 0.1.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {google_news_trends_mcp-0.1.7/src/google_news_trends_mcp.egg-info → google_news_trends_mcp-0.1.8}/PKG-INFO +4 -4
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/README.md +3 -3
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/pyproject.toml +5 -2
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp/cli.py +15 -49
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp/news.py +12 -36
- google_news_trends_mcp-0.1.8/src/google_news_trends_mcp/server.py +344 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8/src/google_news_trends_mcp.egg-info}/PKG-INFO +4 -4
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/tests/test_server.py +5 -7
- google_news_trends_mcp-0.1.7/src/google_news_trends_mcp/server.py +0 -329
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/LICENSE +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/setup.cfg +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp/__init__.py +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp/__main__.py +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp.egg-info/SOURCES.txt +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp.egg-info/dependency_links.txt +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp.egg-info/entry_points.txt +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp.egg-info/requires.txt +0 -0
- {google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: google-news-trends-mcp
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.8
|
4
4
|
Summary: An MCP server to access Google News and Google Trends.
|
5
5
|
Author-email: Jesse Manek <jesse.manek@gmail.com>
|
6
6
|
License-Expression: MIT
|
@@ -36,7 +36,7 @@ An MCP server to access Google News and Google Trends. Does not rely on any pai
|
|
36
36
|
- Search Google News articles based on keyword, location, topic
|
37
37
|
- Get top news stories from Google News
|
38
38
|
- Google Trends keywords base on location
|
39
|
-
- Optional NLP to summarize articles and extract keywords
|
39
|
+
- Optional LLM Sampling and NLP to summarize articles and extract keywords
|
40
40
|
|
41
41
|
## Installation
|
42
42
|
|
@@ -70,7 +70,7 @@ Add to your Claude settings:
|
|
70
70
|
"mcpServers": {
|
71
71
|
"google-news-trends": {
|
72
72
|
"command": "uvx",
|
73
|
-
"args": ["google-news-trends-mcp"]
|
73
|
+
"args": ["google-news-trends-mcp@latest"]
|
74
74
|
}
|
75
75
|
}
|
76
76
|
}
|
@@ -103,7 +103,7 @@ Add to your Claude settings:
|
|
103
103
|
"servers": {
|
104
104
|
"google-news-trends": {
|
105
105
|
"command": "uvx",
|
106
|
-
"args": ["google-news-trends-mcp"]
|
106
|
+
"args": ["google-news-trends-mcp@latest"]
|
107
107
|
}
|
108
108
|
}
|
109
109
|
}
|
@@ -7,7 +7,7 @@ An MCP server to access Google News and Google Trends. Does not rely on any pai
|
|
7
7
|
- Search Google News articles based on keyword, location, topic
|
8
8
|
- Get top news stories from Google News
|
9
9
|
- Google Trends keywords base on location
|
10
|
-
- Optional NLP to summarize articles and extract keywords
|
10
|
+
- Optional LLM Sampling and NLP to summarize articles and extract keywords
|
11
11
|
|
12
12
|
## Installation
|
13
13
|
|
@@ -41,7 +41,7 @@ Add to your Claude settings:
|
|
41
41
|
"mcpServers": {
|
42
42
|
"google-news-trends": {
|
43
43
|
"command": "uvx",
|
44
|
-
"args": ["google-news-trends-mcp"]
|
44
|
+
"args": ["google-news-trends-mcp@latest"]
|
45
45
|
}
|
46
46
|
}
|
47
47
|
}
|
@@ -74,7 +74,7 @@ Add to your Claude settings:
|
|
74
74
|
"servers": {
|
75
75
|
"google-news-trends": {
|
76
76
|
"command": "uvx",
|
77
|
-
"args": ["google-news-trends-mcp"]
|
77
|
+
"args": ["google-news-trends-mcp@latest"]
|
78
78
|
}
|
79
79
|
}
|
80
80
|
}
|
@@ -1,6 +1,6 @@
|
|
1
1
|
[project]
|
2
2
|
name = "google-news-trends-mcp"
|
3
|
-
version = "0.1.
|
3
|
+
version = "0.1.8"
|
4
4
|
description = "An MCP server to access Google News and Google Trends."
|
5
5
|
readme = "README.md"
|
6
6
|
requires-python = ">=3.10.18"
|
@@ -63,4 +63,7 @@ pythonpath = "src"
|
|
63
63
|
[project.urls]
|
64
64
|
Homepage = "https://github.com/jmanek/google-news-trends-mcp"
|
65
65
|
Repository = "https://github.com/jmanek/google-news-trends-mcp"
|
66
|
-
Issues = "https://github.com/jmanek/google-news-trends-mcp/issues"
|
66
|
+
Issues = "https://github.com/jmanek/google-news-trends-mcp/issues"
|
67
|
+
|
68
|
+
[tool.black]
|
69
|
+
line-length = 120
|
{google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp/cli.py
RENAMED
@@ -17,9 +17,7 @@ def cli():
|
|
17
17
|
|
18
18
|
@cli.command(help=get_news_by_keyword.__doc__)
|
19
19
|
@click.argument("keyword")
|
20
|
-
@click.option(
|
21
|
-
"--period", type=int, default=7, help="Period in days to search for articles."
|
22
|
-
)
|
20
|
+
@click.option("--period", type=int, default=7, help="Period in days to search for articles.")
|
23
21
|
@click.option(
|
24
22
|
"--max-results",
|
25
23
|
"max_results",
|
@@ -27,24 +25,16 @@ def cli():
|
|
27
25
|
default=10,
|
28
26
|
help="Maximum number of results to return.",
|
29
27
|
)
|
30
|
-
@click.option(
|
31
|
-
"--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles."
|
32
|
-
)
|
28
|
+
@click.option("--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles.")
|
33
29
|
def keyword(keyword, period, max_results, no_nlp):
|
34
|
-
articles = asyncio.run(
|
35
|
-
get_news_by_keyword(
|
36
|
-
keyword, period=period, max_results=max_results, nlp=not no_nlp
|
37
|
-
)
|
38
|
-
)
|
30
|
+
articles = asyncio.run(get_news_by_keyword(keyword, period=period, max_results=max_results, nlp=not no_nlp))
|
39
31
|
# asyncio.run(articles) # Ensure the articles are fetched asynchronously
|
40
32
|
print_articles(articles)
|
41
33
|
|
42
34
|
|
43
35
|
@cli.command(help=get_news_by_location.__doc__)
|
44
36
|
@click.argument("location")
|
45
|
-
@click.option(
|
46
|
-
"--period", type=int, default=7, help="Period in days to search for articles."
|
47
|
-
)
|
37
|
+
@click.option("--period", type=int, default=7, help="Period in days to search for articles.")
|
48
38
|
@click.option(
|
49
39
|
"--max-results",
|
50
40
|
"max_results",
|
@@ -52,23 +42,15 @@ def keyword(keyword, period, max_results, no_nlp):
|
|
52
42
|
default=10,
|
53
43
|
help="Maximum number of results to return.",
|
54
44
|
)
|
55
|
-
@click.option(
|
56
|
-
"--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles."
|
57
|
-
)
|
45
|
+
@click.option("--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles.")
|
58
46
|
def location(location, period, max_results, no_nlp):
|
59
|
-
articles = asyncio.run(
|
60
|
-
get_news_by_location(
|
61
|
-
location, period=period, max_results=max_results, nlp=not no_nlp
|
62
|
-
)
|
63
|
-
)
|
47
|
+
articles = asyncio.run(get_news_by_location(location, period=period, max_results=max_results, nlp=not no_nlp))
|
64
48
|
print_articles(articles)
|
65
49
|
|
66
50
|
|
67
51
|
@cli.command(help=get_news_by_topic.__doc__)
|
68
52
|
@click.argument("topic")
|
69
|
-
@click.option(
|
70
|
-
"--period", type=int, default=7, help="Period in days to search for articles."
|
71
|
-
)
|
53
|
+
@click.option("--period", type=int, default=7, help="Period in days to search for articles.")
|
72
54
|
@click.option(
|
73
55
|
"--max-results",
|
74
56
|
"max_results",
|
@@ -76,23 +58,15 @@ def location(location, period, max_results, no_nlp):
|
|
76
58
|
default=10,
|
77
59
|
help="Maximum number of results to return.",
|
78
60
|
)
|
79
|
-
@click.option(
|
80
|
-
"--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles."
|
81
|
-
)
|
61
|
+
@click.option("--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles.")
|
82
62
|
def topic(topic, period, max_results, no_nlp):
|
83
|
-
articles = asyncio.run(
|
84
|
-
get_news_by_topic(topic, period=period, max_results=max_results, nlp=not no_nlp)
|
85
|
-
)
|
63
|
+
articles = asyncio.run(get_news_by_topic(topic, period=period, max_results=max_results, nlp=not no_nlp))
|
86
64
|
print_articles(articles)
|
87
65
|
|
88
66
|
|
89
67
|
@cli.command(help=get_trending_terms.__doc__)
|
90
|
-
@click.option(
|
91
|
-
|
92
|
-
)
|
93
|
-
@click.option(
|
94
|
-
"--full-data", is_flag=True, default=False, help="Return full data for each trend."
|
95
|
-
)
|
68
|
+
@click.option("--geo", type=str, default="US", help="Country code, e.g. 'US', 'GB', 'IN', etc.")
|
69
|
+
@click.option("--full-data", is_flag=True, default=False, help="Return full data for each trend.")
|
96
70
|
@click.option(
|
97
71
|
"--max-results",
|
98
72
|
"max_results",
|
@@ -101,9 +75,7 @@ def topic(topic, period, max_results, no_nlp):
|
|
101
75
|
help="Maximum number of results to return.",
|
102
76
|
)
|
103
77
|
def trending(geo, full_data, max_results):
|
104
|
-
trending_terms = asyncio.run(
|
105
|
-
get_trending_terms(geo=geo, full_data=full_data, max_results=max_results)
|
106
|
-
)
|
78
|
+
trending_terms = asyncio.run(get_trending_terms(geo=geo, full_data=full_data, max_results=max_results))
|
107
79
|
if trending_terms:
|
108
80
|
print("Trending terms:")
|
109
81
|
for term in trending_terms:
|
@@ -116,9 +88,7 @@ def trending(geo, full_data, max_results):
|
|
116
88
|
|
117
89
|
|
118
90
|
@cli.command(help=get_top_news.__doc__)
|
119
|
-
@click.option(
|
120
|
-
"--period", type=int, default=3, help="Period in days to search for top articles."
|
121
|
-
)
|
91
|
+
@click.option("--period", type=int, default=3, help="Period in days to search for top articles.")
|
122
92
|
@click.option(
|
123
93
|
"--max-results",
|
124
94
|
"max_results",
|
@@ -126,13 +96,9 @@ def trending(geo, full_data, max_results):
|
|
126
96
|
default=10,
|
127
97
|
help="Maximum number of results to return.",
|
128
98
|
)
|
129
|
-
@click.option(
|
130
|
-
"--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles."
|
131
|
-
)
|
99
|
+
@click.option("--no-nlp", is_flag=True, default=False, help="Disable NLP processing for articles.")
|
132
100
|
def top(period, max_results, no_nlp):
|
133
|
-
articles = asyncio.run(
|
134
|
-
get_top_news(max_results=max_results, period=period, nlp=not no_nlp)
|
135
|
-
)
|
101
|
+
articles = asyncio.run(get_top_news(max_results=max_results, period=period, nlp=not no_nlp))
|
136
102
|
print_articles(articles)
|
137
103
|
print(f"Found {len(articles)} top articles.")
|
138
104
|
|
{google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp/news.py
RENAMED
@@ -100,9 +100,7 @@ async def download_article_with_playwright(url) -> newspaper.Article | None:
|
|
100
100
|
article = newspaper.article(url, input_html=content, language="en")
|
101
101
|
return article
|
102
102
|
except Exception as e:
|
103
|
-
logging.warning(
|
104
|
-
f"Error downloading article with Playwright from {url}\n {e.args}"
|
105
|
-
)
|
103
|
+
logging.warning(f"Error downloading article with Playwright from {url}\n {e.args}")
|
106
104
|
return None
|
107
105
|
|
108
106
|
|
@@ -135,9 +133,7 @@ async def download_article(url: str, nlp: bool = True) -> newspaper.Article | No
|
|
135
133
|
f"Failed to download article with cloudscraper from {url}, status code: {response.status_code}"
|
136
134
|
)
|
137
135
|
except Exception as e:
|
138
|
-
logging.debug(
|
139
|
-
f"Error downloading article with cloudscraper from {url}\n {e.args}"
|
140
|
-
)
|
136
|
+
logging.debug(f"Error downloading article with cloudscraper from {url}\n {e.args}")
|
141
137
|
|
142
138
|
try:
|
143
139
|
if article is None or not article.text:
|
@@ -168,9 +164,7 @@ async def process_gnews_articles(
|
|
168
164
|
for idx, gnews_article in enumerate(gnews_articles):
|
169
165
|
article = await download_article(gnews_article["url"], nlp=nlp)
|
170
166
|
if article is None or not article.text:
|
171
|
-
logging.debug(
|
172
|
-
f"Failed to download article from {gnews_article['url']}:\n{article}"
|
173
|
-
)
|
167
|
+
logging.debug(f"Failed to download article from {gnews_article['url']}:\n{article}")
|
174
168
|
continue
|
175
169
|
articles.append(article)
|
176
170
|
if report_progress:
|
@@ -196,13 +190,9 @@ async def get_news_by_keyword(
|
|
196
190
|
google_news.max_results = max_results
|
197
191
|
gnews_articles = google_news.get_news(keyword)
|
198
192
|
if not gnews_articles:
|
199
|
-
logging.debug(
|
200
|
-
f"No articles found for keyword '{keyword}' in the last {period} days."
|
201
|
-
)
|
193
|
+
logging.debug(f"No articles found for keyword '{keyword}' in the last {period} days.")
|
202
194
|
return []
|
203
|
-
return await process_gnews_articles(
|
204
|
-
gnews_articles, nlp=nlp, report_progress=report_progress
|
205
|
-
)
|
195
|
+
return await process_gnews_articles(gnews_articles, nlp=nlp, report_progress=report_progress)
|
206
196
|
|
207
197
|
|
208
198
|
async def get_top_news(
|
@@ -223,9 +213,7 @@ async def get_top_news(
|
|
223
213
|
if not gnews_articles:
|
224
214
|
logging.debug("No top news articles found.")
|
225
215
|
return []
|
226
|
-
return await process_gnews_articles(
|
227
|
-
gnews_articles, nlp=nlp, report_progress=report_progress
|
228
|
-
)
|
216
|
+
return await process_gnews_articles(gnews_articles, nlp=nlp, report_progress=report_progress)
|
229
217
|
|
230
218
|
|
231
219
|
async def get_news_by_location(
|
@@ -245,13 +233,9 @@ async def get_news_by_location(
|
|
245
233
|
google_news.max_results = max_results
|
246
234
|
gnews_articles = google_news.get_news_by_location(location)
|
247
235
|
if not gnews_articles:
|
248
|
-
logging.debug(
|
249
|
-
f"No articles found for location '{location}' in the last {period} days."
|
250
|
-
)
|
236
|
+
logging.debug(f"No articles found for location '{location}' in the last {period} days.")
|
251
237
|
return []
|
252
|
-
return await process_gnews_articles(
|
253
|
-
gnews_articles, nlp=nlp, report_progress=report_progress
|
254
|
-
)
|
238
|
+
return await process_gnews_articles(gnews_articles, nlp=nlp, report_progress=report_progress)
|
255
239
|
|
256
240
|
|
257
241
|
async def get_news_by_topic(
|
@@ -279,13 +263,9 @@ async def get_news_by_topic(
|
|
279
263
|
google_news.max_results = max_results
|
280
264
|
gnews_articles = google_news.get_news_by_topic(topic)
|
281
265
|
if not gnews_articles:
|
282
|
-
logging.debug(
|
283
|
-
f"No articles found for topic '{topic}' in the last {period} days."
|
284
|
-
)
|
266
|
+
logging.debug(f"No articles found for topic '{topic}' in the last {period} days.")
|
285
267
|
return []
|
286
|
-
return await process_gnews_articles(
|
287
|
-
gnews_articles, nlp=nlp, report_progress=report_progress
|
288
|
-
)
|
268
|
+
return await process_gnews_articles(gnews_articles, nlp=nlp, report_progress=report_progress)
|
289
269
|
|
290
270
|
|
291
271
|
@overload
|
@@ -314,13 +294,9 @@ async def get_trending_terms(
|
|
314
294
|
"""
|
315
295
|
try:
|
316
296
|
trends = list(tr.trending_now(geo=geo))
|
317
|
-
trends = list(sorted(trends, key=lambda tt: tt.volume, reverse=True))[
|
318
|
-
:max_results
|
319
|
-
]
|
297
|
+
trends = list(sorted(trends, key=lambda tt: tt.volume, reverse=True))[:max_results]
|
320
298
|
if not full_data:
|
321
|
-
return [
|
322
|
-
{"keyword": trend.keyword, "volume": trend.volume} for trend in trends
|
323
|
-
]
|
299
|
+
return [{"keyword": trend.keyword, "volume": trend.volume} for trend in trends]
|
324
300
|
return trends
|
325
301
|
except Exception as e:
|
326
302
|
logging.warning(f"Error fetching trending terms: {e}")
|
@@ -0,0 +1,344 @@
|
|
1
|
+
from typing import Annotated, cast, Optional, Any, Literal, TYPE_CHECKING
|
2
|
+
from fastmcp import FastMCP, Context
|
3
|
+
from fastmcp.exceptions import ToolError
|
4
|
+
from fastmcp.server.dependencies import get_context
|
5
|
+
from fastmcp.server.middleware.timing import TimingMiddleware
|
6
|
+
from fastmcp.server.middleware.logging import LoggingMiddleware
|
7
|
+
from fastmcp.server.middleware.rate_limiting import RateLimitingMiddleware
|
8
|
+
from fastmcp.server.middleware.error_handling import ErrorHandlingMiddleware
|
9
|
+
from mcp.types import TextContent
|
10
|
+
from pydantic import BaseModel, Field, model_serializer
|
11
|
+
from google_news_trends_mcp import news
|
12
|
+
from newspaper import settings as newspaper_settings
|
13
|
+
from newspaper.article import Article
|
14
|
+
|
15
|
+
|
16
|
+
class BaseModelClean(BaseModel):
|
17
|
+
@model_serializer
|
18
|
+
def serializer(self, **kwargs) -> dict[str, Any]:
|
19
|
+
return {
|
20
|
+
field: self.__getattribute__(field)
|
21
|
+
for field in self.model_fields_set
|
22
|
+
if self.__getattribute__(field) is not None
|
23
|
+
}
|
24
|
+
|
25
|
+
if TYPE_CHECKING:
|
26
|
+
|
27
|
+
def model_dump(self, **kwargs) -> dict[str, Any]: ...
|
28
|
+
|
29
|
+
|
30
|
+
class ArticleOut(BaseModelClean):
|
31
|
+
title: Annotated[str, Field(description="Title of the article.")]
|
32
|
+
url: Annotated[str, Field(description="Original article URL.")]
|
33
|
+
read_more_link: Annotated[Optional[str], Field(description="Link to read more about the article.")] = None
|
34
|
+
language: Annotated[Optional[str], Field(description="Language code of the article.")] = None
|
35
|
+
meta_img: Annotated[Optional[str], Field(description="Meta image URL.")] = None
|
36
|
+
movies: Annotated[Optional[list[str]], Field(description="List of movie URLs or IDs.")] = None
|
37
|
+
meta_favicon: Annotated[Optional[str], Field(description="Favicon URL from meta data.")] = None
|
38
|
+
meta_site_name: Annotated[Optional[str], Field(description="Site name from meta data.")] = None
|
39
|
+
authors: Annotated[Optional[list[str]], Field(description="list of authors.")] = None
|
40
|
+
publish_date: Annotated[Optional[str], Field(description="Publish date in ISO format.")] = None
|
41
|
+
top_image: Annotated[Optional[str], Field(description="URL of the top image.")] = None
|
42
|
+
images: Annotated[Optional[list[str]], Field(description="list of image URLs.")] = None
|
43
|
+
text: Annotated[Optional[str], Field(description="Full text of the article.")] = None
|
44
|
+
summary: Annotated[Optional[str], Field(description="Summary of the article.")] = None
|
45
|
+
keywords: Annotated[Optional[list[str]], Field(description="Extracted keywords.")] = None
|
46
|
+
tags: Annotated[Optional[list[str]], Field(description="Tags for the article.")] = None
|
47
|
+
meta_keywords: Annotated[Optional[list[str]], Field(description="Meta keywords from the article.")] = None
|
48
|
+
meta_description: Annotated[Optional[str], Field(description="Meta description from the article.")] = None
|
49
|
+
canonical_link: Annotated[Optional[str], Field(description="Canonical link for the article.")] = None
|
50
|
+
meta_data: Annotated[Optional[dict[str, str | int]], Field(description="Meta data dictionary.")] = None
|
51
|
+
meta_lang: Annotated[Optional[str], Field(description="Language of the article.")] = None
|
52
|
+
source_url: Annotated[Optional[str], Field(description="Source URL if different from original.")] = None
|
53
|
+
|
54
|
+
|
55
|
+
class TrendingTermArticleOut(BaseModelClean):
|
56
|
+
title: Annotated[str, Field(description="Article title.")] = ""
|
57
|
+
url: Annotated[str, Field(description="Article URL.")] = ""
|
58
|
+
source: Annotated[Optional[str], Field(description="News source name.")] = None
|
59
|
+
picture: Annotated[Optional[str], Field(description="URL to article image.")] = None
|
60
|
+
time: Annotated[Optional[str | int], Field(description="Publication time or timestamp.")] = None
|
61
|
+
snippet: Annotated[Optional[str], Field(description="Article preview text.")] = None
|
62
|
+
|
63
|
+
|
64
|
+
class TrendingTermOut(BaseModelClean):
|
65
|
+
keyword: Annotated[str, Field(description="Trending keyword.")]
|
66
|
+
volume: Annotated[Optional[int], Field(description="Search volume.")] = None
|
67
|
+
geo: Annotated[Optional[str], Field(description="Geographic location code.")] = None
|
68
|
+
started_timestamp: Annotated[
|
69
|
+
Optional[list],
|
70
|
+
Field(description="When the trend started (year, month, day, hour, minute, second)."),
|
71
|
+
] = None
|
72
|
+
ended_timestamp: Annotated[
|
73
|
+
Optional[list],
|
74
|
+
Field(description="When the trend ended (year, month, day, hour, minute, second)."),
|
75
|
+
] = None
|
76
|
+
volume_growth_pct: Annotated[Optional[float], Field(description="Percentage growth in search volume.")] = None
|
77
|
+
trend_keywords: Annotated[Optional[list[str]], Field(description="Related keywords.")] = None
|
78
|
+
topics: Annotated[Optional[list[str | int]], Field(description="Related topics.")] = None
|
79
|
+
news: Annotated[
|
80
|
+
Optional[list[TrendingTermArticleOut]],
|
81
|
+
Field(description="Related news articles."),
|
82
|
+
] = None
|
83
|
+
news_tokens: Annotated[Optional[list], Field(description="Associated news tokens.")] = None
|
84
|
+
normalized_keyword: Annotated[Optional[str], Field(description="Normalized form of the keyword.")] = None
|
85
|
+
|
86
|
+
|
87
|
+
mcp = FastMCP(
|
88
|
+
name="google-news-trends",
|
89
|
+
instructions="This server provides tools to search, analyze, and summarize Google News articles and Google Trends",
|
90
|
+
on_duplicate_tools="replace",
|
91
|
+
)
|
92
|
+
|
93
|
+
mcp.add_middleware(ErrorHandlingMiddleware()) # Handle errors first
|
94
|
+
mcp.add_middleware(RateLimitingMiddleware(max_requests_per_second=50))
|
95
|
+
mcp.add_middleware(TimingMiddleware()) # Time actual execution
|
96
|
+
mcp.add_middleware(LoggingMiddleware()) # Log everything
|
97
|
+
|
98
|
+
|
99
|
+
def set_newspaper_article_fields(full_data: bool = False):
|
100
|
+
if full_data:
|
101
|
+
newspaper_settings.article_json_fields = [
|
102
|
+
"url",
|
103
|
+
"read_more_link",
|
104
|
+
"language",
|
105
|
+
"title",
|
106
|
+
"top_image",
|
107
|
+
"meta_img",
|
108
|
+
"images",
|
109
|
+
"movies",
|
110
|
+
"keywords",
|
111
|
+
"keyword_scores",
|
112
|
+
"meta_keywords",
|
113
|
+
"tags",
|
114
|
+
"authors",
|
115
|
+
"publish_date",
|
116
|
+
"summary",
|
117
|
+
"meta_description",
|
118
|
+
"meta_lang",
|
119
|
+
"meta_favicon",
|
120
|
+
"meta_site_name",
|
121
|
+
"canonical_link",
|
122
|
+
"text",
|
123
|
+
]
|
124
|
+
else:
|
125
|
+
newspaper_settings.article_json_fields = [
|
126
|
+
"url",
|
127
|
+
"title",
|
128
|
+
"publish_date",
|
129
|
+
"summary",
|
130
|
+
]
|
131
|
+
|
132
|
+
|
133
|
+
async def summarize_article(article: Article, ctx: Context) -> None:
|
134
|
+
if article.text:
|
135
|
+
prompt = f"Please provide a concise summary of the following news article:\n\n{article.text}"
|
136
|
+
response = await ctx.sample(prompt)
|
137
|
+
# response = cast(TextContent, response)
|
138
|
+
if isinstance(response, TextContent):
|
139
|
+
if not response.text:
|
140
|
+
await ctx.warning("NLP response is empty. Unable to summarize article.")
|
141
|
+
article.summary = "No summary available."
|
142
|
+
else:
|
143
|
+
article.summary = response.text
|
144
|
+
else:
|
145
|
+
await ctx.warning("NLP response is not a TextContent object. Unable to summarize article.")
|
146
|
+
article.summary = "No summary available."
|
147
|
+
else:
|
148
|
+
article.summary = "No summary available."
|
149
|
+
|
150
|
+
|
151
|
+
@mcp.tool(
|
152
|
+
description=news.get_news_by_keyword.__doc__,
|
153
|
+
tags={"news", "articles", "keyword"},
|
154
|
+
)
|
155
|
+
async def get_news_by_keyword(
|
156
|
+
ctx: Context,
|
157
|
+
keyword: Annotated[str, Field(description="Search term to find articles.")],
|
158
|
+
period: Annotated[int, Field(description="Number of days to look back for articles.", ge=1)] = 7,
|
159
|
+
max_results: Annotated[int, Field(description="Maximum number of results to return.", ge=1)] = 10,
|
160
|
+
full_data: Annotated[
|
161
|
+
bool,
|
162
|
+
Field(
|
163
|
+
description="Return full data for each article. If False a summary should be created by setting the summarize flag"
|
164
|
+
),
|
165
|
+
] = False,
|
166
|
+
summarize: Annotated[
|
167
|
+
bool,
|
168
|
+
Field(
|
169
|
+
description="Generate a summary of the article, will first try LLM Sampling but if unavailable will use nlp"
|
170
|
+
),
|
171
|
+
] = True,
|
172
|
+
) -> list[ArticleOut]:
|
173
|
+
set_newspaper_article_fields(full_data)
|
174
|
+
articles = await news.get_news_by_keyword(
|
175
|
+
keyword=keyword,
|
176
|
+
period=period,
|
177
|
+
max_results=max_results,
|
178
|
+
nlp=False,
|
179
|
+
report_progress=ctx.report_progress,
|
180
|
+
)
|
181
|
+
if summarize:
|
182
|
+
total_articles = len(articles)
|
183
|
+
try:
|
184
|
+
for idx, article in enumerate(articles):
|
185
|
+
await summarize_article(article, ctx)
|
186
|
+
await ctx.report_progress(idx, total_articles)
|
187
|
+
except Exception as err:
|
188
|
+
await ctx.debug(f"Failed to use LLM sampling for article summary:\n{err.args}")
|
189
|
+
for idx, article in enumerate(articles):
|
190
|
+
article.nlp()
|
191
|
+
await ctx.report_progress(idx, total_articles)
|
192
|
+
await ctx.report_progress(progress=len(articles), total=len(articles))
|
193
|
+
return [ArticleOut(**a.to_json(False)) for a in articles]
|
194
|
+
|
195
|
+
|
196
|
+
@mcp.tool(
|
197
|
+
description=news.get_news_by_location.__doc__,
|
198
|
+
tags={"news", "articles", "location"},
|
199
|
+
)
|
200
|
+
async def get_news_by_location(
|
201
|
+
ctx: Context,
|
202
|
+
location: Annotated[str, Field(description="Name of city/state/country.")],
|
203
|
+
period: Annotated[int, Field(description="Number of days to look back for articles.", ge=1)] = 7,
|
204
|
+
max_results: Annotated[int, Field(description="Maximum number of results to return.", ge=1)] = 10,
|
205
|
+
full_data: Annotated[
|
206
|
+
bool,
|
207
|
+
Field(
|
208
|
+
description="Return full data for each article. If False a summary should be created by setting the summarize flag"
|
209
|
+
),
|
210
|
+
] = False,
|
211
|
+
summarize: Annotated[
|
212
|
+
bool,
|
213
|
+
Field(
|
214
|
+
description="Generate a summary of the article, will first try LLM Sampling but if unavailable will use nlp"
|
215
|
+
),
|
216
|
+
] = True,
|
217
|
+
) -> list[ArticleOut]:
|
218
|
+
set_newspaper_article_fields(full_data)
|
219
|
+
articles = await news.get_news_by_location(
|
220
|
+
location=location,
|
221
|
+
period=period,
|
222
|
+
max_results=max_results,
|
223
|
+
nlp=False,
|
224
|
+
report_progress=ctx.report_progress,
|
225
|
+
)
|
226
|
+
if summarize:
|
227
|
+
total_articles = len(articles)
|
228
|
+
try:
|
229
|
+
for idx, article in enumerate(articles):
|
230
|
+
await summarize_article(article, ctx)
|
231
|
+
await ctx.report_progress(idx, total_articles)
|
232
|
+
except Exception as err:
|
233
|
+
await ctx.debug(f"Failed to use LLM sampling for article summary:\n{err.args}")
|
234
|
+
for idx, article in enumerate(articles):
|
235
|
+
article.nlp()
|
236
|
+
await ctx.report_progress(idx, total_articles)
|
237
|
+
await ctx.report_progress(progress=len(articles), total=len(articles))
|
238
|
+
return [ArticleOut(**a.to_json(False)) for a in articles]
|
239
|
+
|
240
|
+
|
241
|
+
@mcp.tool(description=news.get_news_by_topic.__doc__, tags={"news", "articles", "topic"})
|
242
|
+
async def get_news_by_topic(
|
243
|
+
ctx: Context,
|
244
|
+
topic: Annotated[str, Field(description="Topic to search for articles.")],
|
245
|
+
period: Annotated[int, Field(description="Number of days to look back for articles.", ge=1)] = 7,
|
246
|
+
max_results: Annotated[int, Field(description="Maximum number of results to return.", ge=1)] = 10,
|
247
|
+
full_data: Annotated[
|
248
|
+
bool,
|
249
|
+
Field(
|
250
|
+
description="Return full data for each article. If False a summary should be created by setting the summarize flag"
|
251
|
+
),
|
252
|
+
] = False,
|
253
|
+
summarize: Annotated[
|
254
|
+
bool,
|
255
|
+
Field(
|
256
|
+
description="Generate a summary of the article, will first try LLM Sampling but if unavailable will use nlp"
|
257
|
+
),
|
258
|
+
] = True,
|
259
|
+
) -> list[ArticleOut]:
|
260
|
+
set_newspaper_article_fields(full_data)
|
261
|
+
articles = await news.get_news_by_topic(
|
262
|
+
topic=topic,
|
263
|
+
period=period,
|
264
|
+
max_results=max_results,
|
265
|
+
nlp=False,
|
266
|
+
report_progress=ctx.report_progress,
|
267
|
+
)
|
268
|
+
if summarize:
|
269
|
+
total_articles = len(articles)
|
270
|
+
try:
|
271
|
+
for idx, article in enumerate(articles):
|
272
|
+
await summarize_article(article, ctx)
|
273
|
+
await ctx.report_progress(idx, total_articles)
|
274
|
+
except Exception as err:
|
275
|
+
await ctx.debug(f"Failed to use LLM sampling for article summary:\n{err.args}")
|
276
|
+
for idx, article in enumerate(articles):
|
277
|
+
article.nlp()
|
278
|
+
await ctx.report_progress(idx, total_articles)
|
279
|
+
|
280
|
+
await ctx.report_progress(progress=len(articles), total=len(articles))
|
281
|
+
return [ArticleOut(**a.to_json(False)) for a in articles]
|
282
|
+
|
283
|
+
|
284
|
+
@mcp.tool(description=news.get_top_news.__doc__, tags={"news", "articles", "top"})
|
285
|
+
async def get_top_news(
|
286
|
+
ctx: Context,
|
287
|
+
period: Annotated[int, Field(description="Number of days to look back for top articles.", ge=1)] = 3,
|
288
|
+
max_results: Annotated[int, Field(description="Maximum number of results to return.", ge=1)] = 10,
|
289
|
+
full_data: Annotated[
|
290
|
+
bool,
|
291
|
+
Field(
|
292
|
+
description="Return full data for each article. If False a summary should be created by setting the summarize flag"
|
293
|
+
),
|
294
|
+
] = False,
|
295
|
+
summarize: Annotated[
|
296
|
+
bool,
|
297
|
+
Field(
|
298
|
+
description="Generate a summary of the article, will first try LLM Sampling but if unavailable will use nlp"
|
299
|
+
),
|
300
|
+
] = True,
|
301
|
+
) -> list[ArticleOut]:
|
302
|
+
set_newspaper_article_fields(full_data)
|
303
|
+
articles = await news.get_top_news(
|
304
|
+
period=period,
|
305
|
+
max_results=max_results,
|
306
|
+
nlp=False,
|
307
|
+
report_progress=ctx.report_progress,
|
308
|
+
)
|
309
|
+
if summarize:
|
310
|
+
total_articles = len(articles)
|
311
|
+
try:
|
312
|
+
for idx, article in enumerate(articles):
|
313
|
+
await summarize_article(article, ctx)
|
314
|
+
await ctx.report_progress(idx, total_articles)
|
315
|
+
except Exception as err:
|
316
|
+
await ctx.debug(f"Failed to use LLM sampling for article summary:\n{err.args}")
|
317
|
+
for idx, article in enumerate(articles):
|
318
|
+
article.nlp()
|
319
|
+
await ctx.report_progress(idx, total_articles)
|
320
|
+
|
321
|
+
await ctx.report_progress(progress=len(articles), total=len(articles))
|
322
|
+
return [ArticleOut(**a.to_json(False)) for a in articles]
|
323
|
+
|
324
|
+
|
325
|
+
@mcp.tool(description=news.get_trending_terms.__doc__, tags={"trends", "google", "trending"})
|
326
|
+
async def get_trending_terms(
|
327
|
+
geo: Annotated[str, Field(description="Country code, e.g. 'US', 'GB', 'IN', etc.")] = "US",
|
328
|
+
full_data: Annotated[
|
329
|
+
bool,
|
330
|
+
Field(description="Return full data for each trend. Should be False for most use cases."),
|
331
|
+
] = False,
|
332
|
+
max_results: Annotated[int, Field(description="Maximum number of results to return.", ge=1)] = 100,
|
333
|
+
) -> list[TrendingTermOut]:
|
334
|
+
|
335
|
+
if not full_data:
|
336
|
+
trends = await news.get_trending_terms(geo=geo, full_data=False, max_results=max_results)
|
337
|
+
return [TrendingTermOut(keyword=str(tt["keyword"]), volume=tt["volume"]) for tt in trends]
|
338
|
+
|
339
|
+
trends = await news.get_trending_terms(geo=geo, full_data=True, max_results=max_results)
|
340
|
+
return [TrendingTermOut(**tt.__dict__) for tt in trends]
|
341
|
+
|
342
|
+
|
343
|
+
def main():
|
344
|
+
mcp.run()
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: google-news-trends-mcp
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.8
|
4
4
|
Summary: An MCP server to access Google News and Google Trends.
|
5
5
|
Author-email: Jesse Manek <jesse.manek@gmail.com>
|
6
6
|
License-Expression: MIT
|
@@ -36,7 +36,7 @@ An MCP server to access Google News and Google Trends. Does not rely on any pai
|
|
36
36
|
- Search Google News articles based on keyword, location, topic
|
37
37
|
- Get top news stories from Google News
|
38
38
|
- Google Trends keywords base on location
|
39
|
-
- Optional NLP to summarize articles and extract keywords
|
39
|
+
- Optional LLM Sampling and NLP to summarize articles and extract keywords
|
40
40
|
|
41
41
|
## Installation
|
42
42
|
|
@@ -70,7 +70,7 @@ Add to your Claude settings:
|
|
70
70
|
"mcpServers": {
|
71
71
|
"google-news-trends": {
|
72
72
|
"command": "uvx",
|
73
|
-
"args": ["google-news-trends-mcp"]
|
73
|
+
"args": ["google-news-trends-mcp@latest"]
|
74
74
|
}
|
75
75
|
}
|
76
76
|
}
|
@@ -103,7 +103,7 @@ Add to your Claude settings:
|
|
103
103
|
"servers": {
|
104
104
|
"google-news-trends": {
|
105
105
|
"command": "uvx",
|
106
|
-
"args": ["google-news-trends-mcp"]
|
106
|
+
"args": ["google-news-trends-mcp@latest"]
|
107
107
|
}
|
108
108
|
}
|
109
109
|
}
|
@@ -11,21 +11,19 @@ def mcp_server():
|
|
11
11
|
|
12
12
|
async def test_get_news_by_keyword(mcp_server):
|
13
13
|
async with Client(mcp_server) as client:
|
14
|
-
params = {"keyword": "AI", "period": 3, "max_results": 2
|
14
|
+
params = {"keyword": "AI", "period": 3, "max_results": 2}
|
15
15
|
result = await client.call_tool("get_news_by_keyword", params)
|
16
16
|
assert isinstance(result, list)
|
17
17
|
assert len(result) <= 2
|
18
18
|
for article in result:
|
19
|
-
article = json.loads(article.text)[
|
20
|
-
0
|
21
|
-
] # Assuming articles are returned as JSON strings
|
19
|
+
article = json.loads(article.text)[0] # Assuming articles are returned as JSON strings
|
22
20
|
assert "title" in article
|
23
21
|
assert "url" in article
|
24
22
|
|
25
23
|
|
26
24
|
async def test_get_news_by_location(mcp_server):
|
27
25
|
async with Client(mcp_server) as client:
|
28
|
-
params = {"location": "California", "period": 3, "max_results": 2
|
26
|
+
params = {"location": "California", "period": 3, "max_results": 2}
|
29
27
|
result = await client.call_tool("get_news_by_location", params)
|
30
28
|
assert isinstance(result, list)
|
31
29
|
assert len(result) <= 2
|
@@ -37,7 +35,7 @@ async def test_get_news_by_location(mcp_server):
|
|
37
35
|
|
38
36
|
async def test_get_news_by_topic(mcp_server):
|
39
37
|
async with Client(mcp_server) as client:
|
40
|
-
params = {"topic": "TECHNOLOGY", "period": 3, "max_results": 2
|
38
|
+
params = {"topic": "TECHNOLOGY", "period": 3, "max_results": 2}
|
41
39
|
result = await client.call_tool("get_news_by_topic", params)
|
42
40
|
assert isinstance(result, list)
|
43
41
|
assert len(result) <= 2
|
@@ -49,7 +47,7 @@ async def test_get_news_by_topic(mcp_server):
|
|
49
47
|
|
50
48
|
async def test_get_top_news(mcp_server):
|
51
49
|
async with Client(mcp_server) as client:
|
52
|
-
params = {"period": 2, "max_results": 2
|
50
|
+
params = {"period": 2, "max_results": 2}
|
53
51
|
result = await client.call_tool("get_top_news", params)
|
54
52
|
assert isinstance(result, list)
|
55
53
|
assert len(result) <= 2
|
@@ -1,329 +0,0 @@
|
|
1
|
-
from fastmcp import FastMCP, Context
|
2
|
-
from fastmcp.exceptions import ToolError
|
3
|
-
from fastmcp.server.dependencies import get_context
|
4
|
-
from pydantic import BaseModel, Field
|
5
|
-
from typing import Optional
|
6
|
-
from google_news_trends_mcp import news
|
7
|
-
from typing import Annotated
|
8
|
-
from newspaper import settings as newspaper_settings
|
9
|
-
from fastmcp.server.middleware.timing import TimingMiddleware
|
10
|
-
from fastmcp.server.middleware.logging import LoggingMiddleware
|
11
|
-
from fastmcp.server.middleware.rate_limiting import RateLimitingMiddleware
|
12
|
-
from fastmcp.server.middleware.error_handling import ErrorHandlingMiddleware
|
13
|
-
|
14
|
-
|
15
|
-
class ArticleOut(BaseModel):
|
16
|
-
read_more_link: Annotated[
|
17
|
-
Optional[str], Field(description="Link to read more about the article.")
|
18
|
-
] = None
|
19
|
-
language: Annotated[
|
20
|
-
Optional[str], Field(description="Language code of the article.")
|
21
|
-
] = None
|
22
|
-
meta_img: Annotated[Optional[str], Field(description="Meta image URL.")] = None
|
23
|
-
movies: Annotated[
|
24
|
-
Optional[list[str]], Field(description="List of movie URLs or IDs.")
|
25
|
-
] = None
|
26
|
-
meta_favicon: Annotated[
|
27
|
-
Optional[str], Field(description="Favicon URL from meta data.")
|
28
|
-
] = None
|
29
|
-
meta_site_name: Annotated[
|
30
|
-
Optional[str], Field(description="Site name from meta data.")
|
31
|
-
] = None
|
32
|
-
title: Annotated[str, Field(description="Title of the article.")]
|
33
|
-
authors: Annotated[Optional[list[str]], Field(description="list of authors.")] = (
|
34
|
-
None
|
35
|
-
)
|
36
|
-
publish_date: Annotated[
|
37
|
-
Optional[str], Field(description="Publish date in ISO format.")
|
38
|
-
] = None
|
39
|
-
top_image: Annotated[Optional[str], Field(description="URL of the top image.")] = (
|
40
|
-
None
|
41
|
-
)
|
42
|
-
images: Annotated[Optional[list[str]], Field(description="list of image URLs.")] = (
|
43
|
-
None
|
44
|
-
)
|
45
|
-
text: Annotated[str, Field(description="Full text of the article.")]
|
46
|
-
url: Annotated[str, Field(description="Original article URL.")]
|
47
|
-
summary: Annotated[Optional[str], Field(description="Summary of the article.")] = (
|
48
|
-
None
|
49
|
-
)
|
50
|
-
keywords: Annotated[
|
51
|
-
Optional[list[str]], Field(description="Extracted keywords.")
|
52
|
-
] = None
|
53
|
-
tags: Annotated[Optional[list[str]], Field(description="Tags for the article.")] = (
|
54
|
-
None
|
55
|
-
)
|
56
|
-
meta_keywords: Annotated[
|
57
|
-
Optional[list[str]], Field(description="Meta keywords from the article.")
|
58
|
-
] = None
|
59
|
-
meta_description: Annotated[
|
60
|
-
Optional[str], Field(description="Meta description from the article.")
|
61
|
-
] = None
|
62
|
-
canonical_link: Annotated[
|
63
|
-
Optional[str], Field(description="Canonical link for the article.")
|
64
|
-
] = None
|
65
|
-
meta_data: Annotated[
|
66
|
-
Optional[dict[str, str | int]], Field(description="Meta data dictionary.")
|
67
|
-
] = None
|
68
|
-
meta_lang: Annotated[
|
69
|
-
Optional[str], Field(description="Language of the article.")
|
70
|
-
] = None
|
71
|
-
source_url: Annotated[
|
72
|
-
Optional[str], Field(description="Source URL if different from original.")
|
73
|
-
] = None
|
74
|
-
|
75
|
-
|
76
|
-
class TrendingTermArticleOut(BaseModel):
|
77
|
-
title: Annotated[str, Field(description="Article title.")] = ""
|
78
|
-
url: Annotated[str, Field(description="Article URL.")] = ""
|
79
|
-
source: Annotated[Optional[str], Field(description="News source name.")] = None
|
80
|
-
picture: Annotated[Optional[str], Field(description="URL to article image.")] = None
|
81
|
-
time: Annotated[
|
82
|
-
Optional[str | int], Field(description="Publication time or timestamp.")
|
83
|
-
] = None
|
84
|
-
snippet: Annotated[Optional[str], Field(description="Article preview text.")] = None
|
85
|
-
|
86
|
-
|
87
|
-
class TrendingTermOut(BaseModel):
|
88
|
-
keyword: Annotated[str, Field(description="Trending keyword.")]
|
89
|
-
volume: Annotated[Optional[int], Field(description="Search volume.")] = None
|
90
|
-
geo: Annotated[Optional[str], Field(description="Geographic location code.")] = None
|
91
|
-
started_timestamp: Annotated[
|
92
|
-
Optional[list],
|
93
|
-
Field(
|
94
|
-
description="When the trend started (year, month, day, hour, minute, second)."
|
95
|
-
),
|
96
|
-
] = None
|
97
|
-
ended_timestamp: Annotated[
|
98
|
-
Optional[tuple[int, int]],
|
99
|
-
Field(
|
100
|
-
description="When the trend ended (year, month, day, hour, minute, second)."
|
101
|
-
),
|
102
|
-
] = None
|
103
|
-
volume_growth_pct: Annotated[
|
104
|
-
Optional[float], Field(description="Percentage growth in search volume.")
|
105
|
-
] = None
|
106
|
-
trend_keywords: Annotated[
|
107
|
-
Optional[list[str]], Field(description="Related keywords.")
|
108
|
-
] = None
|
109
|
-
topics: Annotated[
|
110
|
-
Optional[list[str | int]], Field(description="Related topics.")
|
111
|
-
] = None
|
112
|
-
news: Annotated[
|
113
|
-
Optional[list[TrendingTermArticleOut]],
|
114
|
-
Field(description="Related news articles."),
|
115
|
-
] = None
|
116
|
-
news_tokens: Annotated[
|
117
|
-
Optional[list], Field(description="Associated news tokens.")
|
118
|
-
] = None
|
119
|
-
normalized_keyword: Annotated[
|
120
|
-
Optional[str], Field(description="Normalized form of the keyword.")
|
121
|
-
] = None
|
122
|
-
|
123
|
-
|
124
|
-
mcp = FastMCP(
|
125
|
-
name="google-news-trends",
|
126
|
-
instructions="This server provides tools to search, analyze, and summarize Google News articles and Google Trends",
|
127
|
-
on_duplicate_tools="replace",
|
128
|
-
)
|
129
|
-
|
130
|
-
mcp.add_middleware(ErrorHandlingMiddleware()) # Handle errors first
|
131
|
-
mcp.add_middleware(RateLimitingMiddleware(max_requests_per_second=50))
|
132
|
-
mcp.add_middleware(TimingMiddleware()) # Time actual execution
|
133
|
-
mcp.add_middleware(LoggingMiddleware()) # Log everything
|
134
|
-
|
135
|
-
|
136
|
-
# Configure newspaper settings for article extraction
|
137
|
-
def set_newspaper_article_fields(full_data: bool = False):
|
138
|
-
if full_data:
|
139
|
-
newspaper_settings.article_json_fields = [
|
140
|
-
"url",
|
141
|
-
"read_more_link",
|
142
|
-
"language",
|
143
|
-
"title",
|
144
|
-
"top_image",
|
145
|
-
"meta_img",
|
146
|
-
"images",
|
147
|
-
"movies",
|
148
|
-
"keywords",
|
149
|
-
"keyword_scores",
|
150
|
-
"meta_keywords",
|
151
|
-
"tags",
|
152
|
-
"authors",
|
153
|
-
"publish_date",
|
154
|
-
"summary",
|
155
|
-
"meta_description",
|
156
|
-
"meta_lang",
|
157
|
-
"meta_favicon",
|
158
|
-
"meta_site_name",
|
159
|
-
"canonical_link",
|
160
|
-
"text",
|
161
|
-
]
|
162
|
-
else:
|
163
|
-
newspaper_settings.article_json_fields = [
|
164
|
-
"url",
|
165
|
-
"title",
|
166
|
-
"text",
|
167
|
-
"publish_date",
|
168
|
-
"summary",
|
169
|
-
"keywords",
|
170
|
-
]
|
171
|
-
|
172
|
-
|
173
|
-
@mcp.tool(
|
174
|
-
description=news.get_news_by_keyword.__doc__,
|
175
|
-
tags={"news", "articles", "keyword"},
|
176
|
-
)
|
177
|
-
async def get_news_by_keyword(
|
178
|
-
ctx: Context,
|
179
|
-
keyword: Annotated[str, Field(description="Search term to find articles.")],
|
180
|
-
period: Annotated[
|
181
|
-
int, Field(description="Number of days to look back for articles.", ge=1)
|
182
|
-
] = 7,
|
183
|
-
max_results: Annotated[
|
184
|
-
int, Field(description="Maximum number of results to return.", ge=1)
|
185
|
-
] = 10,
|
186
|
-
nlp: Annotated[
|
187
|
-
bool, Field(description="Whether to perform NLP on the articles.")
|
188
|
-
] = False,
|
189
|
-
full_data: Annotated[
|
190
|
-
bool, Field(description="Return full data for each article.")
|
191
|
-
] = False,
|
192
|
-
) -> list[ArticleOut]:
|
193
|
-
set_newspaper_article_fields(full_data)
|
194
|
-
articles = await news.get_news_by_keyword(
|
195
|
-
keyword=keyword,
|
196
|
-
period=period,
|
197
|
-
max_results=max_results,
|
198
|
-
nlp=nlp,
|
199
|
-
report_progress=ctx.report_progress,
|
200
|
-
)
|
201
|
-
await ctx.report_progress(progress=len(articles), total=len(articles))
|
202
|
-
return [ArticleOut(**a.to_json(False)) for a in articles]
|
203
|
-
|
204
|
-
|
205
|
-
@mcp.tool(
|
206
|
-
description=news.get_news_by_location.__doc__,
|
207
|
-
tags={"news", "articles", "location"},
|
208
|
-
)
|
209
|
-
async def get_news_by_location(
|
210
|
-
ctx: Context,
|
211
|
-
location: Annotated[str, Field(description="Name of city/state/country.")],
|
212
|
-
period: Annotated[
|
213
|
-
int, Field(description="Number of days to look back for articles.", ge=1)
|
214
|
-
] = 7,
|
215
|
-
max_results: Annotated[
|
216
|
-
int, Field(description="Maximum number of results to return.", ge=1)
|
217
|
-
] = 10,
|
218
|
-
nlp: Annotated[
|
219
|
-
bool, Field(description="Whether to perform NLP on the articles.")
|
220
|
-
] = False,
|
221
|
-
full_data: Annotated[
|
222
|
-
bool, Field(description="Return full data for each article.")
|
223
|
-
] = False,
|
224
|
-
) -> list[ArticleOut]:
|
225
|
-
set_newspaper_article_fields(full_data)
|
226
|
-
articles = await news.get_news_by_location(
|
227
|
-
location=location,
|
228
|
-
period=period,
|
229
|
-
max_results=max_results,
|
230
|
-
nlp=nlp,
|
231
|
-
report_progress=ctx.report_progress,
|
232
|
-
)
|
233
|
-
await ctx.report_progress(progress=len(articles), total=len(articles))
|
234
|
-
return [ArticleOut(**a.to_json(False)) for a in articles]
|
235
|
-
|
236
|
-
|
237
|
-
@mcp.tool(
|
238
|
-
description=news.get_news_by_topic.__doc__, tags={"news", "articles", "topic"}
|
239
|
-
)
|
240
|
-
async def get_news_by_topic(
|
241
|
-
ctx: Context,
|
242
|
-
topic: Annotated[str, Field(description="Topic to search for articles.")],
|
243
|
-
period: Annotated[
|
244
|
-
int, Field(description="Number of days to look back for articles.", ge=1)
|
245
|
-
] = 7,
|
246
|
-
max_results: Annotated[
|
247
|
-
int, Field(description="Maximum number of results to return.", ge=1)
|
248
|
-
] = 10,
|
249
|
-
nlp: Annotated[
|
250
|
-
bool, Field(description="Whether to perform NLP on the articles.")
|
251
|
-
] = False,
|
252
|
-
full_data: Annotated[
|
253
|
-
bool, Field(description="Return full data for each article.")
|
254
|
-
] = False,
|
255
|
-
) -> list[ArticleOut]:
|
256
|
-
set_newspaper_article_fields(full_data)
|
257
|
-
articles = await news.get_news_by_topic(
|
258
|
-
topic=topic,
|
259
|
-
period=period,
|
260
|
-
max_results=max_results,
|
261
|
-
nlp=nlp,
|
262
|
-
report_progress=ctx.report_progress,
|
263
|
-
)
|
264
|
-
await ctx.report_progress(progress=len(articles), total=len(articles))
|
265
|
-
return [ArticleOut(**a.to_json(False)) for a in articles]
|
266
|
-
|
267
|
-
|
268
|
-
@mcp.tool(description=news.get_top_news.__doc__, tags={"news", "articles", "top"})
|
269
|
-
async def get_top_news(
|
270
|
-
ctx: Context,
|
271
|
-
period: Annotated[
|
272
|
-
int, Field(description="Number of days to look back for top articles.", ge=1)
|
273
|
-
] = 3,
|
274
|
-
max_results: Annotated[
|
275
|
-
int, Field(description="Maximum number of results to return.", ge=1)
|
276
|
-
] = 10,
|
277
|
-
nlp: Annotated[
|
278
|
-
bool, Field(description="Whether to perform NLP on the articles.")
|
279
|
-
] = False,
|
280
|
-
full_data: Annotated[
|
281
|
-
bool, Field(description="Return full data for each article.")
|
282
|
-
] = False,
|
283
|
-
) -> list[ArticleOut]:
|
284
|
-
set_newspaper_article_fields(full_data)
|
285
|
-
articles = await news.get_top_news(
|
286
|
-
period=period,
|
287
|
-
max_results=max_results,
|
288
|
-
nlp=nlp,
|
289
|
-
report_progress=ctx.report_progress,
|
290
|
-
)
|
291
|
-
await ctx.report_progress(progress=len(articles), total=len(articles))
|
292
|
-
return [ArticleOut(**a.to_json(False)) for a in articles]
|
293
|
-
|
294
|
-
|
295
|
-
@mcp.tool(
|
296
|
-
description=news.get_trending_terms.__doc__, tags={"trends", "google", "trending"}
|
297
|
-
)
|
298
|
-
async def get_trending_terms(
|
299
|
-
geo: Annotated[
|
300
|
-
str, Field(description="Country code, e.g. 'US', 'GB', 'IN', etc.")
|
301
|
-
] = "US",
|
302
|
-
full_data: Annotated[
|
303
|
-
bool,
|
304
|
-
Field(
|
305
|
-
description="Return full data for each trend. Should be False for most use cases."
|
306
|
-
),
|
307
|
-
] = False,
|
308
|
-
max_results: Annotated[
|
309
|
-
int, Field(description="Maximum number of results to return.", ge=1)
|
310
|
-
] = 100,
|
311
|
-
) -> list[TrendingTermOut]:
|
312
|
-
|
313
|
-
if not full_data:
|
314
|
-
trends = await news.get_trending_terms(
|
315
|
-
geo=geo, full_data=False, max_results=max_results
|
316
|
-
)
|
317
|
-
return [
|
318
|
-
TrendingTermOut(keyword=str(tt["keyword"]), volume=tt["volume"])
|
319
|
-
for tt in trends
|
320
|
-
]
|
321
|
-
|
322
|
-
trends = await news.get_trending_terms(
|
323
|
-
geo=geo, full_data=True, max_results=max_results
|
324
|
-
)
|
325
|
-
return [TrendingTermOut(**tt.__dict__) for tt in trends]
|
326
|
-
|
327
|
-
|
328
|
-
def main():
|
329
|
-
mcp.run()
|
File without changes
|
File without changes
|
{google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp/__init__.py
RENAMED
File without changes
|
{google_news_trends_mcp-0.1.7 → google_news_trends_mcp-0.1.8}/src/google_news_trends_mcp/__main__.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|