geoai-py 0.3.6__tar.gz → 0.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. {geoai_py-0.3.6 → geoai_py-0.4.0}/.gitignore +1 -0
  2. {geoai_py-0.3.6 → geoai_py-0.4.0}/PKG-INFO +1 -1
  3. geoai_py-0.4.0/docs/examples/parking_spot_detection.ipynb +203 -0
  4. geoai_py-0.4.0/docs/examples/train_object_detection_model.ipynb +259 -0
  5. geoai_py-0.4.0/docs/hf.md +3 -0
  6. geoai_py-0.4.0/docs/train.md +3 -0
  7. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai/__init__.py +1 -1
  8. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai/download.py +9 -8
  9. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai/extract.py +65 -24
  10. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai/geoai.py +3 -1
  11. geoai_py-0.4.0/geoai/hf.py +447 -0
  12. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai/segment.py +4 -3
  13. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai/segmentation.py +8 -7
  14. geoai_py-0.4.0/geoai/train.py +1039 -0
  15. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai/utils.py +12 -15
  16. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai_py.egg-info/PKG-INFO +1 -1
  17. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai_py.egg-info/SOURCES.txt +6 -0
  18. {geoai_py-0.3.6 → geoai_py-0.4.0}/mkdocs.yml +5 -1
  19. {geoai_py-0.3.6 → geoai_py-0.4.0}/pyproject.toml +2 -2
  20. {geoai_py-0.3.6 → geoai_py-0.4.0}/requirements_docs.txt +1 -0
  21. {geoai_py-0.3.6 → geoai_py-0.4.0}/.editorconfig +0 -0
  22. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/FUNDING.yml +0 -0
  23. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  24. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  25. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  26. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/dependabot.yml +0 -0
  27. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/workflows/docs-build.yml +0 -0
  28. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/workflows/docs.yml +0 -0
  29. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/workflows/macos.yml +0 -0
  30. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/workflows/pypi.yml +0 -0
  31. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/workflows/ubuntu.yml +0 -0
  32. {geoai_py-0.3.6 → geoai_py-0.4.0}/.github/workflows/windows.yml +0 -0
  33. {geoai_py-0.3.6 → geoai_py-0.4.0}/.pre-commit-config.yaml +0 -0
  34. {geoai_py-0.3.6 → geoai_py-0.4.0}/LICENSE +0 -0
  35. {geoai_py-0.3.6 → geoai_py-0.4.0}/MANIFEST.in +0 -0
  36. {geoai_py-0.3.6 → geoai_py-0.4.0}/README.md +0 -0
  37. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/CNAME +0 -0
  38. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/changelog.md +0 -0
  39. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/contributing.md +0 -0
  40. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/download.md +0 -0
  41. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/_template.ipynb +0 -0
  42. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/building_footprints_africa.ipynb +0 -0
  43. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/building_footprints_china.ipynb +0 -0
  44. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/building_footprints_usa.ipynb +0 -0
  45. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/building_regularization.ipynb +0 -0
  46. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/car_detection.ipynb +0 -0
  47. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/data_visualization.ipynb +0 -0
  48. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/dataviz/lidar_viz.ipynb +0 -0
  49. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/dataviz/raster_viz.ipynb +0 -0
  50. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/dataviz/vector_viz.ipynb +0 -0
  51. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/download_data.ipynb +0 -0
  52. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/geometric_properties.ipynb +0 -0
  53. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/image_chips.ipynb +0 -0
  54. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/jupytext.toml +0 -0
  55. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/rastervision/semantic_segmentation.ipynb +0 -0
  56. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/arcgis.ipynb +0 -0
  57. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/automatic_mask_generator.ipynb +0 -0
  58. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/automatic_mask_generator_hq.ipynb +0 -0
  59. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/box_prompts.ipynb +0 -0
  60. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/fast_sam.ipynb +0 -0
  61. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/input_prompts.ipynb +0 -0
  62. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/input_prompts_hq.ipynb +0 -0
  63. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/maxar_open_data.ipynb +0 -0
  64. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/satellite-predictor.ipynb +0 -0
  65. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/satellite.ipynb +0 -0
  66. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/swimming_pools.ipynb +0 -0
  67. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/text_prompts.ipynb +0 -0
  68. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/samgeo/text_prompts_batch.ipynb +0 -0
  69. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/ship_detection.ipynb +0 -0
  70. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/solar_panel_detection.ipynb +0 -0
  71. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/text_prompt_segmentation.ipynb +0 -0
  72. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/examples/view_metadata.ipynb +0 -0
  73. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/extract.md +0 -0
  74. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/faq.md +0 -0
  75. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/geoai.md +0 -0
  76. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/index.md +0 -0
  77. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/installation.md +0 -0
  78. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/overrides/main.html +0 -0
  79. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/segment.md +0 -0
  80. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/segmentation.md +0 -0
  81. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/usage.md +0 -0
  82. {geoai_py-0.3.6 → geoai_py-0.4.0}/docs/utils.md +0 -0
  83. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai_py.egg-info/dependency_links.txt +0 -0
  84. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai_py.egg-info/entry_points.txt +0 -0
  85. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai_py.egg-info/requires.txt +0 -0
  86. {geoai_py-0.3.6 → geoai_py-0.4.0}/geoai_py.egg-info/top_level.txt +0 -0
  87. {geoai_py-0.3.6 → geoai_py-0.4.0}/requirements.txt +0 -0
  88. {geoai_py-0.3.6 → geoai_py-0.4.0}/setup.cfg +0 -0
  89. {geoai_py-0.3.6 → geoai_py-0.4.0}/tests/__init__.py +0 -0
  90. {geoai_py-0.3.6 → geoai_py-0.4.0}/tests/test_geoai.py +0 -0
@@ -14,6 +14,7 @@ docs/examples/*.md
14
14
  *.xml
15
15
  docs/examples/output/
16
16
  docs/examples/*.png
17
+ *.pth
17
18
 
18
19
  # Distribution / packaging
19
20
  .Python
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: geoai-py
3
- Version: 0.3.6
3
+ Version: 0.4.0
4
4
  Summary: A Python package for using Artificial Intelligence (AI) with geospatial data
5
5
  Author-email: Qiusheng Wu <giswqs@gmail.com>
6
6
  License: MIT License
@@ -0,0 +1,203 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Parking Spot Detection\n",
8
+ "\n",
9
+ "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/opengeos/geoai/blob/main/docs/examples/parking_spot_detection.ipynb)\n",
10
+ "\n",
11
+ "## Install package\n",
12
+ "To use the `geoai-py` package, ensure it is installed in your environment. Uncomment the command below if needed."
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": null,
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "# %pip install geoai-py"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "markdown",
26
+ "metadata": {},
27
+ "source": [
28
+ "## Import libraries"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": null,
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "import geoai"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "markdown",
42
+ "metadata": {},
43
+ "source": [
44
+ "## Download sample data\n",
45
+ "\n",
46
+ "We will download a sample image from Hugging Face Hub to use for parking spot detection. You can find more high-resolution images from [OpenAerialMap](https://openaerialmap.org)."
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": null,
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "raster_url = (\n",
56
+ " \"https://huggingface.co/datasets/giswqs/geospatial/resolve/main/parking_spots.tif\"\n",
57
+ ")"
58
+ ]
59
+ },
60
+ {
61
+ "cell_type": "code",
62
+ "execution_count": null,
63
+ "metadata": {},
64
+ "outputs": [],
65
+ "source": [
66
+ "raster_path = geoai.download_file(raster_url)"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "markdown",
71
+ "metadata": {},
72
+ "source": [
73
+ "## Visualize the image"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": null,
79
+ "metadata": {},
80
+ "outputs": [],
81
+ "source": [
82
+ "geoai.view_raster(raster_url)"
83
+ ]
84
+ },
85
+ {
86
+ "cell_type": "markdown",
87
+ "metadata": {},
88
+ "source": [
89
+ "## Initialize the model"
90
+ ]
91
+ },
92
+ {
93
+ "cell_type": "code",
94
+ "execution_count": null,
95
+ "metadata": {},
96
+ "outputs": [],
97
+ "source": [
98
+ "detector = geoai.ParkingSplotDetector()"
99
+ ]
100
+ },
101
+ {
102
+ "cell_type": "markdown",
103
+ "metadata": {},
104
+ "source": [
105
+ "## Extract parking spots\n",
106
+ "\n",
107
+ "Extract parking spots from the image using the model and save the output image."
108
+ ]
109
+ },
110
+ {
111
+ "cell_type": "code",
112
+ "execution_count": null,
113
+ "metadata": {},
114
+ "outputs": [],
115
+ "source": [
116
+ "mask_path = detector.generate_masks(\n",
117
+ " raster_path=raster_path,\n",
118
+ " output_path=\"parking_masks.tif\",\n",
119
+ " confidence_threshold=0.5,\n",
120
+ " mask_threshold=0.5,\n",
121
+ " overlap=0.25,\n",
122
+ " chip_size=(256, 256),\n",
123
+ " min_object_area=10,\n",
124
+ " # max_object_area=5000,\n",
125
+ ")"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "markdown",
130
+ "metadata": {},
131
+ "source": [
132
+ "Convert the image masks to polygons and save the output GeoJSON file."
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "code",
137
+ "execution_count": null,
138
+ "metadata": {},
139
+ "outputs": [],
140
+ "source": [
141
+ "gdf = detector.vectorize_masks(\n",
142
+ " masks_path=\"parking_masks.tif\",\n",
143
+ " output_path=\"parking.geojson\",\n",
144
+ " min_object_area=300,\n",
145
+ " # max_object_area=5000,\n",
146
+ ")"
147
+ ]
148
+ },
149
+ {
150
+ "cell_type": "markdown",
151
+ "metadata": {},
152
+ "source": [
153
+ "## Add geometric properties"
154
+ ]
155
+ },
156
+ {
157
+ "cell_type": "code",
158
+ "execution_count": null,
159
+ "metadata": {},
160
+ "outputs": [],
161
+ "source": [
162
+ "gdf = geoai.add_geometric_properties(gdf)"
163
+ ]
164
+ },
165
+ {
166
+ "cell_type": "markdown",
167
+ "metadata": {},
168
+ "source": [
169
+ "## Visualize results"
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "code",
174
+ "execution_count": null,
175
+ "metadata": {},
176
+ "outputs": [],
177
+ "source": [
178
+ "geoai.view_vector_interactive(gdf, column=\"confidence\", tiles=raster_url)"
179
+ ]
180
+ }
181
+ ],
182
+ "metadata": {
183
+ "kernelspec": {
184
+ "display_name": "geo",
185
+ "language": "python",
186
+ "name": "python3"
187
+ },
188
+ "language_info": {
189
+ "codemirror_mode": {
190
+ "name": "ipython",
191
+ "version": 3
192
+ },
193
+ "file_extension": ".py",
194
+ "mimetype": "text/x-python",
195
+ "name": "python",
196
+ "nbconvert_exporter": "python",
197
+ "pygments_lexer": "ipython3",
198
+ "version": "3.12.9"
199
+ }
200
+ },
201
+ "nbformat": 4,
202
+ "nbformat_minor": 2
203
+ }
@@ -0,0 +1,259 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Train an Object Detection Model with GeoAI\n",
8
+ "\n",
9
+ "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/opengeos/geoai/blob/main/docs/examples/train_object_detection_model.ipynb)\n",
10
+ "\n",
11
+ "## Install package\n",
12
+ "To use the `geoai-py` package, ensure it is installed in your environment. Uncomment the command below if needed."
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": null,
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "# %pip install geoai-py"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "markdown",
26
+ "metadata": {},
27
+ "source": [
28
+ "## Import libraries"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": null,
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "import geoai"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "markdown",
42
+ "metadata": {},
43
+ "source": [
44
+ "## Download sample data"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "code",
49
+ "execution_count": null,
50
+ "metadata": {},
51
+ "outputs": [],
52
+ "source": [
53
+ "train_raster_url = (\n",
54
+ " \"https://huggingface.co/datasets/giswqs/geospatial/resolve/main/naip_train.tif\"\n",
55
+ ")\n",
56
+ "train_vector_url = \"https://huggingface.co/datasets/giswqs/geospatial/resolve/main/naip_train_buildings.geojson\"\n",
57
+ "test_raster_url = (\n",
58
+ " \"https://huggingface.co/datasets/giswqs/geospatial/resolve/main/naip_test.tif\"\n",
59
+ ")"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": null,
65
+ "metadata": {},
66
+ "outputs": [],
67
+ "source": [
68
+ "train_raster_path = geoai.download_file(train_raster_url)\n",
69
+ "train_vector_path = geoai.download_file(train_vector_url)\n",
70
+ "test_raster_path = geoai.download_file(test_raster_url)"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "markdown",
75
+ "metadata": {},
76
+ "source": [
77
+ "## Visualize sample data"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": null,
83
+ "metadata": {},
84
+ "outputs": [],
85
+ "source": [
86
+ "geoai.view_vector_interactive(train_vector_path, tiles=train_raster_url)"
87
+ ]
88
+ },
89
+ {
90
+ "cell_type": "code",
91
+ "execution_count": null,
92
+ "metadata": {},
93
+ "outputs": [],
94
+ "source": [
95
+ "geoai.view_raster(test_raster_url)"
96
+ ]
97
+ },
98
+ {
99
+ "cell_type": "markdown",
100
+ "metadata": {},
101
+ "source": [
102
+ "## Create training data"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "code",
107
+ "execution_count": null,
108
+ "metadata": {},
109
+ "outputs": [],
110
+ "source": [
111
+ "out_folder = \"output\"\n",
112
+ "tiles = geoai.export_geotiff_tiles(\n",
113
+ " in_raster=train_raster_path,\n",
114
+ " out_folder=out_folder,\n",
115
+ " in_class_data=train_vector_path,\n",
116
+ " tile_size=512,\n",
117
+ " stride=256,\n",
118
+ " buffer_radius=0,\n",
119
+ ")"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "markdown",
124
+ "metadata": {},
125
+ "source": [
126
+ "## Train object detection model"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "code",
131
+ "execution_count": null,
132
+ "metadata": {},
133
+ "outputs": [],
134
+ "source": [
135
+ "geoai.train_MaskRCNN_model(\n",
136
+ " images_dir=f\"{out_folder}/images\",\n",
137
+ " labels_dir=f\"{out_folder}/labels\",\n",
138
+ " output_dir=f\"{out_folder}/models\",\n",
139
+ " num_channels=4,\n",
140
+ " pretrained=True,\n",
141
+ " batch_size=4,\n",
142
+ " num_epochs=10,\n",
143
+ " learning_rate=0.005,\n",
144
+ " val_split=0.2,\n",
145
+ ")"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "markdown",
150
+ "metadata": {},
151
+ "source": [
152
+ "## Run inference"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": null,
158
+ "metadata": {},
159
+ "outputs": [],
160
+ "source": [
161
+ "masks_path = \"naip_test_prediction.tif\"\n",
162
+ "model_path = f\"{out_folder}/models/best_model.pth\""
163
+ ]
164
+ },
165
+ {
166
+ "cell_type": "code",
167
+ "execution_count": null,
168
+ "metadata": {},
169
+ "outputs": [],
170
+ "source": [
171
+ "geoai.object_detection(\n",
172
+ " test_raster_path,\n",
173
+ " masks_path,\n",
174
+ " model_path,\n",
175
+ " window_size=512,\n",
176
+ " overlap=256,\n",
177
+ " confidence_threshold=0.5,\n",
178
+ " batch_size=4,\n",
179
+ " num_channels=4,\n",
180
+ ")"
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "markdown",
185
+ "metadata": {},
186
+ "source": [
187
+ "## Vectorize masks"
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": null,
193
+ "metadata": {},
194
+ "outputs": [],
195
+ "source": [
196
+ "output_path = \"naip_test_prediction.geojson\"\n",
197
+ "gdf = geoai.orthogonalize(masks_path, output_path, epsilon=2)"
198
+ ]
199
+ },
200
+ {
201
+ "cell_type": "markdown",
202
+ "metadata": {},
203
+ "source": [
204
+ "## Visualize results"
205
+ ]
206
+ },
207
+ {
208
+ "cell_type": "code",
209
+ "execution_count": null,
210
+ "metadata": {},
211
+ "outputs": [],
212
+ "source": [
213
+ "geoai.view_vector_interactive(output_path, tiles=test_raster_url)"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": null,
219
+ "metadata": {},
220
+ "outputs": [],
221
+ "source": [
222
+ "geoai.create_split_map(\n",
223
+ " left_layer=output_path,\n",
224
+ " right_layer=test_raster_url,\n",
225
+ " left_args={\"style\": {\"color\": \"red\", \"fillOpacity\": 0.2}},\n",
226
+ " basemap=test_raster_url,\n",
227
+ ")"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "markdown",
232
+ "metadata": {},
233
+ "source": [
234
+ "![image](https://github.com/user-attachments/assets/8dfcc69e-7a6c-408a-9fae-10b81b7d85dc)"
235
+ ]
236
+ }
237
+ ],
238
+ "metadata": {
239
+ "kernelspec": {
240
+ "display_name": "geo",
241
+ "language": "python",
242
+ "name": "python3"
243
+ },
244
+ "language_info": {
245
+ "codemirror_mode": {
246
+ "name": "ipython",
247
+ "version": 3
248
+ },
249
+ "file_extension": ".py",
250
+ "mimetype": "text/x-python",
251
+ "name": "python",
252
+ "nbconvert_exporter": "python",
253
+ "pygments_lexer": "ipython3",
254
+ "version": "3.12.9"
255
+ }
256
+ },
257
+ "nbformat": 4,
258
+ "nbformat_minor": 2
259
+ }
@@ -0,0 +1,3 @@
1
+ # hf module
2
+
3
+ ::: geoai.hf
@@ -0,0 +1,3 @@
1
+ # train module
2
+
3
+ ::: geoai.train
@@ -2,7 +2,7 @@
2
2
 
3
3
  __author__ = """Qiusheng Wu"""
4
4
  __email__ = "giswqs@gmail.com"
5
- __version__ = "0.3.6"
5
+ __version__ = "0.4.0"
6
6
 
7
7
 
8
8
  import os
@@ -1,18 +1,19 @@
1
1
  """This module provides functions to download data, including NAIP imagery and building data from Overture Maps."""
2
2
 
3
+ import logging
3
4
  import os
4
- from typing import List, Tuple, Optional, Dict, Any
5
- import rioxarray
6
- import numpy as np
5
+ import subprocess
6
+ from typing import Any, Dict, List, Optional, Tuple
7
+
8
+ import geopandas as gpd
7
9
  import matplotlib.pyplot as plt
8
- from pystac_client import Client
10
+ import numpy as np
9
11
  import planetary_computer as pc
10
- import geopandas as gpd
12
+ import requests
13
+ import rioxarray
14
+ from pystac_client import Client
11
15
  from shapely.geometry import box
12
16
  from tqdm import tqdm
13
- import requests
14
- import subprocess
15
- import logging
16
17
 
17
18
  # Configure logging
18
19
  logging.basicConfig(