gmicloud 0.1.6__tar.gz → 0.1.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. {gmicloud-0.1.6 → gmicloud-0.1.7}/PKG-INFO +97 -7
  2. {gmicloud-0.1.6 → gmicloud-0.1.7}/README.md +94 -4
  3. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/__init__.py +2 -2
  4. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_client/_artifact_client.py +40 -7
  5. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_client/_file_upload_client.py +10 -7
  6. gmicloud-0.1.7/gmicloud/_internal/_config.py +9 -0
  7. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_manager/_artifact_manager.py +116 -18
  8. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_manager/_task_manager.py +32 -27
  9. gmicloud-0.1.7/gmicloud/_internal/_manager/serve_command_utils.py +121 -0
  10. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_models.py +135 -31
  11. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/tests/test_artifacts.py +6 -22
  12. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud.egg-info/PKG-INFO +97 -7
  13. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud.egg-info/SOURCES.txt +1 -0
  14. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud.egg-info/top_level.txt +1 -0
  15. {gmicloud-0.1.6 → gmicloud-0.1.7}/pyproject.toml +7 -2
  16. gmicloud-0.1.6/gmicloud/_internal/_config.py +0 -3
  17. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/__init__.py +0 -0
  18. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_client/__init__.py +0 -0
  19. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_client/_decorator.py +0 -0
  20. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_client/_http_client.py +0 -0
  21. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_client/_iam_client.py +0 -0
  22. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_client/_task_client.py +0 -0
  23. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_constants.py +0 -0
  24. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_enums.py +0 -0
  25. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_exceptions.py +0 -0
  26. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_manager/__init__.py +0 -0
  27. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/_internal/_manager/_iam_manager.py +0 -0
  28. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/client.py +0 -0
  29. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/tests/__init__.py +0 -0
  30. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/tests/test_tasks.py +0 -0
  31. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud/utils/uninstall_packages.py +0 -0
  32. {gmicloud-0.1.6 → gmicloud-0.1.7}/gmicloud.egg-info/dependency_links.txt +0 -0
  33. {gmicloud-0.1.6 → gmicloud-0.1.7}/setup.cfg +0 -0
@@ -1,8 +1,8 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: gmicloud
3
- Version: 0.1.6
3
+ Version: 0.1.7
4
4
  Summary: GMI Cloud Python SDK
5
- Author-email: GMI <support@gmicloud.ai>
5
+ Author-email: GMI <gmi@gmitec.net>
6
6
  License: MIT
7
7
  Classifier: Programming Language :: Python :: 3
8
8
  Classifier: License :: OSI Approved :: MIT License
@@ -10,7 +10,7 @@ Classifier: Operating System :: OS Independent
10
10
  Requires-Python: >=3.6
11
11
  Description-Content-Type: text/markdown
12
12
 
13
- # GMICloud SDK (Beta)
13
+ # GMICloud SDK
14
14
 
15
15
  ## Overview
16
16
  Before you start: Our service and GPU resource is currenly invite-only so please contact our team (getstarted@gmicloud.ai) to get invited if you don't have one yet.
@@ -45,7 +45,7 @@ There are two ways to configure the SDK:
45
45
  Set the following environment variables:
46
46
 
47
47
  ```shell
48
- export GMI_CLOUD_CLIENT_ID=<YOUR_CLIENT_ID>
48
+ export GMI_CLOUD_CLIENT_ID=<YOUR_CLIENT_ID> # Pick what every ID you need.
49
49
  export GMI_CLOUD_EMAIL=<YOUR_EMAIL>
50
50
  export GMI_CLOUD_PASSWORD=<YOUR_PASSWORD>
51
51
  ```
@@ -73,7 +73,7 @@ pip install -r requirements.txt
73
73
  python -m examples.create_task_from_artifact_template.py
74
74
  ```
75
75
 
76
- ### 2. Create an inference task from an artifact template
76
+ ### 2. Example of create an inference task from an artifact template
77
77
 
78
78
  This is the simplest example to deploy an inference task using an existing artifact template:
79
79
 
@@ -119,6 +119,97 @@ print(call_chat_completion(cli, task.task_id))
119
119
 
120
120
  ```
121
121
 
122
+ ### 3. Example of creating an inference task based on custom model with local vllm / SGLang serve command
123
+ * Full example is available at [examples/inference_task_with_custom_model.py](https://github.com/GMISWE/python-sdk/blob/main/examples/inference_task_with_custom_model.py)
124
+
125
+ 1. Prepare custom model checkpoint (using a model downloaded from HF as an example)
126
+
127
+ ```python
128
+ # Download model from huggingface
129
+ from huggingface_hub import snapshot_download
130
+
131
+ model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
132
+ model_checkpoint_save_dir = "files/model_garden"
133
+ snapshot_download(repo_id=model_name, local_dir=model_checkpoint_save_dir)
134
+ ```
135
+
136
+ 2. Find a template of specific SGLang version
137
+
138
+ ```python
139
+ # export GMI_CLOUD_CLIENT_ID=<YOUR_CLIENT_ID>
140
+ # export GMI_CLOUD_EMAIL=<YOUR_EMAIL>
141
+ # export GMI_CLOUD_PASSWORD=<YOUR_PASSWORD>
142
+ cli = Client()
143
+
144
+ # List templates offered by GMI cloud
145
+ templates = cli.artifact_manager.list_public_template_names()
146
+ print(f"Found {len(templates)} templates: {templates}")
147
+ ```
148
+
149
+ 3. Pick a template (e.g. SGLang 0.4.5) and prepare a local serve command
150
+
151
+ ```python
152
+ # Example for vllm server
153
+ picked_template_name = "gmi_vllm_0.8.4"
154
+ serve_command = "vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --trust-remote-code --gpu-memory-utilization 0.8"
155
+
156
+ # Example for sglang server
157
+ picked_template_name = "gmi_sglang_0.4.5.post1"
158
+ serve_command = "python3 -m sglang.launch_server --model-path deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --trust-remote-code --mem-fraction-static 0.8 --tp 2"
159
+ ```
160
+
161
+ 4. Create an artifact and upload custom model. The artifact can be reused to create inference tasks later. Artifact also suggests recommended resources for each inference server replica
162
+
163
+ ```python
164
+ artifact_id, recommended_replica_resources = cli.artifact_manager.create_artifact_from_template_name(
165
+ artifact_template_name=picked_template_name,
166
+ env_parameters={
167
+ "SERVER_COMMAND": serve_command,
168
+ "GPU_TYPE": "H100",
169
+ }
170
+ )
171
+ print(f"Created artifact {artifact_id} with recommended resources: {recommended_replica_resources}")
172
+
173
+ # Upload model files to artifact
174
+ cli.artifact_manager.upload_model_files_to_artifact(artifact_id, model_checkpoint_save_dir)
175
+ ```
176
+
177
+ 5. Create Inference task (defining min/max inference replica), start and wait
178
+
179
+ ```python
180
+ new_task = Task(
181
+ config=TaskConfig(
182
+ ray_task_config=RayTaskConfig(
183
+ artifact_id=artifact_id,
184
+ file_path="serve",
185
+ deployment_name="app",
186
+ replica_resource=recommended_replica_resources,
187
+ ),
188
+ task_scheduling = TaskScheduling(
189
+ scheduling_oneoff=OneOffScheduling(
190
+ trigger_timestamp=int(datetime.now().timestamp()),
191
+ min_replicas=1,
192
+ max_replicas=4,
193
+ )
194
+ ),
195
+ ),
196
+ )
197
+ task = cli.task_manager.create_task(new_task)
198
+ task_id = task.task_id
199
+ task = cli.task_manager.get_task(task_id)
200
+ print(f"Task created: {task.config.task_name}. You can check details at https://inference-engine.gmicloud.ai/user-console/task")
201
+
202
+ # Start Task and wait for it to be ready
203
+ cli.task_manager.start_task_and_wait(task_id)
204
+ ```
205
+
206
+ 6. Test with sample chat completion request
207
+
208
+ ```python
209
+ print(call_chat_completion(cli, task_id))
210
+ ```
211
+
212
+
122
213
  ## API Reference
123
214
 
124
215
  ### Client
@@ -144,4 +235,3 @@ password: Optional[str] = ""
144
235
  * get_task(task_id: str): Retrieve the status and details of a specific task.
145
236
 
146
237
  ## Notes & Troubleshooting
147
- k
@@ -1,4 +1,4 @@
1
- # GMICloud SDK (Beta)
1
+ # GMICloud SDK
2
2
 
3
3
  ## Overview
4
4
  Before you start: Our service and GPU resource is currenly invite-only so please contact our team (getstarted@gmicloud.ai) to get invited if you don't have one yet.
@@ -33,7 +33,7 @@ There are two ways to configure the SDK:
33
33
  Set the following environment variables:
34
34
 
35
35
  ```shell
36
- export GMI_CLOUD_CLIENT_ID=<YOUR_CLIENT_ID>
36
+ export GMI_CLOUD_CLIENT_ID=<YOUR_CLIENT_ID> # Pick what every ID you need.
37
37
  export GMI_CLOUD_EMAIL=<YOUR_EMAIL>
38
38
  export GMI_CLOUD_PASSWORD=<YOUR_PASSWORD>
39
39
  ```
@@ -61,7 +61,7 @@ pip install -r requirements.txt
61
61
  python -m examples.create_task_from_artifact_template.py
62
62
  ```
63
63
 
64
- ### 2. Create an inference task from an artifact template
64
+ ### 2. Example of create an inference task from an artifact template
65
65
 
66
66
  This is the simplest example to deploy an inference task using an existing artifact template:
67
67
 
@@ -107,6 +107,97 @@ print(call_chat_completion(cli, task.task_id))
107
107
 
108
108
  ```
109
109
 
110
+ ### 3. Example of creating an inference task based on custom model with local vllm / SGLang serve command
111
+ * Full example is available at [examples/inference_task_with_custom_model.py](https://github.com/GMISWE/python-sdk/blob/main/examples/inference_task_with_custom_model.py)
112
+
113
+ 1. Prepare custom model checkpoint (using a model downloaded from HF as an example)
114
+
115
+ ```python
116
+ # Download model from huggingface
117
+ from huggingface_hub import snapshot_download
118
+
119
+ model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
120
+ model_checkpoint_save_dir = "files/model_garden"
121
+ snapshot_download(repo_id=model_name, local_dir=model_checkpoint_save_dir)
122
+ ```
123
+
124
+ 2. Find a template of specific SGLang version
125
+
126
+ ```python
127
+ # export GMI_CLOUD_CLIENT_ID=<YOUR_CLIENT_ID>
128
+ # export GMI_CLOUD_EMAIL=<YOUR_EMAIL>
129
+ # export GMI_CLOUD_PASSWORD=<YOUR_PASSWORD>
130
+ cli = Client()
131
+
132
+ # List templates offered by GMI cloud
133
+ templates = cli.artifact_manager.list_public_template_names()
134
+ print(f"Found {len(templates)} templates: {templates}")
135
+ ```
136
+
137
+ 3. Pick a template (e.g. SGLang 0.4.5) and prepare a local serve command
138
+
139
+ ```python
140
+ # Example for vllm server
141
+ picked_template_name = "gmi_vllm_0.8.4"
142
+ serve_command = "vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --trust-remote-code --gpu-memory-utilization 0.8"
143
+
144
+ # Example for sglang server
145
+ picked_template_name = "gmi_sglang_0.4.5.post1"
146
+ serve_command = "python3 -m sglang.launch_server --model-path deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --trust-remote-code --mem-fraction-static 0.8 --tp 2"
147
+ ```
148
+
149
+ 4. Create an artifact and upload custom model. The artifact can be reused to create inference tasks later. Artifact also suggests recommended resources for each inference server replica
150
+
151
+ ```python
152
+ artifact_id, recommended_replica_resources = cli.artifact_manager.create_artifact_from_template_name(
153
+ artifact_template_name=picked_template_name,
154
+ env_parameters={
155
+ "SERVER_COMMAND": serve_command,
156
+ "GPU_TYPE": "H100",
157
+ }
158
+ )
159
+ print(f"Created artifact {artifact_id} with recommended resources: {recommended_replica_resources}")
160
+
161
+ # Upload model files to artifact
162
+ cli.artifact_manager.upload_model_files_to_artifact(artifact_id, model_checkpoint_save_dir)
163
+ ```
164
+
165
+ 5. Create Inference task (defining min/max inference replica), start and wait
166
+
167
+ ```python
168
+ new_task = Task(
169
+ config=TaskConfig(
170
+ ray_task_config=RayTaskConfig(
171
+ artifact_id=artifact_id,
172
+ file_path="serve",
173
+ deployment_name="app",
174
+ replica_resource=recommended_replica_resources,
175
+ ),
176
+ task_scheduling = TaskScheduling(
177
+ scheduling_oneoff=OneOffScheduling(
178
+ trigger_timestamp=int(datetime.now().timestamp()),
179
+ min_replicas=1,
180
+ max_replicas=4,
181
+ )
182
+ ),
183
+ ),
184
+ )
185
+ task = cli.task_manager.create_task(new_task)
186
+ task_id = task.task_id
187
+ task = cli.task_manager.get_task(task_id)
188
+ print(f"Task created: {task.config.task_name}. You can check details at https://inference-engine.gmicloud.ai/user-console/task")
189
+
190
+ # Start Task and wait for it to be ready
191
+ cli.task_manager.start_task_and_wait(task_id)
192
+ ```
193
+
194
+ 6. Test with sample chat completion request
195
+
196
+ ```python
197
+ print(call_chat_completion(cli, task_id))
198
+ ```
199
+
200
+
110
201
  ## API Reference
111
202
 
112
203
  ### Client
@@ -132,4 +223,3 @@ password: Optional[str] = ""
132
223
  * get_task(task_id: str): Retrieve the status and details of a specific task.
133
224
 
134
225
  ## Notes & Troubleshooting
135
- k
@@ -15,7 +15,7 @@ from ._internal._models import (
15
15
  OneOffScheduling,
16
16
  DailyScheduling,
17
17
  DailyTrigger,
18
- ArtifactTemplate,
18
+ Template,
19
19
  )
20
20
  from ._internal._enums import (
21
21
  BuildStatus,
@@ -39,7 +39,7 @@ __all__ = [
39
39
  "OneOffScheduling",
40
40
  "DailyScheduling",
41
41
  "DailyTrigger",
42
- "ArtifactTemplate",
42
+ "Template",
43
43
  "BuildStatus",
44
44
  "TaskEndpointStatus",
45
45
  ]
@@ -1,7 +1,7 @@
1
1
  from typing import List
2
2
  import logging
3
3
  from requests.exceptions import RequestException
4
-
4
+ import json
5
5
  from ._http_client import HTTPClient
6
6
  from ._iam_client import IAMClient
7
7
  from ._decorator import handle_refresh_token
@@ -120,6 +120,39 @@ class ArtifactClient:
120
120
  logger.error(f"Failed to rebuild artifact {artifact_id}: {e}")
121
121
  return None
122
122
 
123
+ @handle_refresh_token
124
+ def add_env_parameters_to_artifact(self, artifact_id: str, env_parameters: dict[str, str]) -> None:
125
+ """
126
+ Updates an artifact by its ID.
127
+
128
+ :param artifact_id: The ID of the artifact to update.
129
+ :param request: The request object containing the updated artifact details.
130
+ """
131
+ try:
132
+ old_artifact = self.get_artifact(artifact_id)
133
+ if not old_artifact:
134
+ logger.error(f"Artifact {artifact_id} not found")
135
+ return
136
+ request = UpdateArtifactRequestBody(
137
+ artifact_description=old_artifact.artifact_metadata.artifact_description,
138
+ artifact_name=old_artifact.artifact_metadata.artifact_name,
139
+ artifact_tags=old_artifact.artifact_metadata.artifact_tags,
140
+ env_parameters=old_artifact.artifact_parameters.env_parameters,
141
+ model_parameters=old_artifact.artifact_parameters.model_parameters
142
+ )
143
+ new_env_parameters = [EnvParameter(key=k, value=v) for k, v in env_parameters.items()]
144
+ if not request.env_parameters:
145
+ request.env_parameters = []
146
+ request.env_parameters.extend(new_env_parameters)
147
+ response = self.client.put(
148
+ f"/update_artifact?artifact_id={artifact_id}",
149
+ self.iam_client.get_custom_headers(),
150
+ request.model_dump()
151
+ )
152
+ except (RequestException, ValueError) as e:
153
+ logger.error(f"Failed to add env parameters to artifact {artifact_id}: {e}")
154
+ return
155
+
123
156
  @handle_refresh_token
124
157
  def delete_artifact(self, artifact_id: str) -> Optional[DeleteArtifactResponse]:
125
158
  """
@@ -140,7 +173,7 @@ class ArtifactClient:
140
173
  return None
141
174
 
142
175
  @handle_refresh_token
143
- def get_bigfile_upload_url(self, request: GetBigFileUploadUrlRequest) -> Optional[GetBigFileUploadUrlResponse]:
176
+ def get_bigfile_upload_url(self, request: ResumableUploadLinkRequest) -> Optional[ResumableUploadLinkResponse]:
144
177
  """
145
178
  Generates a pre-signed URL for uploading a large file.
146
179
 
@@ -156,7 +189,7 @@ class ArtifactClient:
156
189
  logger.error("Empty response from /get_bigfile_upload_url")
157
190
  return None
158
191
 
159
- return GetBigFileUploadUrlResponse.model_validate(response)
192
+ return ResumableUploadLinkResponse.model_validate(response)
160
193
 
161
194
  except (RequestException, ValueError) as e:
162
195
  logger.error(f"Failed to generate upload URL: {e}")
@@ -186,12 +219,12 @@ class ArtifactClient:
186
219
  return None
187
220
 
188
221
  @handle_refresh_token
189
- def get_public_templates(self) -> List[ArtifactTemplate]:
222
+ def get_public_templates(self) -> List[Template]:
190
223
  """
191
224
  Fetches all artifact templates.
192
225
 
193
- :return: A list of ArtifactTemplate objects.
194
- :rtype: List[ArtifactTemplate]
226
+ :return: A list of Template objects.
227
+ :rtype: List[Template]
195
228
  """
196
229
  try:
197
230
  response = self.client.get("/get_public_templates", self.iam_client.get_custom_headers())
@@ -201,7 +234,7 @@ class ArtifactClient:
201
234
  return []
202
235
 
203
236
  try:
204
- result = GetPublicTemplatesResponse.model_validate(response)
237
+ result = GetTemplatesResponse.model_validate(response)
205
238
  return result.artifact_templates
206
239
  except ValueError as ve:
207
240
  logger.error(f"Failed to validate response data: {ve}")
@@ -1,8 +1,10 @@
1
1
  import os
2
2
  import requests
3
+ import logging
3
4
 
4
5
  from .._exceptions import UploadFileError
5
6
 
7
+ logger = logging.getLogger()
6
8
 
7
9
  class FileUploadClient:
8
10
  CHUNK_SIZE = 10 * 1024 * 1024 # 10MB Default Chunk Size
@@ -45,13 +47,13 @@ class FileUploadClient:
45
47
  """
46
48
  try:
47
49
  file_size = os.path.getsize(file_path)
48
- print(f"File Size: {file_size} bytes")
50
+ logger.info(f"File {file_path} size: {file_size} bytes")
49
51
 
50
52
  start_byte = 0
51
53
  uploaded_range = FileUploadClient._check_file_status(upload_url, file_size)
52
54
  if uploaded_range:
53
55
  start_byte = int(uploaded_range.split("-")[1]) + 1
54
- print(f"Resuming upload from {start_byte} bytes")
56
+ logger.info(f"Resuming uploading {file_path} from {start_byte} bytes")
55
57
 
56
58
  with open(file_path, "rb") as file:
57
59
  while start_byte < file_size:
@@ -74,14 +76,15 @@ class FileUploadClient:
74
76
  # Ensure upload is successful for this chunk
75
77
  if resp.status_code not in (200, 201, 308):
76
78
  raise UploadFileError(
77
- f"Failed to upload file, code:{resp.status_code} ,message: {resp.text}")
79
+ f"Failed to upload file {file_path}, code:{resp.status_code} ,message: {resp.text}")
78
80
 
79
81
  start_byte = end_byte + 1
80
- print(f"Uploaded {end_byte + 1}/{file_size} bytes")
82
+ percentage = (start_byte / file_size) * 100
83
+ logger.info(f"File {file_path} uploaded {end_byte + 1:,}/{file_size:,} bytes ({percentage:.2f}%)")
81
84
 
82
- print("Upload completed successfully.")
85
+ logger.info(f"File {file_path} uploaded successfully.")
83
86
  except Exception as e:
84
- raise UploadFileError(f"Failed to upload file: {str(e)}")
87
+ raise UploadFileError(f"Failed to upload file {file_path}, got error: {str(e)}")
85
88
 
86
89
  @staticmethod
87
90
  def _check_file_status(upload_url: str, file_size: int) -> str:
@@ -104,7 +107,7 @@ class FileUploadClient:
104
107
  if resp.status_code == 308:
105
108
  range_header = resp.headers.get("Range")
106
109
  if range_header:
107
- print(f"Server reports partial upload range: {range_header}")
110
+ logger.info(f"Server reports partial upload range: {range_header}")
108
111
  return range_header
109
112
 
110
113
  if resp.status_code in (200, 201):
@@ -0,0 +1,9 @@
1
+ # Dev environment
2
+ # ARTIFACT_SERVICE_BASE_URL = "https://ce-tot.gmicloud-dev.com/api/v1/ie/artifact"
3
+ # TASK_SERVICE_BASE_URL = "https://ce-tot.gmicloud-dev.com/api/v1/ie/task"
4
+ # IAM_SERVICE_BASE_URL = "https://ce-tot.gmicloud-dev.com/api/v1"
5
+
6
+ # Prod environment
7
+ ARTIFACT_SERVICE_BASE_URL = "https://inference-engine.gmicloud.ai/api/v1/ie/artifact"
8
+ TASK_SERVICE_BASE_URL = "https://inference-engine.gmicloud.ai/api/v1/ie/task"
9
+ IAM_SERVICE_BASE_URL = "https://inference-engine.gmicloud.ai/api/v1"
@@ -2,11 +2,16 @@ import os
2
2
  import time
3
3
  from typing import List
4
4
  import mimetypes
5
+ import concurrent.futures
6
+ import re
7
+ from tqdm import tqdm
8
+ from tqdm.contrib.logging import logging_redirect_tqdm
5
9
 
6
10
  from .._client._iam_client import IAMClient
7
11
  from .._client._artifact_client import ArtifactClient
8
12
  from .._client._file_upload_client import FileUploadClient
9
13
  from .._models import *
14
+ from .._manager.serve_command_utils import parse_server_command, extract_gpu_num_from_serve_command
10
15
 
11
16
  import logging
12
17
 
@@ -53,7 +58,12 @@ class ArtifactManager:
53
58
  self,
54
59
  artifact_name: str,
55
60
  description: Optional[str] = "",
56
- tags: Optional[List[str]] = None
61
+ tags: Optional[List[str]] = None,
62
+ deployment_type: Optional[str] = "",
63
+ template_id: Optional[str] = "",
64
+ env_parameters: Optional[List["EnvParameter"]] = None,
65
+ model_description: Optional[str] = "",
66
+ model_parameters: Optional[List["ModelParameter"]] = None,
57
67
  ) -> CreateArtifactResponse:
58
68
  """
59
69
  Create a new artifact for a user.
@@ -69,11 +79,16 @@ class ArtifactManager:
69
79
 
70
80
  req = CreateArtifactRequest(artifact_name=artifact_name,
71
81
  artifact_description=description,
72
- artifact_tags=tags, )
82
+ artifact_tags=tags,
83
+ deployment_type=deployment_type,
84
+ template_id=template_id,
85
+ env_parameters=env_parameters,
86
+ model_description=model_description,
87
+ model_parameters=model_parameters)
73
88
 
74
89
  return self.artifact_client.create_artifact(req)
75
90
 
76
- def create_artifact_from_template(self, artifact_template_id: str) -> str:
91
+ def create_artifact_from_template(self, artifact_template_id: str, env_parameters: Optional[dict[str, str]] = None) -> str:
77
92
  """
78
93
  Create a new artifact for a user using a template.
79
94
 
@@ -85,11 +100,16 @@ class ArtifactManager:
85
100
  if not artifact_template_id or not artifact_template_id.strip():
86
101
  raise ValueError("Artifact template ID is required and cannot be empty.")
87
102
 
103
+
88
104
  resp = self.artifact_client.create_artifact_from_template(artifact_template_id)
89
105
  if not resp or not resp.artifact_id:
90
106
  raise ValueError("Failed to create artifact from template.")
91
107
 
108
+ if env_parameters:
109
+ self.artifact_client.add_env_parameters_to_artifact(resp.artifact_id, env_parameters)
110
+
92
111
  return resp.artifact_id
112
+
93
113
 
94
114
  def create_artifact_from_template_name(self, artifact_template_name: str) -> tuple[str, ReplicaResource]:
95
115
  """
@@ -125,6 +145,56 @@ class ArtifactManager:
125
145
  except Exception as e:
126
146
  logger.error(f"Failed to create artifact from template, Error: {e}")
127
147
  raise e
148
+
149
+ def create_artifact_for_serve_command_and_custom_model(self, template_name: str, artifact_name: str, serve_command: str, gpu_type: str, artifact_description: str = "") -> tuple[str, ReplicaResource]:
150
+ """
151
+ Create an artifact from a template and support custom model.
152
+ :param artifact_template_name: The name of the template to use.
153
+ :return: A tuple containing the artifact ID and the recommended replica resources.
154
+ :rtype: tuple[str, ReplicaResource]
155
+ """
156
+
157
+ recommended_replica_resources = None
158
+ picked_template = None
159
+ try:
160
+ templates = self.get_public_templates()
161
+ except Exception as e:
162
+ logger.error(f"Failed to get artifact templates, Error: {e}")
163
+ for template in templates:
164
+ if template.template_data and template.template_data.name == template_name:
165
+ picked_template = template
166
+ break
167
+ if not picked_template:
168
+ raise ValueError(f"Template with name {template_name} not found.")
169
+
170
+ try:
171
+ if gpu_type not in ["H100", "H200"]:
172
+ raise ValueError("Only support A100 and H100 for now")
173
+
174
+ type, env_vars, serve_args_dict = parse_server_command(serve_command)
175
+ if type.lower() not in template_name.lower():
176
+ raise ValueError(f"Template {template_name} does not support inference with {type}.")
177
+ num_gpus = extract_gpu_num_from_serve_command(serve_args_dict)
178
+ recommended_replica_resources = ReplicaResource(
179
+ cpu=num_gpus * 16,
180
+ ram_gb=num_gpus * 100,
181
+ gpu=num_gpus,
182
+ gpu_name=gpu_type,
183
+ )
184
+ except Exception as e:
185
+ raise ValueError(f"Failed to parse serve command, Error: {e}")
186
+
187
+ try:
188
+ env_vars = [
189
+ EnvParameter(key="SERVE_COMMAND", value=serve_command),
190
+ EnvParameter(key="GPU_TYPE", value=gpu_type),
191
+ ]
192
+ resp = self.create_artifact(artifact_name, artifact_description, deployment_type="template", template_id=picked_template.template_id, env_parameters=env_vars)
193
+ # Assume Artifact is already with BuildStatus.SUCCESS status
194
+ return resp.artifact_id, recommended_replica_resources
195
+ except Exception as e:
196
+ logger.error(f"Failed to create artifact from template, Error: {e}")
197
+ raise e
128
198
 
129
199
  def rebuild_artifact(self, artifact_id: str) -> RebuildArtifactResponse:
130
200
  """
@@ -211,7 +281,7 @@ class ArtifactManager:
211
281
  model_file_name = os.path.basename(model_file_path)
212
282
  model_file_type = mimetypes.guess_type(model_file_path)[0]
213
283
 
214
- req = GetBigFileUploadUrlRequest(artifact_id=artifact_id, file_name=model_file_name, file_type=model_file_type)
284
+ req = ResumableUploadLinkRequest(artifact_id=artifact_id, file_name=model_file_name, file_type=model_file_type)
215
285
 
216
286
  resp = self.artifact_client.get_bigfile_upload_url(req)
217
287
  if not resp or not resp.upload_link:
@@ -250,36 +320,64 @@ class ArtifactManager:
250
320
 
251
321
  FileUploadClient.upload_large_file(upload_link, file_path)
252
322
 
323
+
324
+ def upload_model_files_to_artifact(self, artifact_id: str, model_directory: str) -> None:
325
+ """
326
+ Upload model files to an existing artifact.
327
+
328
+ :param artifact_id: The ID of the artifact to upload the model files to.
329
+ :param model_directory: The path to the model directory.
330
+ """
331
+
332
+ # List all files in the model directory recursively
333
+ model_file_paths = []
334
+ for root, _, files in os.walk(model_directory):
335
+ for file in files:
336
+ model_file_paths.append(os.path.join(root, file))
337
+
338
+ def upload_file(model_file_path):
339
+ self._validate_file_path(model_file_path)
340
+ bigfile_upload_url_resp = self.artifact_client.get_bigfile_upload_url(
341
+ ResumableUploadLinkRequest(artifact_id=artifact_id, file_name=os.path.basename(model_file_path))
342
+ )
343
+ FileUploadClient.upload_large_file(bigfile_upload_url_resp.upload_link, model_file_path)
344
+
345
+ # Upload files in parallel with progress bar
346
+ with tqdm(total=len(model_file_paths), desc="Uploading model files") as progress_bar:
347
+ with logging_redirect_tqdm():
348
+ with concurrent.futures.ThreadPoolExecutor() as executor:
349
+ futures = {executor.submit(upload_file, path): path for path in model_file_paths}
350
+ for future in concurrent.futures.as_completed(futures):
351
+ try:
352
+ future.result()
353
+ except Exception as e:
354
+ logger.error(f"Failed to upload file {futures[future]}, Error: {e}")
355
+ progress_bar.update(1)
356
+
253
357
  def create_artifact_with_model_files(
254
358
  self,
255
359
  artifact_name: str,
256
360
  artifact_file_path: str,
257
- model_file_paths: List[str],
361
+ model_directory: str,
258
362
  description: Optional[str] = "",
259
363
  tags: Optional[str] = None
260
364
  ) -> str:
261
365
  """
262
366
  Create a new artifact for a user and upload model files associated with the artifact.
263
-
264
367
  :param artifact_name: The name of the artifact.
265
368
  :param artifact_file_path: The path to the artifact file(Dockerfile+serve.py).
266
- :param model_file_paths: The paths to the model files.
369
+ :param model_directory: The path to the model directory.
267
370
  :param description: An optional description for the artifact.
268
371
  :param tags: Optional tags associated with the artifact, as a comma-separated string.
269
372
  :return: The `artifact_id` of the created artifact.
270
- :raises FileNotFoundError: If the provided `file_path` does not exist.
271
373
  """
272
374
  artifact_id = self.create_artifact_with_file(artifact_name, artifact_file_path, description, tags)
375
+ logger.info(f"Artifact created: {artifact_id}")
273
376
 
274
- for model_file_path in model_file_paths:
275
- self._validate_file_path(model_file_path)
276
- bigfile_upload_url_resp = self.artifact_client.get_bigfile_upload_url(
277
- GetBigFileUploadUrlRequest(artifact_id=artifact_id, model_file_path=model_file_path)
278
- )
279
- FileUploadClient.upload_large_file(bigfile_upload_url_resp.upload_link, model_file_path)
377
+ self.upload_model_files_to_artifact(artifact_id, model_directory)
280
378
 
281
379
  return artifact_id
282
-
380
+
283
381
 
284
382
  def wait_for_artifact_ready(self, artifact_id: str, timeout_s: int = 900) -> None:
285
383
  """
@@ -304,12 +402,12 @@ class ArtifactManager:
304
402
  time.sleep(10)
305
403
 
306
404
 
307
- def get_public_templates(self) -> List[ArtifactTemplate]:
405
+ def get_public_templates(self) -> List[Template]:
308
406
  """
309
407
  Fetch all artifact templates.
310
408
 
311
- :return: A list of ArtifactTemplate objects.
312
- :rtype: List[ArtifactTemplate]
409
+ :return: A list of Template objects.
410
+ :rtype: List[Template]
313
411
  """
314
412
  return self.artifact_client.get_public_templates()
315
413