geocif 0.1.93__tar.gz → 0.1.95__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {geocif-0.1.93/geocif.egg-info → geocif-0.1.95}/PKG-INFO +1 -1
- {geocif-0.1.93 → geocif-0.1.95}/geocif/analysis.py +72 -9
- {geocif-0.1.93 → geocif-0.1.95}/geocif/geocif.py +17 -33
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/embedding.py +1 -1
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/stages.py +0 -5
- {geocif-0.1.93 → geocif-0.1.95}/geocif/viz/plot.py +22 -8
- {geocif-0.1.93 → geocif-0.1.95/geocif.egg-info}/PKG-INFO +1 -1
- {geocif-0.1.93 → geocif-0.1.95}/setup.py +1 -1
- {geocif-0.1.93 → geocif-0.1.95}/LICENSE +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/MANIFEST.in +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/README.md +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/__init__.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/agmet/__init__.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/agmet/geoagmet.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/agmet/plot.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/agmet/utils.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/backup/__init__.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/backup/constants.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/backup/features.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/backup/geo.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/backup/geocif.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/backup/metadata.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/backup/models.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/cei/__init__.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/cei/definitions.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/cei/indices.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/experiments.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/geocif_runner.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/indices_runner.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/indices_runner_angola.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/indices_runner_madagascar.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/indices_runner_malawi.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/indices_runner_mozambique.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/indices_runner_south_africa.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/indices_runner_zambia.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/indices_runner_zimbabwe.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/logger.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/__init__.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/correlations.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/feature_engineering.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/feature_selection.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/outliers.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/outlook.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/output.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/spatial_autocorrelation.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/stats.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/trainers.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/trend.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/ml/xai.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/mm.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/__init__.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/aa.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/area.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/automl.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/download_esi.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/enso.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/eval.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/gamtest.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/gee_access.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/misc.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/play_xagg.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/reg.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/sustain.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/test_catboost.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/tmp.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/tmp2.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/tmp3.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/tmp4.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/tmp5.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/playground/wolayita_maize_mask.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/risk/__init__.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/risk/impact_assessment.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/utils.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/viz/__init__.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/viz/gt.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif/viz/tmp.py +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif.egg-info/SOURCES.txt +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif.egg-info/dependency_links.txt +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif.egg-info/not-zip-safe +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/geocif.egg-info/top_level.txt +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/requirements.txt +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/setup.cfg +0 -0
- {geocif-0.1.93 → geocif-0.1.95}/tests/test_geocif.py +0 -0
@@ -627,7 +627,7 @@ class Geoanalysis:
|
|
627
627
|
self.df_analysis["Anomaly"] = (
|
628
628
|
self.df_analysis[self.predicted]
|
629
629
|
* 100.0
|
630
|
-
/ self.df_analysis["Median Yield (tn per ha)"]
|
630
|
+
/ self.df_analysis["Median Yield (tn per ha) (2018-2022)_y"]
|
631
631
|
)
|
632
632
|
|
633
633
|
# Compute the yield from the last year
|
@@ -782,6 +782,73 @@ class Geoanalysis:
|
|
782
782
|
loc_legend="lower left",
|
783
783
|
)
|
784
784
|
|
785
|
+
# Make map of predicted yield by country
|
786
|
+
for country in countries:
|
787
|
+
df_country = df_model[df_model["Country"] == country.lower().replace(" ", "_")]
|
788
|
+
fname = f"map_perc_area_{self.country}_{self.crop}.png"
|
789
|
+
col = "% of total Area (ha)"
|
790
|
+
plot.plot_df_shpfile(
|
791
|
+
self.dg, # dataframe containing adm1 name and polygon
|
792
|
+
df_country, # dataframe containing information that will be mapped
|
793
|
+
merge_col="Country Region", # Column on which to merge
|
794
|
+
name_country=[country], # Plot global map
|
795
|
+
name_col=col, # Which column to plot
|
796
|
+
dir_out=self.dir_plot / str(year), # Output directory
|
797
|
+
fname=fname, # Output file name
|
798
|
+
label=f"% of Total Area (ha)\n{self.crop.title()}",
|
799
|
+
vmin=df_country[col].min(),
|
800
|
+
vmax=df_country[col].max(),
|
801
|
+
cmap=pal.scientific.sequential.Bamako_20_r,
|
802
|
+
series="sequential",
|
803
|
+
show_bg=False,
|
804
|
+
annotate_regions=self.annotate_regions,
|
805
|
+
annotate_region_column=annotate_region_column,
|
806
|
+
loc_legend="lower left",
|
807
|
+
)
|
808
|
+
|
809
|
+
df_country = df_harvest_year[df_harvest_year["Country"] == country.lower().replace(" ", "_")]
|
810
|
+
fname = f"map_predicted_yield_{country}_{self.crop}_{time_period}_{year}.png"
|
811
|
+
plot.plot_df_shpfile(
|
812
|
+
self.dg, # dataframe containing adm1 name and polygon
|
813
|
+
df_country, # dataframe containing information that will be mapped
|
814
|
+
merge_col="Country Region", # Column on which to merge
|
815
|
+
name_country=[country], # Plot global map
|
816
|
+
name_col="Predicted Yield (tn per ha)", # Which column to plot
|
817
|
+
dir_out=self.dir_plot / str(year), # Output directory
|
818
|
+
fname=fname, # Output file name
|
819
|
+
label=f"Predicted Yield (Mg/ha)\n{self.crop.title()}, {year}",
|
820
|
+
vmin=df_country[self.predicted].min(),
|
821
|
+
vmax=df_country[self.predicted].max(),
|
822
|
+
cmap=pal.scientific.sequential.Bamako_20_r,
|
823
|
+
series="sequential",
|
824
|
+
show_bg=False,
|
825
|
+
annotate_regions=self.annotate_regions,
|
826
|
+
annotate_region_column=annotate_region_column,
|
827
|
+
loc_legend="lower left",
|
828
|
+
)
|
829
|
+
|
830
|
+
fname = (
|
831
|
+
f"map_anomaly_{country}_{self.crop}_{time_period}_{year}.png"
|
832
|
+
)
|
833
|
+
plot.plot_df_shpfile(
|
834
|
+
self.dg, # dataframe containing adm1 name and polygon
|
835
|
+
df_country, # dataframe containing information that will be mapped
|
836
|
+
merge_col="Country Region", # Column on which to merge
|
837
|
+
name_country=[country], # Plot global map
|
838
|
+
name_col="Anomaly", # Which column to plot
|
839
|
+
dir_out=self.dir_plot / str(year), # Output directory
|
840
|
+
fname=fname, # Output file name
|
841
|
+
label=f"% of {self.number_lag_years}-year Median Yield\n{self.crop.title()}, {year}",
|
842
|
+
vmin=df_country["Anomaly"].min(),
|
843
|
+
vmax=110, # df_harvest_year["Anomaly"].max(),
|
844
|
+
cmap=pal.cartocolors.diverging.Geyser_5_r,
|
845
|
+
series="sequential",
|
846
|
+
show_bg=False,
|
847
|
+
annotate_regions=self.annotate_regions,
|
848
|
+
annotate_region_column=annotate_region_column,
|
849
|
+
loc_legend="lower left",
|
850
|
+
)
|
851
|
+
|
785
852
|
""" Ratio of Predicted to last Year Yield """
|
786
853
|
# fname = f"{self.country}_{self.crop}_{time_period}_{year}_ratio_last_year_yield.png"
|
787
854
|
# plot.plot_df_shpfile(
|
@@ -934,18 +1001,14 @@ class Geoanalysis:
|
|
934
1001
|
self.annotate_regions = self.parser.getboolean(country, "annotate_regions")
|
935
1002
|
|
936
1003
|
# If ADMIN0 or ADM0_NAME is not in the shapefile, then add ADM0_NAME
|
937
|
-
if "ADMIN0"
|
1004
|
+
if "ADMIN0" not in self.dg.columns and "ADM0_NAME" not in self.dg.columns:
|
938
1005
|
self.dg.loc[:, "ADMIN0"] = country.title().replace("_", " ")
|
939
|
-
|
940
|
-
|
1006
|
+
|
1007
|
+
# If ADMIN1 or ADM1_NAME is not in the shapefile, then rename admin_col_name to ADMIN1
|
1008
|
+
if "ADMIN1" not in self.dg.columns and "ADM1_NAME" not in self.dg.columns:
|
941
1009
|
if admin_zone == "admin_1":
|
942
1010
|
self.dg.rename(columns={self.admin_col_name: "ADMIN1"}, inplace=True)
|
943
1011
|
|
944
|
-
# Hack rename Tanzania to United Republic of Tanzania
|
945
|
-
self.dg["ADMIN0"] = self.dg["ADMIN0"].replace(
|
946
|
-
"Tanzania", "United Republic of Tanzania"
|
947
|
-
)
|
948
|
-
|
949
1012
|
# Rename ADMIN0 to ADM0_NAME and ADMIN1 to ADM1_NAME and ADMIN2 to ADM2_NAME
|
950
1013
|
self.dg = self.dg.rename(
|
951
1014
|
columns={
|
@@ -1005,6 +1005,7 @@ class Geocif:
|
|
1005
1005
|
# and will confuse the model
|
1006
1006
|
if self.forecast_season == self.today_year:
|
1007
1007
|
current_month = ar.utcnow().month
|
1008
|
+
current_day = ar.utcnow().day
|
1008
1009
|
|
1009
1010
|
# Identify columns where the second chunk equals the current month index
|
1010
1011
|
cols_to_drop = []
|
@@ -1014,51 +1015,30 @@ class Geocif:
|
|
1014
1015
|
"Starting Stage"
|
1015
1016
|
]
|
1016
1017
|
|
1017
|
-
if mon == current_month:
|
1018
|
+
if mon == current_month and current_day > 25:
|
1018
1019
|
cols_to_drop.append(col)
|
1019
1020
|
|
1020
1021
|
# Drop those columns
|
1021
|
-
|
1022
1022
|
df = df.drop(columns=cols_to_drop)
|
1023
|
-
|
1024
|
-
esi_cols = df.filter(like="AUC_ESI4WK").columns.tolist()
|
1025
|
-
dupes = {k: v for k, v in Counter(esi_cols).items() if v > 1}
|
1026
|
-
print("<0>", dupes)
|
1027
|
-
# Hack: If
|
1023
|
+
|
1028
1024
|
# Change column name
|
1029
1025
|
# e.g. 'vDTR_7_6_5_4_3_2_1_37_36_35_34_33_32_31' to 'vDTR Mar 1-Oct 27'
|
1030
1026
|
df = stages.update_feature_names(df, self.method)
|
1031
|
-
|
1032
|
-
esi_cols = df.filter(like="AUC_ESI4WK").columns.tolist()
|
1033
|
-
dupes = {k: v for k, v in Counter(esi_cols).items() if v > 1}
|
1034
|
-
print("<111>", dupes)
|
1027
|
+
|
1035
1028
|
all_cei_columns = self.get_cei_column_names(df)
|
1036
1029
|
# Fill in any missing values with 0
|
1037
1030
|
df.loc[:, all_cei_columns].fillna(0, inplace=True)
|
1038
|
-
from collections import Counter
|
1039
|
-
esi_cols = df.filter(like="AUC_ESI4WK").columns.tolist()
|
1040
|
-
dupes = {k: v for k, v in Counter(esi_cols).items() if v > 1}
|
1041
|
-
print("<1>", dupes)
|
1042
1031
|
|
1043
1032
|
df = fe.compute_last_year_yield(df, self.target)
|
1044
|
-
|
1045
|
-
esi_cols = df.filter(like="AUC_ESI4WK").columns.tolist()
|
1046
|
-
dupes = {k: v for k, v in Counter(esi_cols).items() if v > 1}
|
1047
|
-
print("<2>", dupes)
|
1033
|
+
|
1048
1034
|
df = fe.compute_median_statistics(
|
1049
1035
|
df, self.all_seasons_with_yield, self.number_median_years, self.target
|
1050
1036
|
)
|
1051
|
-
|
1052
|
-
esi_cols = df.filter(like="AUC_ESI4WK").columns.tolist()
|
1053
|
-
dupes = {k: v for k, v in Counter(esi_cols).items() if v > 1}
|
1054
|
-
print("<3>", dupes)
|
1037
|
+
|
1055
1038
|
df = fe.compute_user_median_statistics(df, range(2018, 2023))
|
1056
1039
|
|
1057
1040
|
df = fe.compute_user_median_statistics(df, range(2013, 2018))
|
1058
|
-
|
1059
|
-
esi_cols = df.filter(like="AUC_ESI4WK").columns.tolist()
|
1060
|
-
dupes = {k: v for k, v in Counter(esi_cols).items() if v > 1}
|
1061
|
-
print("<4>", dupes)
|
1041
|
+
|
1062
1042
|
if self.median_area_as_feature:
|
1063
1043
|
df = fe.compute_median_statistics(
|
1064
1044
|
df, self.all_seasons_with_yield, self.number_median_years, "Area (ha)"
|
@@ -1073,10 +1053,7 @@ class Geocif:
|
|
1073
1053
|
df = fe.compute_analogous_yield(
|
1074
1054
|
df, self.all_seasons_with_yield, self.number_median_years, self.target
|
1075
1055
|
)
|
1076
|
-
|
1077
|
-
esi_cols = df.filter(like="AUC_ESI4WK").columns.tolist()
|
1078
|
-
dupes = {k: v for k, v in Counter(esi_cols).items() if v > 1}
|
1079
|
-
print("5", dupes)
|
1056
|
+
|
1080
1057
|
# Create Region_ID column based on Region column category code
|
1081
1058
|
df["Region"] = df["Region"].astype("category")
|
1082
1059
|
if self.cluster_strategy == "single":
|
@@ -1090,7 +1067,7 @@ class Geocif:
|
|
1090
1067
|
|
1091
1068
|
# Region_ID should be type category
|
1092
1069
|
df["Region_ID"] = df["Region_ID"].astype("category")
|
1093
|
-
|
1070
|
+
|
1094
1071
|
return df
|
1095
1072
|
|
1096
1073
|
def execute(self):
|
@@ -1147,7 +1124,14 @@ class Geocif:
|
|
1147
1124
|
|
1148
1125
|
# Join with dg based on Country Region column, only keeping rows that are in df
|
1149
1126
|
# Only use geometry column from self.dg
|
1150
|
-
|
1127
|
+
if self.admin_zone == "admin_1":
|
1128
|
+
cols = ["Country Region", "geometry", "ADM1_NAME"]
|
1129
|
+
elif self.admin_zone == "admin_2":
|
1130
|
+
cols = ["Country Region", "geometry", "ADM2_NAME"]
|
1131
|
+
else:
|
1132
|
+
raise ValueError(f"Unsopported {self.admin_zone}")
|
1133
|
+
|
1134
|
+
self.dg_country = self.dg_country[cols].merge(
|
1151
1135
|
df[["Country Region", self.correlation_plot_groupby]],
|
1152
1136
|
on="Country Region",
|
1153
1137
|
how="outer",
|
@@ -47,7 +47,7 @@ def _compute_correlations(X, y):
|
|
47
47
|
r = pearsonr(y_filtered, f_series_filtered)[0]
|
48
48
|
feature_correlations[feature] = round(r, 3)
|
49
49
|
except Exception as e:
|
50
|
-
print(f"Error computing correlation for {feature}: {e}")
|
50
|
+
# print(f"Error computing correlation for {feature}: {e}")
|
51
51
|
feature_correlations[feature] = np.nan
|
52
52
|
|
53
53
|
return feature_correlations
|
@@ -268,11 +268,6 @@ def update_feature_names(df, method):
|
|
268
268
|
# Saving the result in the dictionary
|
269
269
|
stages_info[element] = (cei, start_stage, end_stage, new_column_name)
|
270
270
|
|
271
|
-
# Check if any duplicates exist in the dictionary
|
272
|
-
if len(stages_info) != len(set(stages_info.values())):
|
273
|
-
breakpoint()
|
274
|
-
raise ValueError(f"Duplicate stage information found for {element}")
|
275
|
-
breakpoint()
|
276
271
|
# For each column in df, check if it exists in stages_info, and
|
277
272
|
# replace it with the new column name
|
278
273
|
# Precompute the rename mapping outside the loop
|
@@ -375,6 +375,11 @@ def plot_df_shpfile(
|
|
375
375
|
)
|
376
376
|
|
377
377
|
df_country = gpd.read_file(shpfilename, engine="pyogrio")
|
378
|
+
# Hack
|
379
|
+
# Rename Russia to Russian Federation, in the ADMIN column
|
380
|
+
df_country.loc[
|
381
|
+
df_country["ADMIN"].str.lower() == "russia", "ADMIN"
|
382
|
+
] = "Russian Federation"
|
378
383
|
# read the country borders
|
379
384
|
_name_country = []
|
380
385
|
for cntr in name_country:
|
@@ -390,14 +395,23 @@ def plot_df_shpfile(
|
|
390
395
|
)
|
391
396
|
_name_country.append(cntr.replace(" ", "_").lower())
|
392
397
|
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
398
|
+
# Hack
|
399
|
+
if _name_country[0] == "russian_federation":
|
400
|
+
extent = [20, 80, 40, 80]
|
401
|
+
else:
|
402
|
+
extent = rgeo.get_country_lat_lon_extent(
|
403
|
+
_name_country, buffer=1.0
|
404
|
+
) # left, right, bottom, top
|
405
|
+
|
406
|
+
# Hack: Add space to the top for adding title
|
407
|
+
extent[3] = extent[3] + 2
|
408
|
+
# Add some space to the bottom for adding legend and colorbar
|
409
|
+
extent[2] = extent[2] - 3
|
410
|
+
|
411
|
+
try:
|
412
|
+
ax.set_extent(extent)
|
413
|
+
except:
|
414
|
+
breakpoint()
|
401
415
|
elif name_country == "world":
|
402
416
|
ax.add_feature(
|
403
417
|
cartopy.feature.LAND.with_scale("50m"), color="white"
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|