gmicloud 0.1.4__tar.gz → 0.1.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. gmicloud-0.1.6/PKG-INFO +147 -0
  2. gmicloud-0.1.6/README.md +135 -0
  3. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/__init__.py +12 -1
  4. gmicloud-0.1.6/gmicloud/_internal/_client/_artifact_client.py +212 -0
  5. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/_internal/_client/_http_client.py +5 -1
  6. gmicloud-0.1.6/gmicloud/_internal/_client/_iam_client.py +189 -0
  7. gmicloud-0.1.6/gmicloud/_internal/_client/_task_client.py +153 -0
  8. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/_internal/_enums.py +13 -0
  9. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/_internal/_manager/_artifact_manager.py +100 -5
  10. gmicloud-0.1.6/gmicloud/_internal/_manager/_iam_manager.py +36 -0
  11. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/_internal/_manager/_task_manager.py +88 -12
  12. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/_internal/_models.py +121 -12
  13. gmicloud-0.1.6/gmicloud/client.py +247 -0
  14. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/tests/test_artifacts.py +14 -15
  15. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/tests/test_tasks.py +1 -1
  16. gmicloud-0.1.6/gmicloud.egg-info/PKG-INFO +147 -0
  17. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud.egg-info/SOURCES.txt +1 -1
  18. {gmicloud-0.1.4 → gmicloud-0.1.6}/pyproject.toml +3 -3
  19. gmicloud-0.1.4/PKG-INFO +0 -250
  20. gmicloud-0.1.4/README.md +0 -238
  21. gmicloud-0.1.4/gmicloud/_internal/_client/_artifact_client.py +0 -142
  22. gmicloud-0.1.4/gmicloud/_internal/_client/_iam_client.py +0 -124
  23. gmicloud-0.1.4/gmicloud/_internal/_client/_task_client.py +0 -108
  24. gmicloud-0.1.4/gmicloud/client.py +0 -122
  25. gmicloud-0.1.4/gmicloud/tests/__init__.py +0 -0
  26. gmicloud-0.1.4/gmicloud.egg-info/PKG-INFO +0 -250
  27. {gmicloud-0.1.4/examples → gmicloud-0.1.6/gmicloud/_internal}/__init__.py +0 -0
  28. {gmicloud-0.1.4/gmicloud/_internal → gmicloud-0.1.6/gmicloud/_internal/_client}/__init__.py +0 -0
  29. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/_internal/_client/_decorator.py +0 -0
  30. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/_internal/_client/_file_upload_client.py +0 -0
  31. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/_internal/_config.py +0 -0
  32. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/_internal/_constants.py +0 -0
  33. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/_internal/_exceptions.py +0 -0
  34. {gmicloud-0.1.4/gmicloud/_internal/_client → gmicloud-0.1.6/gmicloud/_internal/_manager}/__init__.py +0 -0
  35. {gmicloud-0.1.4/gmicloud/_internal/_manager → gmicloud-0.1.6/gmicloud/tests}/__init__.py +0 -0
  36. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud/utils/uninstall_packages.py +0 -0
  37. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud.egg-info/dependency_links.txt +0 -0
  38. {gmicloud-0.1.4 → gmicloud-0.1.6}/gmicloud.egg-info/top_level.txt +0 -0
  39. {gmicloud-0.1.4 → gmicloud-0.1.6}/setup.cfg +0 -0
@@ -0,0 +1,147 @@
1
+ Metadata-Version: 2.2
2
+ Name: gmicloud
3
+ Version: 0.1.6
4
+ Summary: GMI Cloud Python SDK
5
+ Author-email: GMI <support@gmicloud.ai>
6
+ License: MIT
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.6
11
+ Description-Content-Type: text/markdown
12
+
13
+ # GMICloud SDK (Beta)
14
+
15
+ ## Overview
16
+ Before you start: Our service and GPU resource is currenly invite-only so please contact our team (getstarted@gmicloud.ai) to get invited if you don't have one yet.
17
+
18
+ The GMI Inference Engine SDK provides a Python interface for deploying and managing machine learning models in production environments. It allows users to create model artifacts, schedule tasks for serving models, and call inference APIs easily.
19
+
20
+ This SDK streamlines the process of utilizing GMI Cloud capabilities such as deploying models with Kubernetes-based Ray services, managing resources automatically, and accessing model inference endpoints. With minimal setup, developers can focus on building ML solutions instead of infrastructure.
21
+
22
+ ## Features
23
+
24
+ - Artifact Management: Easily create, update, and manage ML model artifacts.
25
+ - Task Management: Quickly create, schedule, and manage deployment tasks for model inference.
26
+ - Usage Data Retrieval : Fetch and analyze usage data to optimize resource allocation.
27
+
28
+ ## Installation
29
+
30
+ To install the SDK, use pip:
31
+
32
+ ```bash
33
+ pip install gmicloud
34
+ ```
35
+
36
+ ## Setup
37
+
38
+ You must configure authentication credentials for accessing the GMI Cloud API.
39
+ To create account and get log in info please visit **GMI inference platform: https://inference-engine.gmicloud.ai/**.
40
+
41
+ There are two ways to configure the SDK:
42
+
43
+ ### Option 1: Using Environment Variables
44
+
45
+ Set the following environment variables:
46
+
47
+ ```shell
48
+ export GMI_CLOUD_CLIENT_ID=<YOUR_CLIENT_ID>
49
+ export GMI_CLOUD_EMAIL=<YOUR_EMAIL>
50
+ export GMI_CLOUD_PASSWORD=<YOUR_PASSWORD>
51
+ ```
52
+
53
+ ### Option 2: Passing Credentials as Parameters
54
+
55
+ Pass `client_id`, `email`, and `password` directly to the Client object when initializing it in your script:
56
+
57
+ ```python
58
+ from gmicloud import Client
59
+
60
+ client = Client(client_id="<YOUR_CLIENT_ID>", email="<YOUR_EMAIL>", password="<YOUR_PASSWORD>")
61
+ ```
62
+
63
+ ## Quick Start
64
+
65
+ ### 1. How to run the code in the example folder
66
+ ```bash
67
+ cd path/to/gmicloud-sdk
68
+ # Create a virtual environment
69
+ python -m venv venv
70
+ source venv/bin/activate
71
+
72
+ pip install -r requirements.txt
73
+ python -m examples.create_task_from_artifact_template.py
74
+ ```
75
+
76
+ ### 2. Create an inference task from an artifact template
77
+
78
+ This is the simplest example to deploy an inference task using an existing artifact template:
79
+
80
+ Up-to-date code in /examples/create_task_from_artifact_template.py
81
+
82
+ ```python
83
+ from datetime import datetime
84
+ import os
85
+ import sys
86
+
87
+ from gmicloud import *
88
+ from examples.completion import call_chat_completion
89
+
90
+ cli = Client()
91
+
92
+ # List templates offered by GMI cloud
93
+ templates = cli.list_templates()
94
+ print(f"Found {len(templates)} templates: {templates}")
95
+
96
+ # Pick a template from the list
97
+ pick_template = "Llama-3.1-8B"
98
+
99
+ # Create Artifact from template
100
+ artifact_id, recommended_replica_resources = cli.create_artifact_from_template(templates[0])
101
+ print(f"Created artifact {artifact_id} with recommended replica resources: {recommended_replica_resources}")
102
+
103
+ # Create Task based on Artifact
104
+ task_id = cli.create_task(artifact_id, recommended_replica_resources, TaskScheduling(
105
+ scheduling_oneoff=OneOffScheduling(
106
+ trigger_timestamp=int(datetime.now().timestamp()),
107
+ min_replicas=1,
108
+ max_replicas=1,
109
+ )
110
+ ))
111
+ task = cli.task_manager.get_task(task_id)
112
+ print(f"Task created: {task.config.task_name}. You can check details at https://inference-engine.gmicloud.ai/user-console/task")
113
+
114
+ # Start Task and wait for it to be ready
115
+ cli.start_task_and_wait(task.task_id)
116
+
117
+ # Testing with calling chat completion
118
+ print(call_chat_completion(cli, task.task_id))
119
+
120
+ ```
121
+
122
+ ## API Reference
123
+
124
+ ### Client
125
+
126
+ Represents the entry point to interact with GMI Cloud APIs.
127
+ Client(
128
+ client_id: Optional[str] = "",
129
+ email: Optional[str] = "",
130
+ password: Optional[str] = ""
131
+ )
132
+
133
+ ### Artifact Management
134
+
135
+ * get_artifact_templates(): Fetch a list of available artifact templates.
136
+ * create_artifact_from_template(template_id: str): Create a model artifact from a given template.
137
+ * get_artifact(artifact_id: str): Get details of a specific artifact.
138
+
139
+ ### Task Management
140
+
141
+ * create_task_from_artifact_template(template_id: str, scheduling: TaskScheduling): Create and schedule a task using an
142
+ artifact template.
143
+ * start_task(task_id: str): Start a task.
144
+ * get_task(task_id: str): Retrieve the status and details of a specific task.
145
+
146
+ ## Notes & Troubleshooting
147
+ k
@@ -0,0 +1,135 @@
1
+ # GMICloud SDK (Beta)
2
+
3
+ ## Overview
4
+ Before you start: Our service and GPU resource is currenly invite-only so please contact our team (getstarted@gmicloud.ai) to get invited if you don't have one yet.
5
+
6
+ The GMI Inference Engine SDK provides a Python interface for deploying and managing machine learning models in production environments. It allows users to create model artifacts, schedule tasks for serving models, and call inference APIs easily.
7
+
8
+ This SDK streamlines the process of utilizing GMI Cloud capabilities such as deploying models with Kubernetes-based Ray services, managing resources automatically, and accessing model inference endpoints. With minimal setup, developers can focus on building ML solutions instead of infrastructure.
9
+
10
+ ## Features
11
+
12
+ - Artifact Management: Easily create, update, and manage ML model artifacts.
13
+ - Task Management: Quickly create, schedule, and manage deployment tasks for model inference.
14
+ - Usage Data Retrieval : Fetch and analyze usage data to optimize resource allocation.
15
+
16
+ ## Installation
17
+
18
+ To install the SDK, use pip:
19
+
20
+ ```bash
21
+ pip install gmicloud
22
+ ```
23
+
24
+ ## Setup
25
+
26
+ You must configure authentication credentials for accessing the GMI Cloud API.
27
+ To create account and get log in info please visit **GMI inference platform: https://inference-engine.gmicloud.ai/**.
28
+
29
+ There are two ways to configure the SDK:
30
+
31
+ ### Option 1: Using Environment Variables
32
+
33
+ Set the following environment variables:
34
+
35
+ ```shell
36
+ export GMI_CLOUD_CLIENT_ID=<YOUR_CLIENT_ID>
37
+ export GMI_CLOUD_EMAIL=<YOUR_EMAIL>
38
+ export GMI_CLOUD_PASSWORD=<YOUR_PASSWORD>
39
+ ```
40
+
41
+ ### Option 2: Passing Credentials as Parameters
42
+
43
+ Pass `client_id`, `email`, and `password` directly to the Client object when initializing it in your script:
44
+
45
+ ```python
46
+ from gmicloud import Client
47
+
48
+ client = Client(client_id="<YOUR_CLIENT_ID>", email="<YOUR_EMAIL>", password="<YOUR_PASSWORD>")
49
+ ```
50
+
51
+ ## Quick Start
52
+
53
+ ### 1. How to run the code in the example folder
54
+ ```bash
55
+ cd path/to/gmicloud-sdk
56
+ # Create a virtual environment
57
+ python -m venv venv
58
+ source venv/bin/activate
59
+
60
+ pip install -r requirements.txt
61
+ python -m examples.create_task_from_artifact_template.py
62
+ ```
63
+
64
+ ### 2. Create an inference task from an artifact template
65
+
66
+ This is the simplest example to deploy an inference task using an existing artifact template:
67
+
68
+ Up-to-date code in /examples/create_task_from_artifact_template.py
69
+
70
+ ```python
71
+ from datetime import datetime
72
+ import os
73
+ import sys
74
+
75
+ from gmicloud import *
76
+ from examples.completion import call_chat_completion
77
+
78
+ cli = Client()
79
+
80
+ # List templates offered by GMI cloud
81
+ templates = cli.list_templates()
82
+ print(f"Found {len(templates)} templates: {templates}")
83
+
84
+ # Pick a template from the list
85
+ pick_template = "Llama-3.1-8B"
86
+
87
+ # Create Artifact from template
88
+ artifact_id, recommended_replica_resources = cli.create_artifact_from_template(templates[0])
89
+ print(f"Created artifact {artifact_id} with recommended replica resources: {recommended_replica_resources}")
90
+
91
+ # Create Task based on Artifact
92
+ task_id = cli.create_task(artifact_id, recommended_replica_resources, TaskScheduling(
93
+ scheduling_oneoff=OneOffScheduling(
94
+ trigger_timestamp=int(datetime.now().timestamp()),
95
+ min_replicas=1,
96
+ max_replicas=1,
97
+ )
98
+ ))
99
+ task = cli.task_manager.get_task(task_id)
100
+ print(f"Task created: {task.config.task_name}. You can check details at https://inference-engine.gmicloud.ai/user-console/task")
101
+
102
+ # Start Task and wait for it to be ready
103
+ cli.start_task_and_wait(task.task_id)
104
+
105
+ # Testing with calling chat completion
106
+ print(call_chat_completion(cli, task.task_id))
107
+
108
+ ```
109
+
110
+ ## API Reference
111
+
112
+ ### Client
113
+
114
+ Represents the entry point to interact with GMI Cloud APIs.
115
+ Client(
116
+ client_id: Optional[str] = "",
117
+ email: Optional[str] = "",
118
+ password: Optional[str] = ""
119
+ )
120
+
121
+ ### Artifact Management
122
+
123
+ * get_artifact_templates(): Fetch a list of available artifact templates.
124
+ * create_artifact_from_template(template_id: str): Create a model artifact from a given template.
125
+ * get_artifact(artifact_id: str): Get details of a specific artifact.
126
+
127
+ ### Task Management
128
+
129
+ * create_task_from_artifact_template(template_id: str, scheduling: TaskScheduling): Create and schedule a task using an
130
+ artifact template.
131
+ * start_task(task_id: str): Start a task.
132
+ * get_task(task_id: str): Retrieve the status and details of a specific task.
133
+
134
+ ## Notes & Troubleshooting
135
+ k
@@ -1,3 +1,6 @@
1
+ import logging
2
+ import os
3
+
1
4
  from ._internal._models import (
2
5
  Artifact,
3
6
  ArtifactData,
@@ -16,7 +19,8 @@ from ._internal._models import (
16
19
  )
17
20
  from ._internal._enums import (
18
21
  BuildStatus,
19
- TaskEndpointStatus
22
+ TaskEndpointStatus,
23
+ TaskStatus
20
24
  )
21
25
  from .client import Client
22
26
 
@@ -39,3 +43,10 @@ __all__ = [
39
43
  "BuildStatus",
40
44
  "TaskEndpointStatus",
41
45
  ]
46
+
47
+ # Configure logging
48
+ log_level = os.getenv("GMI_CLOUD_LOG_LEVEL", "INFO").upper()
49
+ logging.basicConfig(
50
+ level=log_level,
51
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
52
+ )
@@ -0,0 +1,212 @@
1
+ from typing import List
2
+ import logging
3
+ from requests.exceptions import RequestException
4
+
5
+ from ._http_client import HTTPClient
6
+ from ._iam_client import IAMClient
7
+ from ._decorator import handle_refresh_token
8
+ from .._models import *
9
+ from .._config import ARTIFACT_SERVICE_BASE_URL
10
+
11
+ logger = logging.getLogger(__name__)
12
+
13
+
14
+ class ArtifactClient:
15
+ """
16
+ Client for interacting with the Artifact Service API.
17
+
18
+ This client provides methods to perform CRUD operations on artifacts,
19
+ as well as generating signed URLs for uploading large files.
20
+ """
21
+
22
+ def __init__(self, iam_client: IAMClient):
23
+ """
24
+ Initializes the ArtifactClient with an HTTPClient configured
25
+ to communicate with the Artifact Service base URL.
26
+ """
27
+ self.client = HTTPClient(ARTIFACT_SERVICE_BASE_URL)
28
+ self.iam_client = iam_client
29
+
30
+ @handle_refresh_token
31
+ def get_artifact(self, artifact_id: str) -> Optional[Artifact]:
32
+ """
33
+ Fetches an artifact by its ID.
34
+
35
+ :param artifact_id: The ID of the artifact to fetch.
36
+ :return: The Artifact object or None if an error occurs.
37
+ """
38
+ try:
39
+ response = self.client.get(
40
+ "/get_artifact",
41
+ self.iam_client.get_custom_headers(),
42
+ {"artifact_id": artifact_id}
43
+ )
44
+ return Artifact.model_validate(response) if response else None
45
+ except (RequestException, ValueError) as e:
46
+ logger.error(f"Failed to fetch artifact {artifact_id}: {e}")
47
+ return None
48
+
49
+ @handle_refresh_token
50
+ def get_all_artifacts(self) -> List[Artifact]:
51
+ """
52
+ Fetches all artifacts.
53
+
54
+ :return: A list of Artifact objects. If an error occurs, returns an empty list.
55
+ """
56
+ try:
57
+ response = self.client.get("/get_all_artifacts", self.iam_client.get_custom_headers())
58
+ if not response:
59
+ logger.error("Empty response from /get_all_artifacts")
60
+ return []
61
+ return [Artifact.model_validate(item) for item in response]
62
+ except (RequestException, ValueError) as e:
63
+ logger.error(f"Failed to fetch all artifacts: {e}")
64
+ return []
65
+
66
+ @handle_refresh_token
67
+ def create_artifact(self, request: CreateArtifactRequest) -> Optional[CreateArtifactResponse]:
68
+ """
69
+ Creates a new artifact in the service.
70
+
71
+ :param request: The request object containing artifact details.
72
+ :return: The response object containing the created artifact details, or None on error.
73
+ """
74
+ try:
75
+ response = self.client.post(
76
+ "/create_artifact",
77
+ self.iam_client.get_custom_headers(),
78
+ request.model_dump()
79
+ )
80
+ return CreateArtifactResponse.model_validate(response) if response else None
81
+ except (RequestException, ValueError) as e:
82
+ logger.error(f"Failed to create artifact: {e}")
83
+ return None
84
+
85
+ @handle_refresh_token
86
+ def create_artifact_from_template(self, artifact_template_id: str) -> Optional[CreateArtifactFromTemplateResponse]:
87
+ """
88
+ Creates a new artifact in the service.
89
+
90
+ :param artifact_template_id: The ID of the artifact template to use.
91
+ :return: The response object containing the created artifact details or None if an error occurs.
92
+ """
93
+ try:
94
+ response = self.client.post(
95
+ "/create_artifact_from_template",
96
+ self.iam_client.get_custom_headers(),
97
+ {"artifact_template_id": artifact_template_id}
98
+ )
99
+ return CreateArtifactFromTemplateResponse.model_validate(response) if response else None
100
+ except (RequestException, ValueError) as e:
101
+ logger.error(f"Failed to create artifact from template {artifact_template_id}: {e}")
102
+ return None
103
+
104
+ @handle_refresh_token
105
+ def rebuild_artifact(self, artifact_id: str) -> Optional[RebuildArtifactResponse]:
106
+ """
107
+ Rebuilds an artifact in the service.
108
+
109
+ :param artifact_id: The ID of the artifact to rebuild.
110
+ :return: The response object containing the rebuilt artifact details or None if an error occurs.
111
+ """
112
+ try:
113
+ response = self.client.post(
114
+ "/rebuild_artifact",
115
+ self.iam_client.get_custom_headers(),
116
+ {"artifact_id": artifact_id}
117
+ )
118
+ return RebuildArtifactResponse.model_validate(response) if response else None
119
+ except (RequestException, ValueError) as e:
120
+ logger.error(f"Failed to rebuild artifact {artifact_id}: {e}")
121
+ return None
122
+
123
+ @handle_refresh_token
124
+ def delete_artifact(self, artifact_id: str) -> Optional[DeleteArtifactResponse]:
125
+ """
126
+ Deletes an artifact by its ID.
127
+
128
+ :param artifact_id: The ID of the artifact to delete.
129
+ :return: The response object containing the deleted artifact details or None if an error occurs.
130
+ """
131
+ try:
132
+ response = self.client.delete(
133
+ "/delete_artifact",
134
+ self.iam_client.get_custom_headers(),
135
+ {"artifact_id": artifact_id}
136
+ )
137
+ return DeleteArtifactResponse.model_validate(response) if response else None
138
+ except (RequestException, ValueError) as e:
139
+ logger.error(f"Failed to delete artifact {artifact_id}: {e}")
140
+ return None
141
+
142
+ @handle_refresh_token
143
+ def get_bigfile_upload_url(self, request: GetBigFileUploadUrlRequest) -> Optional[GetBigFileUploadUrlResponse]:
144
+ """
145
+ Generates a pre-signed URL for uploading a large file.
146
+
147
+ :param request: The request object containing the artifact ID, file name, and file type.
148
+ :return: The response object containing the pre-signed URL and upload details, or None if an error occurs.
149
+ """
150
+ try:
151
+ response = self.client.post("/get_bigfile_upload_url",
152
+ self.iam_client.get_custom_headers(),
153
+ request.model_dump())
154
+
155
+ if not response:
156
+ logger.error("Empty response from /get_bigfile_upload_url")
157
+ return None
158
+
159
+ return GetBigFileUploadUrlResponse.model_validate(response)
160
+
161
+ except (RequestException, ValueError) as e:
162
+ logger.error(f"Failed to generate upload URL: {e}")
163
+ return None
164
+
165
+ @handle_refresh_token
166
+ def delete_bigfile(self, request: DeleteBigfileRequest) -> Optional[DeleteBigfileResponse]:
167
+ """
168
+ Deletes a large file associated with an artifact.
169
+
170
+ :param request: The request object containing the artifact ID and file name.
171
+ :return: The response object containing the deletion status, or None if an error occurs.
172
+ """
173
+ try:
174
+ response = self.client.delete("/delete_bigfile",
175
+ self.iam_client.get_custom_headers(),
176
+ request.model_dump())
177
+
178
+ if not response:
179
+ logger.error("Empty response from /delete_bigfile")
180
+ return None
181
+
182
+ return DeleteBigfileResponse.model_validate(response)
183
+
184
+ except (RequestException, ValueError) as e:
185
+ logger.error(f"Failed to delete big file: {e}")
186
+ return None
187
+
188
+ @handle_refresh_token
189
+ def get_public_templates(self) -> List[ArtifactTemplate]:
190
+ """
191
+ Fetches all artifact templates.
192
+
193
+ :return: A list of ArtifactTemplate objects.
194
+ :rtype: List[ArtifactTemplate]
195
+ """
196
+ try:
197
+ response = self.client.get("/get_public_templates", self.iam_client.get_custom_headers())
198
+
199
+ if not response:
200
+ logger.error("Empty response received from /get_public_templates API")
201
+ return []
202
+
203
+ try:
204
+ result = GetPublicTemplatesResponse.model_validate(response)
205
+ return result.artifact_templates
206
+ except ValueError as ve:
207
+ logger.error(f"Failed to validate response data: {ve}")
208
+ return []
209
+
210
+ except RequestException as e:
211
+ logger.error(f"Request to /get_public_templates failed: {e}")
212
+ return []
@@ -1,8 +1,12 @@
1
+ import logging
2
+
1
3
  import requests
2
4
  from .._exceptions import APIError
3
5
  from .._exceptions import UnauthorizedError
4
6
  from .._constants import *
5
7
 
8
+ logger = logging.getLogger(__name__)
9
+
6
10
 
7
11
  class HTTPClient:
8
12
  """
@@ -51,6 +55,7 @@ class HTTPClient:
51
55
  response = None
52
56
  try:
53
57
  response = requests.request(method, url, params=params, json=data, headers=headers)
58
+ logger.debug(response.text)
54
59
  if response.status_code == 401:
55
60
  raise UnauthorizedError("Access token expired or invalid.")
56
61
  elif response.status_code != 200 and response.status_code != 201:
@@ -61,7 +66,6 @@ class HTTPClient:
61
66
  raise APIError(f"HTTP Request failed: {error_message}")
62
67
  # Raise for HTTP errors
63
68
  response.raise_for_status()
64
- print(response.text)
65
69
 
66
70
  except requests.exceptions.RequestException as e:
67
71
  raise APIError(f"HTTP Request failed: {str(e)}")