gmicloud 0.1.0__tar.gz → 0.1.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gmicloud-0.1.2/PKG-INFO +212 -0
- gmicloud-0.1.2/README.md +200 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/__init__.py +4 -4
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_client/_artifact_client.py +6 -8
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_client/_http_client.py +0 -16
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_client/_task_client.py +2 -2
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_enums.py +2 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_manager/_artifact_manager.py +7 -9
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_manager/_task_manager.py +0 -2
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_models.py +20 -6
- gmicloud-0.1.2/gmicloud/client.py +122 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/tests/test_artifacts.py +1 -1
- gmicloud-0.1.2/gmicloud/utils/uninstall_packages.py +39 -0
- gmicloud-0.1.2/gmicloud.egg-info/PKG-INFO +212 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud.egg-info/SOURCES.txt +2 -3
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud.egg-info/top_level.txt +0 -1
- {gmicloud-0.1.0 → gmicloud-0.1.2}/pyproject.toml +1 -5
- gmicloud-0.1.0/PKG-INFO +0 -208
- gmicloud-0.1.0/README.md +0 -191
- gmicloud-0.1.0/examples/example.py +0 -145
- gmicloud-0.1.0/gmicloud/client.py +0 -51
- gmicloud-0.1.0/gmicloud.egg-info/PKG-INFO +0 -208
- gmicloud-0.1.0/setup.py +0 -28
- {gmicloud-0.1.0 → gmicloud-0.1.2}/examples/__init__.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/__init__.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_client/__init__.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_client/_decorator.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_client/_file_upload_client.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_client/_iam_client.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_config.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_constants.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_exceptions.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/_internal/_manager/__init__.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/tests/__init__.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud/tests/test_tasks.py +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/gmicloud.egg-info/dependency_links.txt +0 -0
- {gmicloud-0.1.0 → gmicloud-0.1.2}/setup.cfg +0 -0
gmicloud-0.1.2/PKG-INFO
ADDED
@@ -0,0 +1,212 @@
|
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: gmicloud
|
3
|
+
Version: 0.1.2
|
4
|
+
Summary: GMI Cloud Python SDK
|
5
|
+
Author-email: GMI <gmi@gmitec.net>
|
6
|
+
License: MIT
|
7
|
+
Classifier: Programming Language :: Python :: 3
|
8
|
+
Classifier: License :: OSI Approved :: MIT License
|
9
|
+
Classifier: Operating System :: OS Independent
|
10
|
+
Requires-Python: >=3.6
|
11
|
+
Description-Content-Type: text/markdown
|
12
|
+
|
13
|
+
# GMICloud SDK
|
14
|
+
|
15
|
+
## Overview
|
16
|
+
|
17
|
+
The GMI Inference Engine SDK provides a Python interface for deploying and managing machine learning models in
|
18
|
+
production environments. It allows users to create model artifacts, schedule tasks for serving models, and call
|
19
|
+
inference APIs easily.
|
20
|
+
|
21
|
+
This SDK streamlines the process of utilizing GMI Cloud capabilities such as deploying models with Kubernetes-based Ray
|
22
|
+
services, managing resources automatically, and accessing model inference endpoints. With minimal setup, developers can
|
23
|
+
focus on building ML solutions instead of infrastructure.
|
24
|
+
|
25
|
+
## Features
|
26
|
+
|
27
|
+
- Artifact Management: Easily create, update, and manage ML model artifacts.
|
28
|
+
- Task Management: Quickly create, schedule, and manage deployment tasks for model inference.
|
29
|
+
- Usage Data Retrieval : Fetch and analyze usage data to optimize resource allocation.
|
30
|
+
|
31
|
+
## Installation
|
32
|
+
|
33
|
+
To install the SDK, use pip:
|
34
|
+
|
35
|
+
```bash
|
36
|
+
pip install gmicloud
|
37
|
+
```
|
38
|
+
|
39
|
+
## Setup
|
40
|
+
|
41
|
+
You must configure authentication credentials for accessing the GMI Cloud API. There are two ways to configure the SDK:
|
42
|
+
|
43
|
+
### Option 1: Using Environment Variables
|
44
|
+
|
45
|
+
Set the following environment variables:
|
46
|
+
|
47
|
+
```shell
|
48
|
+
export GMI_CLOUD_CLIENT_ID=<YOUR_CLIENT_ID>
|
49
|
+
export GMI_CLOUD_EMAIL=<YOUR_EMAIL>
|
50
|
+
export GMI_CLOUD_PASSWORD=<YOUR_PASSWORD>
|
51
|
+
```
|
52
|
+
|
53
|
+
### Option 2: Passing Credentials as Parameters
|
54
|
+
|
55
|
+
Pass `client_id`, `email`, and `password` directly to the Client object when initializing it in your script:
|
56
|
+
|
57
|
+
```python
|
58
|
+
from gmicloud import Client
|
59
|
+
|
60
|
+
client = Client(client_id="<YOUR_CLIENT_ID>", email="<YOUR_EMAIL>", password="<YOUR_PASSWORD>")
|
61
|
+
```
|
62
|
+
|
63
|
+
## Quick Start
|
64
|
+
|
65
|
+
### 1. Create a Task from an Artifact Template
|
66
|
+
|
67
|
+
This is the simplest example to deploy an existing artifact template:
|
68
|
+
|
69
|
+
```python
|
70
|
+
from datetime import datetime
|
71
|
+
from gmicloud import Client, TaskScheduling, OneOffScheduling
|
72
|
+
from examples.completion import call_chat_completion
|
73
|
+
|
74
|
+
# Initialize the client
|
75
|
+
client = Client()
|
76
|
+
|
77
|
+
# Schedule and start a task from an artifact template
|
78
|
+
task = client.create_task_from_artifact_template(
|
79
|
+
"qwen_2.5_14b_instruct_template_001",
|
80
|
+
TaskScheduling(
|
81
|
+
scheduling_oneoff=OneOffScheduling(
|
82
|
+
trigger_timestamp=int(datetime.now().timestamp()) + 10, # Delay by 10 seconds
|
83
|
+
min_replicas=1,
|
84
|
+
max_replicas=10,
|
85
|
+
)
|
86
|
+
)
|
87
|
+
)
|
88
|
+
|
89
|
+
# Make a chat completion request via the task endpoint
|
90
|
+
response = call_chat_completion(client, task.task_id)
|
91
|
+
print(response)
|
92
|
+
```
|
93
|
+
|
94
|
+
### 2. Step-by-Step Example: Create Artifact, Task, and Query the Endpoint
|
95
|
+
|
96
|
+
#### (a) Create an Artifact from a Template
|
97
|
+
|
98
|
+
First, you’ll retrieve all templates and create an artifact based on the desired template (e.g., "Llama3.1 8B"):
|
99
|
+
|
100
|
+
```python
|
101
|
+
def create_artifact_from_template(client):
|
102
|
+
artifact_manager = client.artifact_manager
|
103
|
+
|
104
|
+
# List all available templates
|
105
|
+
templates = artifact_manager.get_artifact_templates()
|
106
|
+
for template in templates:
|
107
|
+
if template.artifact_template_id == "qwen_2.5_14b_instruct_template_001":
|
108
|
+
return artifact_manager.create_artifact_from_template(
|
109
|
+
artifact_template_id=template.artifact_template_id
|
110
|
+
)
|
111
|
+
return None
|
112
|
+
```
|
113
|
+
|
114
|
+
#### (b) Create a Task from the Artifact
|
115
|
+
|
116
|
+
Wait until the artifact becomes "ready" and then deploy it using task scheduling:
|
117
|
+
|
118
|
+
```python
|
119
|
+
def create_task_and_start(client, artifact_id):
|
120
|
+
artifact_manager = client.artifact_manager
|
121
|
+
|
122
|
+
# Wait until the artifact is ready
|
123
|
+
while True:
|
124
|
+
artifact = artifact_manager.get_artifact(artifact_id)
|
125
|
+
if artifact.build_status == "SUCCESS":
|
126
|
+
break
|
127
|
+
print("Waiting for artifact to be ready...")
|
128
|
+
time.sleep(2)
|
129
|
+
|
130
|
+
# Configure and start the task
|
131
|
+
task_manager = client.task_manager
|
132
|
+
task = task_manager.create_task(Task(
|
133
|
+
config=TaskConfig(
|
134
|
+
ray_task_config=RayTaskConfig(
|
135
|
+
ray_version="2.40.0-py310-gpu",
|
136
|
+
file_path="serve",
|
137
|
+
artifact_id=artifact_id,
|
138
|
+
deployment_name="app",
|
139
|
+
replica_resource=ReplicaResource(
|
140
|
+
cpu=10,
|
141
|
+
ram_gb=100,
|
142
|
+
gpu=1,
|
143
|
+
),
|
144
|
+
),
|
145
|
+
task_scheduling=TaskScheduling(
|
146
|
+
scheduling_oneoff=OneOffScheduling(
|
147
|
+
trigger_timestamp=int(datetime.now().timestamp()) + 10,
|
148
|
+
min_replicas=1,
|
149
|
+
max_replicas=10,
|
150
|
+
)
|
151
|
+
),
|
152
|
+
),
|
153
|
+
))
|
154
|
+
|
155
|
+
task_manager.start_task(task.task_id)
|
156
|
+
return task.task_id
|
157
|
+
```
|
158
|
+
|
159
|
+
### (c) Query the Model Endpoint
|
160
|
+
|
161
|
+
Once the task is running, use the endpoint for inference:
|
162
|
+
|
163
|
+
```python
|
164
|
+
from examples.completion import call_chat_completion
|
165
|
+
|
166
|
+
client = Client()
|
167
|
+
artifact_id = create_artifact_from_template(client)
|
168
|
+
task_id = create_task_and_start(client, artifact_id)
|
169
|
+
|
170
|
+
response = call_chat_completion(client, task_id)
|
171
|
+
print(response)
|
172
|
+
```
|
173
|
+
|
174
|
+
## API Reference
|
175
|
+
|
176
|
+
### Client
|
177
|
+
|
178
|
+
Represents the entry point to interact with GMI Cloud APIs.
|
179
|
+
Client(
|
180
|
+
client_id: Optional[str] = "",
|
181
|
+
email: Optional[str] = "",
|
182
|
+
password: Optional[str] = ""
|
183
|
+
)
|
184
|
+
|
185
|
+
### Artifact Management
|
186
|
+
|
187
|
+
* get_artifact_templates(): Fetch a list of available artifact templates.
|
188
|
+
* create_artifact_from_template(template_id: str): Create a model artifact from a given template.
|
189
|
+
* get_artifact(artifact_id: str): Get details of a specific artifact.
|
190
|
+
|
191
|
+
### Task Management
|
192
|
+
|
193
|
+
* create_task_from_artifact_template(template_id: str, scheduling: TaskScheduling): Create and schedule a task using an
|
194
|
+
artifact template.
|
195
|
+
* start_task(task_id: str): Start a task.
|
196
|
+
* get_task(task_id: str): Retrieve the status and details of a specific task.
|
197
|
+
|
198
|
+
## Notes & Troubleshooting
|
199
|
+
|
200
|
+
Ensure Credentials are Correct: Double-check your environment variables or parameters passed into the Client object.
|
201
|
+
Artifact Status: It may take a few minutes for an artifact or task to transition to the "running" state.
|
202
|
+
Inference Endpoint Readiness: Use the task endpoint only after the task status changes to "running".
|
203
|
+
Default OpenAI Key: By default, the OpenAI API base URL is derived from the endpoint provided by GMI.
|
204
|
+
|
205
|
+
## Contributing
|
206
|
+
|
207
|
+
We welcome contributions to enhance the SDK. Please follow these steps:
|
208
|
+
|
209
|
+
1. Fork the repository.
|
210
|
+
2. Create a new branch for your feature or bugfix.
|
211
|
+
3. Commit changes with clear messages.
|
212
|
+
4. Submit a pull request for review.
|
gmicloud-0.1.2/README.md
ADDED
@@ -0,0 +1,200 @@
|
|
1
|
+
# GMICloud SDK
|
2
|
+
|
3
|
+
## Overview
|
4
|
+
|
5
|
+
The GMI Inference Engine SDK provides a Python interface for deploying and managing machine learning models in
|
6
|
+
production environments. It allows users to create model artifacts, schedule tasks for serving models, and call
|
7
|
+
inference APIs easily.
|
8
|
+
|
9
|
+
This SDK streamlines the process of utilizing GMI Cloud capabilities such as deploying models with Kubernetes-based Ray
|
10
|
+
services, managing resources automatically, and accessing model inference endpoints. With minimal setup, developers can
|
11
|
+
focus on building ML solutions instead of infrastructure.
|
12
|
+
|
13
|
+
## Features
|
14
|
+
|
15
|
+
- Artifact Management: Easily create, update, and manage ML model artifacts.
|
16
|
+
- Task Management: Quickly create, schedule, and manage deployment tasks for model inference.
|
17
|
+
- Usage Data Retrieval : Fetch and analyze usage data to optimize resource allocation.
|
18
|
+
|
19
|
+
## Installation
|
20
|
+
|
21
|
+
To install the SDK, use pip:
|
22
|
+
|
23
|
+
```bash
|
24
|
+
pip install gmicloud
|
25
|
+
```
|
26
|
+
|
27
|
+
## Setup
|
28
|
+
|
29
|
+
You must configure authentication credentials for accessing the GMI Cloud API. There are two ways to configure the SDK:
|
30
|
+
|
31
|
+
### Option 1: Using Environment Variables
|
32
|
+
|
33
|
+
Set the following environment variables:
|
34
|
+
|
35
|
+
```shell
|
36
|
+
export GMI_CLOUD_CLIENT_ID=<YOUR_CLIENT_ID>
|
37
|
+
export GMI_CLOUD_EMAIL=<YOUR_EMAIL>
|
38
|
+
export GMI_CLOUD_PASSWORD=<YOUR_PASSWORD>
|
39
|
+
```
|
40
|
+
|
41
|
+
### Option 2: Passing Credentials as Parameters
|
42
|
+
|
43
|
+
Pass `client_id`, `email`, and `password` directly to the Client object when initializing it in your script:
|
44
|
+
|
45
|
+
```python
|
46
|
+
from gmicloud import Client
|
47
|
+
|
48
|
+
client = Client(client_id="<YOUR_CLIENT_ID>", email="<YOUR_EMAIL>", password="<YOUR_PASSWORD>")
|
49
|
+
```
|
50
|
+
|
51
|
+
## Quick Start
|
52
|
+
|
53
|
+
### 1. Create a Task from an Artifact Template
|
54
|
+
|
55
|
+
This is the simplest example to deploy an existing artifact template:
|
56
|
+
|
57
|
+
```python
|
58
|
+
from datetime import datetime
|
59
|
+
from gmicloud import Client, TaskScheduling, OneOffScheduling
|
60
|
+
from examples.completion import call_chat_completion
|
61
|
+
|
62
|
+
# Initialize the client
|
63
|
+
client = Client()
|
64
|
+
|
65
|
+
# Schedule and start a task from an artifact template
|
66
|
+
task = client.create_task_from_artifact_template(
|
67
|
+
"qwen_2.5_14b_instruct_template_001",
|
68
|
+
TaskScheduling(
|
69
|
+
scheduling_oneoff=OneOffScheduling(
|
70
|
+
trigger_timestamp=int(datetime.now().timestamp()) + 10, # Delay by 10 seconds
|
71
|
+
min_replicas=1,
|
72
|
+
max_replicas=10,
|
73
|
+
)
|
74
|
+
)
|
75
|
+
)
|
76
|
+
|
77
|
+
# Make a chat completion request via the task endpoint
|
78
|
+
response = call_chat_completion(client, task.task_id)
|
79
|
+
print(response)
|
80
|
+
```
|
81
|
+
|
82
|
+
### 2. Step-by-Step Example: Create Artifact, Task, and Query the Endpoint
|
83
|
+
|
84
|
+
#### (a) Create an Artifact from a Template
|
85
|
+
|
86
|
+
First, you’ll retrieve all templates and create an artifact based on the desired template (e.g., "Llama3.1 8B"):
|
87
|
+
|
88
|
+
```python
|
89
|
+
def create_artifact_from_template(client):
|
90
|
+
artifact_manager = client.artifact_manager
|
91
|
+
|
92
|
+
# List all available templates
|
93
|
+
templates = artifact_manager.get_artifact_templates()
|
94
|
+
for template in templates:
|
95
|
+
if template.artifact_template_id == "qwen_2.5_14b_instruct_template_001":
|
96
|
+
return artifact_manager.create_artifact_from_template(
|
97
|
+
artifact_template_id=template.artifact_template_id
|
98
|
+
)
|
99
|
+
return None
|
100
|
+
```
|
101
|
+
|
102
|
+
#### (b) Create a Task from the Artifact
|
103
|
+
|
104
|
+
Wait until the artifact becomes "ready" and then deploy it using task scheduling:
|
105
|
+
|
106
|
+
```python
|
107
|
+
def create_task_and_start(client, artifact_id):
|
108
|
+
artifact_manager = client.artifact_manager
|
109
|
+
|
110
|
+
# Wait until the artifact is ready
|
111
|
+
while True:
|
112
|
+
artifact = artifact_manager.get_artifact(artifact_id)
|
113
|
+
if artifact.build_status == "SUCCESS":
|
114
|
+
break
|
115
|
+
print("Waiting for artifact to be ready...")
|
116
|
+
time.sleep(2)
|
117
|
+
|
118
|
+
# Configure and start the task
|
119
|
+
task_manager = client.task_manager
|
120
|
+
task = task_manager.create_task(Task(
|
121
|
+
config=TaskConfig(
|
122
|
+
ray_task_config=RayTaskConfig(
|
123
|
+
ray_version="2.40.0-py310-gpu",
|
124
|
+
file_path="serve",
|
125
|
+
artifact_id=artifact_id,
|
126
|
+
deployment_name="app",
|
127
|
+
replica_resource=ReplicaResource(
|
128
|
+
cpu=10,
|
129
|
+
ram_gb=100,
|
130
|
+
gpu=1,
|
131
|
+
),
|
132
|
+
),
|
133
|
+
task_scheduling=TaskScheduling(
|
134
|
+
scheduling_oneoff=OneOffScheduling(
|
135
|
+
trigger_timestamp=int(datetime.now().timestamp()) + 10,
|
136
|
+
min_replicas=1,
|
137
|
+
max_replicas=10,
|
138
|
+
)
|
139
|
+
),
|
140
|
+
),
|
141
|
+
))
|
142
|
+
|
143
|
+
task_manager.start_task(task.task_id)
|
144
|
+
return task.task_id
|
145
|
+
```
|
146
|
+
|
147
|
+
### (c) Query the Model Endpoint
|
148
|
+
|
149
|
+
Once the task is running, use the endpoint for inference:
|
150
|
+
|
151
|
+
```python
|
152
|
+
from examples.completion import call_chat_completion
|
153
|
+
|
154
|
+
client = Client()
|
155
|
+
artifact_id = create_artifact_from_template(client)
|
156
|
+
task_id = create_task_and_start(client, artifact_id)
|
157
|
+
|
158
|
+
response = call_chat_completion(client, task_id)
|
159
|
+
print(response)
|
160
|
+
```
|
161
|
+
|
162
|
+
## API Reference
|
163
|
+
|
164
|
+
### Client
|
165
|
+
|
166
|
+
Represents the entry point to interact with GMI Cloud APIs.
|
167
|
+
Client(
|
168
|
+
client_id: Optional[str] = "",
|
169
|
+
email: Optional[str] = "",
|
170
|
+
password: Optional[str] = ""
|
171
|
+
)
|
172
|
+
|
173
|
+
### Artifact Management
|
174
|
+
|
175
|
+
* get_artifact_templates(): Fetch a list of available artifact templates.
|
176
|
+
* create_artifact_from_template(template_id: str): Create a model artifact from a given template.
|
177
|
+
* get_artifact(artifact_id: str): Get details of a specific artifact.
|
178
|
+
|
179
|
+
### Task Management
|
180
|
+
|
181
|
+
* create_task_from_artifact_template(template_id: str, scheduling: TaskScheduling): Create and schedule a task using an
|
182
|
+
artifact template.
|
183
|
+
* start_task(task_id: str): Start a task.
|
184
|
+
* get_task(task_id: str): Retrieve the status and details of a specific task.
|
185
|
+
|
186
|
+
## Notes & Troubleshooting
|
187
|
+
|
188
|
+
Ensure Credentials are Correct: Double-check your environment variables or parameters passed into the Client object.
|
189
|
+
Artifact Status: It may take a few minutes for an artifact or task to transition to the "running" state.
|
190
|
+
Inference Endpoint Readiness: Use the task endpoint only after the task status changes to "running".
|
191
|
+
Default OpenAI Key: By default, the OpenAI API base URL is derived from the endpoint provided by GMI.
|
192
|
+
|
193
|
+
## Contributing
|
194
|
+
|
195
|
+
We welcome contributions to enhance the SDK. Please follow these steps:
|
196
|
+
|
197
|
+
1. Fork the repository.
|
198
|
+
2. Create a new branch for your feature or bugfix.
|
199
|
+
3. Commit changes with clear messages.
|
200
|
+
4. Submit a pull request for review.
|
@@ -5,14 +5,14 @@ from ._internal._models import (
|
|
5
5
|
Task,
|
6
6
|
TaskOwner,
|
7
7
|
TaskConfig,
|
8
|
-
|
8
|
+
EndpointInfo,
|
9
9
|
RayTaskConfig,
|
10
10
|
TaskScheduling,
|
11
11
|
ReplicaResource,
|
12
12
|
OneOffScheduling,
|
13
13
|
DailyScheduling,
|
14
14
|
DailyTrigger,
|
15
|
-
ArtifactTemplate
|
15
|
+
ArtifactTemplate,
|
16
16
|
)
|
17
17
|
from ._internal._enums import (
|
18
18
|
BuildStatus,
|
@@ -28,7 +28,7 @@ __all__ = [
|
|
28
28
|
"Task",
|
29
29
|
"TaskOwner",
|
30
30
|
"TaskConfig",
|
31
|
-
"
|
31
|
+
"EndpointInfo",
|
32
32
|
"RayTaskConfig",
|
33
33
|
"TaskScheduling",
|
34
34
|
"ReplicaResource",
|
@@ -37,5 +37,5 @@ __all__ = [
|
|
37
37
|
"DailyTrigger",
|
38
38
|
"ArtifactTemplate",
|
39
39
|
"BuildStatus",
|
40
|
-
"TaskEndpointStatus"
|
40
|
+
"TaskEndpointStatus",
|
41
41
|
]
|
@@ -42,11 +42,10 @@ class ArtifactClient:
|
|
42
42
|
return Artifact.model_validate(result)
|
43
43
|
|
44
44
|
@handle_refresh_token
|
45
|
-
def get_all_artifacts(self
|
45
|
+
def get_all_artifacts(self) -> List[Artifact]:
|
46
46
|
"""
|
47
|
-
Fetches all artifacts
|
47
|
+
Fetches all artifacts.
|
48
48
|
|
49
|
-
:param user_id: The ID of the user whose artifacts are being fetched.
|
50
49
|
:return: A list of Artifact objects.
|
51
50
|
:rtype: List[Artifact]
|
52
51
|
"""
|
@@ -54,7 +53,7 @@ class ArtifactClient:
|
|
54
53
|
ACCESS_TOKEN_HEADER: self.iam_client.get_access_token(),
|
55
54
|
CLIENT_ID_HEADER: self.iam_client.get_client_id()
|
56
55
|
}
|
57
|
-
result = self.client.get("/get_all_artifacts", custom_headers
|
56
|
+
result = self.client.get("/get_all_artifacts", custom_headers)
|
58
57
|
if not result:
|
59
58
|
return []
|
60
59
|
return [Artifact.model_validate(item) for item in result]
|
@@ -77,12 +76,11 @@ class ArtifactClient:
|
|
77
76
|
return CreateArtifactResponse.model_validate(result)
|
78
77
|
|
79
78
|
@handle_refresh_token
|
80
|
-
def create_artifact_from_template(self,
|
81
|
-
request: CreateArtifactFromTemplateRequest) -> CreateArtifactFromTemplateResponse:
|
79
|
+
def create_artifact_from_template(self, artifact_template_id: str) -> CreateArtifactFromTemplateResponse:
|
82
80
|
"""
|
83
81
|
Creates a new artifact in the service.
|
84
82
|
|
85
|
-
:param
|
83
|
+
:param artifact_template_id: The ID of the artifact template to use.
|
86
84
|
:return: The response object containing the created artifact details.
|
87
85
|
:rtype: CreateArtifactFromTemplateResponse
|
88
86
|
"""
|
@@ -91,7 +89,7 @@ class ArtifactClient:
|
|
91
89
|
CLIENT_ID_HEADER: self.iam_client.get_client_id()
|
92
90
|
}
|
93
91
|
result = self.client.post("/create_artifact_from_template", custom_headers,
|
94
|
-
|
92
|
+
{"artifact_template_id": artifact_template_id})
|
95
93
|
|
96
94
|
return CreateArtifactFromTemplateResponse.model_validate(result)
|
97
95
|
|
@@ -39,7 +39,6 @@ class HTTPClient:
|
|
39
39
|
:return: The JSON response parsed as a Python dictionary.
|
40
40
|
:raises APIError: If the request fails or the response is invalid.
|
41
41
|
"""
|
42
|
-
print("data=", data)
|
43
42
|
url = self._prepare_url(endpoint)
|
44
43
|
headers = {
|
45
44
|
ACCEPT_HEADER: JSON_CONTENT_TYPE,
|
@@ -52,21 +51,7 @@ class HTTPClient:
|
|
52
51
|
|
53
52
|
response = None
|
54
53
|
try:
|
55
|
-
# if method == HTTP_METHOD_POST:
|
56
|
-
# response = requests.post(url, json=data, headers=headers)
|
57
|
-
# elif method == HTTP_METHOD_GET:
|
58
|
-
# response = requests.get(url, params=params, headers=headers)
|
59
|
-
# elif method == HTTP_METHOD_PATCH:
|
60
|
-
# response = requests.patch(url, data=data, headers=headers)
|
61
|
-
# elif method == HTTP_METHOD_DELETE:
|
62
|
-
# response = requests.delete(url, params=params, headers=headers)
|
63
|
-
# else:
|
64
|
-
# raise APIError(f"Unsupported HTTP method: {method}")
|
65
54
|
response = requests.request(method, url, params=params, json=data, headers=headers)
|
66
|
-
# response = method_map[method](url, json=data if method != HTTP_METHOD_GET else None,
|
67
|
-
# params=params, headers=headers)
|
68
|
-
|
69
|
-
print("=============", response.text)
|
70
55
|
if response.status_code == 401:
|
71
56
|
raise UnauthorizedError("Access token expired or invalid.")
|
72
57
|
elif response.status_code != 200 and response.status_code != 201:
|
@@ -75,7 +60,6 @@ class HTTPClient:
|
|
75
60
|
else:
|
76
61
|
error_message = response.json().get('message', 'Unknown error')
|
77
62
|
raise APIError(f"HTTP Request failed: {error_message}")
|
78
|
-
|
79
63
|
# Raise for HTTP errors
|
80
64
|
response.raise_for_status()
|
81
65
|
|
@@ -39,7 +39,7 @@ class TaskClient:
|
|
39
39
|
return Task.model_validate(result)
|
40
40
|
|
41
41
|
@handle_refresh_token
|
42
|
-
def get_all_tasks(self
|
42
|
+
def get_all_tasks(self) -> GetAllTasksResponse:
|
43
43
|
"""
|
44
44
|
Retrieves all tasks from the task service.
|
45
45
|
|
@@ -50,7 +50,7 @@ class TaskClient:
|
|
50
50
|
ACCESS_TOKEN_HEADER: self.iam_client.get_access_token(),
|
51
51
|
CLIENT_ID_HEADER: self.iam_client.get_client_id()
|
52
52
|
}
|
53
|
-
result = self.client.get("/get_tasks", custom_headers
|
53
|
+
result = self.client.get("/get_tasks", custom_headers)
|
54
54
|
if not result:
|
55
55
|
return GetAllTasksResponse(tasks=[])
|
56
56
|
|
@@ -14,6 +14,7 @@ class BuildStatus(str, Enum):
|
|
14
14
|
|
15
15
|
|
16
16
|
class TaskEndpointStatus(str, Enum):
|
17
|
+
UNKNOWN = ""
|
17
18
|
PENDING = "pending"
|
18
19
|
DEPLOYING = "deploying"
|
19
20
|
SCALING = "scaling"
|
@@ -21,3 +22,4 @@ class TaskEndpointStatus(str, Enum):
|
|
21
22
|
ARCHIVED = "archived"
|
22
23
|
READY = "ready"
|
23
24
|
UNREADY = "unready"
|
25
|
+
NEW = "new"
|
@@ -43,7 +43,7 @@ class ArtifactManager:
|
|
43
43
|
:return: A list of Artifact objects associated with the user.
|
44
44
|
:rtype: List[Artifact]
|
45
45
|
"""
|
46
|
-
return self.artifact_client.get_all_artifacts(
|
46
|
+
return self.artifact_client.get_all_artifacts()
|
47
47
|
|
48
48
|
def create_artifact(
|
49
49
|
self,
|
@@ -63,27 +63,25 @@ class ArtifactManager:
|
|
63
63
|
if not artifact_name or not artifact_name.strip():
|
64
64
|
raise ValueError("Artifact name is required and cannot be empty.")
|
65
65
|
|
66
|
-
req = CreateArtifactRequest(
|
66
|
+
req = CreateArtifactRequest(artifact_name=artifact_name,
|
67
67
|
artifact_description=description,
|
68
68
|
artifact_tags=tags, )
|
69
69
|
|
70
70
|
return self.artifact_client.create_artifact(req)
|
71
71
|
|
72
|
-
def create_artifact_from_template(self, artifact_template_id: str) ->
|
72
|
+
def create_artifact_from_template(self, artifact_template_id: str) -> str:
|
73
73
|
"""
|
74
74
|
Create a new artifact for a user using a template.
|
75
75
|
|
76
76
|
:param artifact_template_id: The ID of the template to use for the artifact.
|
77
|
-
:return:
|
78
|
-
:rtype:
|
77
|
+
:return: The `artifact_id` of the created artifact.
|
78
|
+
:rtype: str
|
79
|
+
:raises ValueError: If `artifact_template_id` is None or empty.
|
79
80
|
"""
|
80
81
|
if not artifact_template_id or not artifact_template_id.strip():
|
81
82
|
raise ValueError("Artifact template ID is required and cannot be empty.")
|
82
83
|
|
83
|
-
|
84
|
-
artifact_template_id=artifact_template_id)
|
85
|
-
|
86
|
-
return self.artifact_client.create_artifact_from_template(req)
|
84
|
+
return self.artifact_client.create_artifact_from_template(artifact_template_id).artifact_id
|
87
85
|
|
88
86
|
def rebuild_artifact(self, artifact_id: str) -> RebuildArtifactResponse:
|
89
87
|
"""
|
@@ -106,7 +106,6 @@ class TaskManager:
|
|
106
106
|
self._validate_file_path(config_file_path)
|
107
107
|
|
108
108
|
task = self._read_file_and_parse_task(config_file_path)
|
109
|
-
print("================", task)
|
110
109
|
task.task_id = task_id
|
111
110
|
task.config.ray_task_config.artifact_id = artifact_id
|
112
111
|
|
@@ -213,7 +212,6 @@ class TaskManager:
|
|
213
212
|
file_data = file.read()
|
214
213
|
|
215
214
|
try:
|
216
|
-
print("!!!!!!!!!!!1", file_data)
|
217
215
|
task = Task.model_validate_json(file_data) # Ensure Task has a static method for model validation.
|
218
216
|
except Exception as e:
|
219
217
|
raise ValueError(f"Failed to parse Task from file: {file_path}. Error: {str(e)}")
|
@@ -66,7 +66,6 @@ class CreateArtifactRequest(BaseModel):
|
|
66
66
|
"""
|
67
67
|
Request object to create a new artifact.
|
68
68
|
"""
|
69
|
-
user_id: str # The user ID creating the artifact.
|
70
69
|
artifact_name: str # The name of the artifact to create.
|
71
70
|
artifact_description: Optional[str] = "" # Description of the artifact.
|
72
71
|
artifact_tags: Optional[List[str]] = None # Tags for the artifact, separated by commas.
|
@@ -146,6 +145,20 @@ class ArtifactTemplate(BaseModel):
|
|
146
145
|
artifact_description: Optional[str] = "" # Description of the artifact template.
|
147
146
|
artifact_name: Optional[str] = "" # Name of the artifact template.
|
148
147
|
artifact_tags: Optional[List[str]] = None # Tags associated with the artifact template.
|
148
|
+
ray: Optional["RayTemplate"] = None # Template for Ray-based artifacts.
|
149
|
+
resources: Optional["ResourcesTemplate"] = None # Resource allocation template.
|
150
|
+
|
151
|
+
|
152
|
+
class RayTemplate(BaseModel):
|
153
|
+
deployment_name: Optional[str] = "" # Name of the deployment.
|
154
|
+
file_path: Optional[str] = "" # Path to the task file in storage.
|
155
|
+
version: Optional[str] = "" # Version of Ray used.
|
156
|
+
|
157
|
+
|
158
|
+
class ResourcesTemplate(BaseModel):
|
159
|
+
cpu: Optional[int] = 0 # Number of CPU cores allocated.
|
160
|
+
memory: Optional[int] = 0 # Amount of RAM (in GB) allocated.
|
161
|
+
gpu: Optional[int] = 0 # Number of GPUs allocated.
|
149
162
|
|
150
163
|
|
151
164
|
class CreateArtifactFromTemplateRequest(BaseModel):
|
@@ -203,7 +216,7 @@ class RayTaskConfig(BaseModel):
|
|
203
216
|
file_path: Optional[str] = "" # Path to the task file in storage.
|
204
217
|
deployment_name: Optional[str] = "" # Name of the deployment.
|
205
218
|
replica_resource: Optional[ReplicaResource] = None # Resources allocated for task replicas.
|
206
|
-
volume_mounts: Optional[VolumeMount] = None # Configuration for mounted volumes.
|
219
|
+
volume_mounts: Optional[List[VolumeMount]] = None # Configuration for mounted volumes.
|
207
220
|
|
208
221
|
|
209
222
|
class OneOffScheduling(BaseModel):
|
@@ -252,12 +265,12 @@ class TaskConfig(BaseModel):
|
|
252
265
|
last_update_timestamp: Optional[int] = 0 # Timestamp when the task was last updated.
|
253
266
|
|
254
267
|
|
255
|
-
class
|
268
|
+
class EndpointInfo(BaseModel):
|
256
269
|
"""
|
257
|
-
Additional information about
|
270
|
+
Additional information about the task endpoint.
|
258
271
|
"""
|
259
272
|
endpoint_status: Optional[TaskEndpointStatus] = None # Current status of the task (e.g., running, stopped).
|
260
|
-
|
273
|
+
endpoint_url: Optional[str] = "" # URL for accessing the task endpoint.
|
261
274
|
|
262
275
|
|
263
276
|
class UserPreference(BaseModel):
|
@@ -275,7 +288,8 @@ class Task(BaseModel):
|
|
275
288
|
task_id: Optional[str] = None # Unique identifier for the task.
|
276
289
|
owner: Optional[TaskOwner] = None # Ownership information of the task.
|
277
290
|
config: Optional[TaskConfig] = None # Configuration data for the task.
|
278
|
-
|
291
|
+
endpoint_info: Optional[EndpointInfo] = None # Additional information about the task endpoint.
|
292
|
+
cluster_endpoints: Optional[List[EndpointInfo]] = None # Endpoints for the task cluster.
|
279
293
|
task_status: Optional[str] = "" # Status of the task.
|
280
294
|
readiness_status: Optional[str] = "" # Readiness status of the task.
|
281
295
|
user_preference: Optional[UserPreference] = None # User preference for the task.
|