geoai-py 0.2.3__tar.gz → 0.3.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.gitignore +1 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/PKG-INFO +1 -1
- geoai_py-0.3.1/docs/examples/building_footprints_usa.ipynb +278 -0
- geoai_py-0.3.1/docs/examples/building_regularization.ipynb +257 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/data_visualization.ipynb +2 -2
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/installation.md +8 -0
- geoai_py-0.3.1/docs/utils.md +3 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai/__init__.py +1 -1
- geoai_py-0.3.1/geoai/extract.py +1771 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai/geoai.py +1 -1
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai/preprocess.py +245 -2
- geoai_py-0.2.3/geoai/common.py → geoai_py-0.3.1/geoai/utils.py +463 -4
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai_py.egg-info/PKG-INFO +1 -1
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai_py.egg-info/SOURCES.txt +3 -2
- {geoai_py-0.2.3 → geoai_py-0.3.1}/mkdocs.yml +2 -1
- {geoai_py-0.2.3 → geoai_py-0.3.1}/pyproject.toml +2 -2
- geoai_py-0.2.3/docs/common.md +0 -3
- geoai_py-0.2.3/docs/examples/building_footprints_usa.ipynb +0 -157
- geoai_py-0.2.3/geoai/extract.py +0 -832
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.editorconfig +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.github/ISSUE_TEMPLATE/config.yml +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.github/dependabot.yml +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.github/workflows/docs-build.yml +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.github/workflows/docs.yml +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.github/workflows/macos.yml +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.github/workflows/pypi.yml +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.github/workflows/ubuntu.yml +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.github/workflows/windows.yml +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/.pre-commit-config.yaml +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/LICENSE +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/MANIFEST.in +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/README.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/CNAME +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/changelog.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/contributing.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/download.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/dataviz/lidar_viz.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/dataviz/raster_viz.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/dataviz/vector_viz.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/download_data.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/image_chips.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/jupytext.toml +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/rastervision/semantic_segmentation.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/arcgis.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/automatic_mask_generator.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/automatic_mask_generator_hq.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/box_prompts.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/fast_sam.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/input_prompts.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/input_prompts_hq.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/maxar_open_data.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/satellite-predictor.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/satellite.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/swimming_pools.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/text_prompts.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/samgeo/text_prompts_batch.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/examples/view_metadata.ipynb +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/extract.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/faq.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/geoai.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/index.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/overrides/main.html +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/preprocess.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/segmentation.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/docs/usage.md +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai/download.py +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai/segmentation.py +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai_py.egg-info/dependency_links.txt +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai_py.egg-info/entry_points.txt +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai_py.egg-info/requires.txt +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/geoai_py.egg-info/top_level.txt +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/requirements.txt +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/requirements_docs.txt +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/setup.cfg +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/tests/__init__.py +0 -0
- {geoai_py-0.2.3 → geoai_py-0.3.1}/tests/test_geoai.py +0 -0
|
@@ -0,0 +1,278 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "markdown",
|
|
5
|
+
"metadata": {},
|
|
6
|
+
"source": [
|
|
7
|
+
"# Building Footprint Extraction for the USA\n",
|
|
8
|
+
"\n",
|
|
9
|
+
"[](https://colab.research.google.com/github/opengeos/geoai/blob/main/docs/examples/building_footprints_usa.ipynb)\n",
|
|
10
|
+
"\n",
|
|
11
|
+
"## Install package\n",
|
|
12
|
+
"To use the `geoai-py` package, ensure it is installed in your environment. Uncomment the command below if needed."
|
|
13
|
+
]
|
|
14
|
+
},
|
|
15
|
+
{
|
|
16
|
+
"cell_type": "code",
|
|
17
|
+
"execution_count": null,
|
|
18
|
+
"metadata": {},
|
|
19
|
+
"outputs": [],
|
|
20
|
+
"source": [
|
|
21
|
+
"# %pip install geoai-py"
|
|
22
|
+
]
|
|
23
|
+
},
|
|
24
|
+
{
|
|
25
|
+
"cell_type": "markdown",
|
|
26
|
+
"metadata": {},
|
|
27
|
+
"source": [
|
|
28
|
+
"## Import libraries"
|
|
29
|
+
]
|
|
30
|
+
},
|
|
31
|
+
{
|
|
32
|
+
"cell_type": "code",
|
|
33
|
+
"execution_count": null,
|
|
34
|
+
"metadata": {},
|
|
35
|
+
"outputs": [],
|
|
36
|
+
"source": [
|
|
37
|
+
"import geoai"
|
|
38
|
+
]
|
|
39
|
+
},
|
|
40
|
+
{
|
|
41
|
+
"cell_type": "markdown",
|
|
42
|
+
"metadata": {},
|
|
43
|
+
"source": [
|
|
44
|
+
"## Download sample data"
|
|
45
|
+
]
|
|
46
|
+
},
|
|
47
|
+
{
|
|
48
|
+
"cell_type": "code",
|
|
49
|
+
"execution_count": null,
|
|
50
|
+
"metadata": {},
|
|
51
|
+
"outputs": [],
|
|
52
|
+
"source": [
|
|
53
|
+
"raster_url = (\n",
|
|
54
|
+
" \"https://huggingface.co/datasets/giswqs/geospatial/resolve/main/naip_train.tif\"\n",
|
|
55
|
+
")\n",
|
|
56
|
+
"vector_url = \"https://huggingface.co/datasets/giswqs/geospatial/resolve/main/naip_train_buildings.geojson\""
|
|
57
|
+
]
|
|
58
|
+
},
|
|
59
|
+
{
|
|
60
|
+
"cell_type": "code",
|
|
61
|
+
"execution_count": null,
|
|
62
|
+
"metadata": {},
|
|
63
|
+
"outputs": [],
|
|
64
|
+
"source": [
|
|
65
|
+
"raster_path = geoai.download_file(raster_url)"
|
|
66
|
+
]
|
|
67
|
+
},
|
|
68
|
+
{
|
|
69
|
+
"cell_type": "code",
|
|
70
|
+
"execution_count": null,
|
|
71
|
+
"metadata": {},
|
|
72
|
+
"outputs": [],
|
|
73
|
+
"source": [
|
|
74
|
+
"vector_path = geoai.download_file(vector_url)"
|
|
75
|
+
]
|
|
76
|
+
},
|
|
77
|
+
{
|
|
78
|
+
"cell_type": "markdown",
|
|
79
|
+
"metadata": {},
|
|
80
|
+
"source": [
|
|
81
|
+
"## Initialize building footprint extraction pretrained model\n",
|
|
82
|
+
"\n",
|
|
83
|
+
"The pretained model is adapted from the Esri [building footprint extraction](https://www.arcgis.com/home/item.html?id=a6857359a1cd44839781a4f113cd5934) model for the USA. Credits to Esri for the model."
|
|
84
|
+
]
|
|
85
|
+
},
|
|
86
|
+
{
|
|
87
|
+
"cell_type": "code",
|
|
88
|
+
"execution_count": null,
|
|
89
|
+
"metadata": {},
|
|
90
|
+
"outputs": [],
|
|
91
|
+
"source": [
|
|
92
|
+
"extractor = geoai.BuildingFootprintExtractor()"
|
|
93
|
+
]
|
|
94
|
+
},
|
|
95
|
+
{
|
|
96
|
+
"cell_type": "markdown",
|
|
97
|
+
"metadata": {},
|
|
98
|
+
"source": [
|
|
99
|
+
"## Extract building footprints\n",
|
|
100
|
+
"\n",
|
|
101
|
+
"### Option 1: Extract building footprints as raster"
|
|
102
|
+
]
|
|
103
|
+
},
|
|
104
|
+
{
|
|
105
|
+
"cell_type": "code",
|
|
106
|
+
"execution_count": null,
|
|
107
|
+
"metadata": {},
|
|
108
|
+
"outputs": [],
|
|
109
|
+
"source": [
|
|
110
|
+
"mask_path = extractor.save_masks_as_geotiff(\n",
|
|
111
|
+
" raster_path=raster_path,\n",
|
|
112
|
+
" output_path=\"building_masks.tif\",\n",
|
|
113
|
+
" confidence_threshold=0.5,\n",
|
|
114
|
+
" mask_threshold=0.5,\n",
|
|
115
|
+
")"
|
|
116
|
+
]
|
|
117
|
+
},
|
|
118
|
+
{
|
|
119
|
+
"cell_type": "markdown",
|
|
120
|
+
"metadata": {},
|
|
121
|
+
"source": [
|
|
122
|
+
"Convert raster to vector"
|
|
123
|
+
]
|
|
124
|
+
},
|
|
125
|
+
{
|
|
126
|
+
"cell_type": "code",
|
|
127
|
+
"execution_count": null,
|
|
128
|
+
"metadata": {},
|
|
129
|
+
"outputs": [],
|
|
130
|
+
"source": [
|
|
131
|
+
"gdf = extractor.masks_to_vector(\n",
|
|
132
|
+
" mask_path=mask_path,\n",
|
|
133
|
+
" output_path=\"building_masks.geojson\",\n",
|
|
134
|
+
" simplify_tolerance=1.0,\n",
|
|
135
|
+
")"
|
|
136
|
+
]
|
|
137
|
+
},
|
|
138
|
+
{
|
|
139
|
+
"cell_type": "markdown",
|
|
140
|
+
"metadata": {},
|
|
141
|
+
"source": [
|
|
142
|
+
"### Option 2: Extract building footprints as vector"
|
|
143
|
+
]
|
|
144
|
+
},
|
|
145
|
+
{
|
|
146
|
+
"cell_type": "code",
|
|
147
|
+
"execution_count": null,
|
|
148
|
+
"metadata": {},
|
|
149
|
+
"outputs": [],
|
|
150
|
+
"source": [
|
|
151
|
+
"output_path = \"naip_buildings.geojson\"\n",
|
|
152
|
+
"gdf = extractor.process_raster(\n",
|
|
153
|
+
" raster_path,\n",
|
|
154
|
+
" output_path=\"buildings.geojson\",\n",
|
|
155
|
+
" batch_size=4,\n",
|
|
156
|
+
" confidence_threshold=0.5,\n",
|
|
157
|
+
" overlap=0.25,\n",
|
|
158
|
+
" nms_iou_threshold=0.5,\n",
|
|
159
|
+
" small_building_area=100,\n",
|
|
160
|
+
" mask_threshold=0.5,\n",
|
|
161
|
+
" simplify_tolerance=1.0,\n",
|
|
162
|
+
")"
|
|
163
|
+
]
|
|
164
|
+
},
|
|
165
|
+
{
|
|
166
|
+
"cell_type": "markdown",
|
|
167
|
+
"metadata": {},
|
|
168
|
+
"source": [
|
|
169
|
+
"## Regularize building footprints"
|
|
170
|
+
]
|
|
171
|
+
},
|
|
172
|
+
{
|
|
173
|
+
"cell_type": "code",
|
|
174
|
+
"execution_count": null,
|
|
175
|
+
"metadata": {},
|
|
176
|
+
"outputs": [],
|
|
177
|
+
"source": [
|
|
178
|
+
"gdf_regularized = extractor.regularize_buildings(\n",
|
|
179
|
+
" gdf=gdf,\n",
|
|
180
|
+
" min_area=100,\n",
|
|
181
|
+
" angle_threshold=15,\n",
|
|
182
|
+
" orthogonality_threshold=0.3,\n",
|
|
183
|
+
" rectangularity_threshold=0.7,\n",
|
|
184
|
+
")"
|
|
185
|
+
]
|
|
186
|
+
},
|
|
187
|
+
{
|
|
188
|
+
"cell_type": "markdown",
|
|
189
|
+
"metadata": {},
|
|
190
|
+
"source": [
|
|
191
|
+
"## Visualize building footprints"
|
|
192
|
+
]
|
|
193
|
+
},
|
|
194
|
+
{
|
|
195
|
+
"cell_type": "code",
|
|
196
|
+
"execution_count": null,
|
|
197
|
+
"metadata": {},
|
|
198
|
+
"outputs": [],
|
|
199
|
+
"source": [
|
|
200
|
+
"gdf.head()"
|
|
201
|
+
]
|
|
202
|
+
},
|
|
203
|
+
{
|
|
204
|
+
"cell_type": "code",
|
|
205
|
+
"execution_count": null,
|
|
206
|
+
"metadata": {},
|
|
207
|
+
"outputs": [],
|
|
208
|
+
"source": [
|
|
209
|
+
"geoai.view_vector_interactive(\n",
|
|
210
|
+
" gdf, column=\"confidence\", layer_name=\"Building\", tiles=\"Satellite\"\n",
|
|
211
|
+
")"
|
|
212
|
+
]
|
|
213
|
+
},
|
|
214
|
+
{
|
|
215
|
+
"cell_type": "code",
|
|
216
|
+
"execution_count": null,
|
|
217
|
+
"metadata": {},
|
|
218
|
+
"outputs": [],
|
|
219
|
+
"source": [
|
|
220
|
+
"geoai.view_vector_interactive(\n",
|
|
221
|
+
" gdf, column=\"confidence\", layer_name=\"Building\", tiles=raster_url\n",
|
|
222
|
+
")"
|
|
223
|
+
]
|
|
224
|
+
},
|
|
225
|
+
{
|
|
226
|
+
"cell_type": "code",
|
|
227
|
+
"execution_count": null,
|
|
228
|
+
"metadata": {},
|
|
229
|
+
"outputs": [],
|
|
230
|
+
"source": [
|
|
231
|
+
"geoai.view_vector_interactive(\n",
|
|
232
|
+
" gdf_regularized, column=\"confidence\", layer_name=\"Building\", tiles=raster_url\n",
|
|
233
|
+
")"
|
|
234
|
+
]
|
|
235
|
+
},
|
|
236
|
+
{
|
|
237
|
+
"cell_type": "code",
|
|
238
|
+
"execution_count": null,
|
|
239
|
+
"metadata": {},
|
|
240
|
+
"outputs": [],
|
|
241
|
+
"source": [
|
|
242
|
+
"extractor.visualize_results(raster_path, gdf, output_path=\"naip_buildings.png\")"
|
|
243
|
+
]
|
|
244
|
+
},
|
|
245
|
+
{
|
|
246
|
+
"cell_type": "code",
|
|
247
|
+
"execution_count": null,
|
|
248
|
+
"metadata": {},
|
|
249
|
+
"outputs": [],
|
|
250
|
+
"source": [
|
|
251
|
+
"extractor.visualize_results(\n",
|
|
252
|
+
" raster_path, gdf_regularized, output_path=\"naip_buildings_regularized.png\"\n",
|
|
253
|
+
")"
|
|
254
|
+
]
|
|
255
|
+
}
|
|
256
|
+
],
|
|
257
|
+
"metadata": {
|
|
258
|
+
"kernelspec": {
|
|
259
|
+
"display_name": "torch",
|
|
260
|
+
"language": "python",
|
|
261
|
+
"name": "python3"
|
|
262
|
+
},
|
|
263
|
+
"language_info": {
|
|
264
|
+
"codemirror_mode": {
|
|
265
|
+
"name": "ipython",
|
|
266
|
+
"version": 3
|
|
267
|
+
},
|
|
268
|
+
"file_extension": ".py",
|
|
269
|
+
"mimetype": "text/x-python",
|
|
270
|
+
"name": "python",
|
|
271
|
+
"nbconvert_exporter": "python",
|
|
272
|
+
"pygments_lexer": "ipython3",
|
|
273
|
+
"version": "3.11.8"
|
|
274
|
+
}
|
|
275
|
+
},
|
|
276
|
+
"nbformat": 4,
|
|
277
|
+
"nbformat_minor": 2
|
|
278
|
+
}
|
|
@@ -0,0 +1,257 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "markdown",
|
|
5
|
+
"metadata": {},
|
|
6
|
+
"source": [
|
|
7
|
+
"# Building Regularization\n",
|
|
8
|
+
"\n",
|
|
9
|
+
"[](https://colab.research.google.com/github/opengeos/geoai/blob/main/docs/examples/building_regularization.ipynb)\n",
|
|
10
|
+
"\n",
|
|
11
|
+
"## Install package\n",
|
|
12
|
+
"To use the `geoai-py` package, ensure it is installed in your environment. Uncomment the command below if needed."
|
|
13
|
+
]
|
|
14
|
+
},
|
|
15
|
+
{
|
|
16
|
+
"cell_type": "code",
|
|
17
|
+
"execution_count": null,
|
|
18
|
+
"metadata": {},
|
|
19
|
+
"outputs": [],
|
|
20
|
+
"source": [
|
|
21
|
+
"# %pip install geoai-py"
|
|
22
|
+
]
|
|
23
|
+
},
|
|
24
|
+
{
|
|
25
|
+
"cell_type": "markdown",
|
|
26
|
+
"metadata": {},
|
|
27
|
+
"source": [
|
|
28
|
+
"## Import package"
|
|
29
|
+
]
|
|
30
|
+
},
|
|
31
|
+
{
|
|
32
|
+
"cell_type": "code",
|
|
33
|
+
"execution_count": null,
|
|
34
|
+
"metadata": {},
|
|
35
|
+
"outputs": [],
|
|
36
|
+
"source": [
|
|
37
|
+
"import geoai"
|
|
38
|
+
]
|
|
39
|
+
},
|
|
40
|
+
{
|
|
41
|
+
"cell_type": "markdown",
|
|
42
|
+
"metadata": {},
|
|
43
|
+
"source": [
|
|
44
|
+
"## Download sample data"
|
|
45
|
+
]
|
|
46
|
+
},
|
|
47
|
+
{
|
|
48
|
+
"cell_type": "code",
|
|
49
|
+
"execution_count": null,
|
|
50
|
+
"metadata": {},
|
|
51
|
+
"outputs": [],
|
|
52
|
+
"source": [
|
|
53
|
+
"raster_url = \"https://huggingface.co/datasets/giswqs/geospatial/resolve/main/naip_building_masks.tif\""
|
|
54
|
+
]
|
|
55
|
+
},
|
|
56
|
+
{
|
|
57
|
+
"cell_type": "code",
|
|
58
|
+
"execution_count": null,
|
|
59
|
+
"metadata": {},
|
|
60
|
+
"outputs": [],
|
|
61
|
+
"source": [
|
|
62
|
+
"raster_path = geoai.download_file(raster_url)"
|
|
63
|
+
]
|
|
64
|
+
},
|
|
65
|
+
{
|
|
66
|
+
"cell_type": "code",
|
|
67
|
+
"execution_count": null,
|
|
68
|
+
"metadata": {},
|
|
69
|
+
"outputs": [],
|
|
70
|
+
"source": [
|
|
71
|
+
"geoai.view_image(raster_path, figsize=(18, 10))"
|
|
72
|
+
]
|
|
73
|
+
},
|
|
74
|
+
{
|
|
75
|
+
"cell_type": "markdown",
|
|
76
|
+
"metadata": {},
|
|
77
|
+
"source": [
|
|
78
|
+
"## Convert raster to vector"
|
|
79
|
+
]
|
|
80
|
+
},
|
|
81
|
+
{
|
|
82
|
+
"cell_type": "code",
|
|
83
|
+
"execution_count": null,
|
|
84
|
+
"metadata": {},
|
|
85
|
+
"outputs": [],
|
|
86
|
+
"source": [
|
|
87
|
+
"gdf = geoai.raster_to_vector(raster_path, output_path=\"naip_building_masks.geojson\")"
|
|
88
|
+
]
|
|
89
|
+
},
|
|
90
|
+
{
|
|
91
|
+
"cell_type": "code",
|
|
92
|
+
"execution_count": null,
|
|
93
|
+
"metadata": {},
|
|
94
|
+
"outputs": [],
|
|
95
|
+
"source": [
|
|
96
|
+
"geoai.view_vector_interactive(\n",
|
|
97
|
+
" gdf, style_kwds={\"color\": \"blue\", \"fillOpacity\": 0}, tiles=\"Satellite\"\n",
|
|
98
|
+
")"
|
|
99
|
+
]
|
|
100
|
+
},
|
|
101
|
+
{
|
|
102
|
+
"cell_type": "markdown",
|
|
103
|
+
"metadata": {},
|
|
104
|
+
"source": [
|
|
105
|
+
"## Building regularization"
|
|
106
|
+
]
|
|
107
|
+
},
|
|
108
|
+
{
|
|
109
|
+
"cell_type": "code",
|
|
110
|
+
"execution_count": null,
|
|
111
|
+
"metadata": {},
|
|
112
|
+
"outputs": [],
|
|
113
|
+
"source": [
|
|
114
|
+
"gdf_regularized = geoai.regularization(\n",
|
|
115
|
+
" building_polygons=gdf,\n",
|
|
116
|
+
" angle_tolerance=10,\n",
|
|
117
|
+
" simplify_tolerance=0.5,\n",
|
|
118
|
+
" orthogonalize=True,\n",
|
|
119
|
+
" preserve_topology=True,\n",
|
|
120
|
+
")"
|
|
121
|
+
]
|
|
122
|
+
},
|
|
123
|
+
{
|
|
124
|
+
"cell_type": "code",
|
|
125
|
+
"execution_count": null,
|
|
126
|
+
"metadata": {},
|
|
127
|
+
"outputs": [],
|
|
128
|
+
"source": [
|
|
129
|
+
"geoai.view_vector_interactive(\n",
|
|
130
|
+
" gdf_regularized, style_kwds={\"color\": \"red\", \"fillOpacity\": 0}, tiles=\"Satellite\"\n",
|
|
131
|
+
")"
|
|
132
|
+
]
|
|
133
|
+
},
|
|
134
|
+
{
|
|
135
|
+
"cell_type": "markdown",
|
|
136
|
+
"metadata": {},
|
|
137
|
+
"source": [
|
|
138
|
+
"## Hybrid regularization"
|
|
139
|
+
]
|
|
140
|
+
},
|
|
141
|
+
{
|
|
142
|
+
"cell_type": "code",
|
|
143
|
+
"execution_count": null,
|
|
144
|
+
"metadata": {},
|
|
145
|
+
"outputs": [],
|
|
146
|
+
"source": [
|
|
147
|
+
"gdf_hybrid = geoai.hybrid_regularization(gdf)"
|
|
148
|
+
]
|
|
149
|
+
},
|
|
150
|
+
{
|
|
151
|
+
"cell_type": "code",
|
|
152
|
+
"execution_count": null,
|
|
153
|
+
"metadata": {},
|
|
154
|
+
"outputs": [],
|
|
155
|
+
"source": [
|
|
156
|
+
"geoai.view_vector_interactive(\n",
|
|
157
|
+
" gdf_hybrid, style_kwds={\"color\": \"green\", \"fillOpacity\": 0}, tiles=\"Satellite\"\n",
|
|
158
|
+
")"
|
|
159
|
+
]
|
|
160
|
+
},
|
|
161
|
+
{
|
|
162
|
+
"cell_type": "markdown",
|
|
163
|
+
"metadata": {},
|
|
164
|
+
"source": [
|
|
165
|
+
"## Adaptive regularization"
|
|
166
|
+
]
|
|
167
|
+
},
|
|
168
|
+
{
|
|
169
|
+
"cell_type": "code",
|
|
170
|
+
"execution_count": null,
|
|
171
|
+
"metadata": {},
|
|
172
|
+
"outputs": [],
|
|
173
|
+
"source": [
|
|
174
|
+
"gdf_adaptive = geoai.adaptive_regularization(\n",
|
|
175
|
+
" building_polygons=gdf,\n",
|
|
176
|
+
" simplify_tolerance=0.5,\n",
|
|
177
|
+
" area_threshold=0.9,\n",
|
|
178
|
+
" preserve_shape=True,\n",
|
|
179
|
+
")"
|
|
180
|
+
]
|
|
181
|
+
},
|
|
182
|
+
{
|
|
183
|
+
"cell_type": "code",
|
|
184
|
+
"execution_count": null,
|
|
185
|
+
"metadata": {},
|
|
186
|
+
"outputs": [],
|
|
187
|
+
"source": [
|
|
188
|
+
"geoai.view_vector_interactive(\n",
|
|
189
|
+
" gdf_adaptive, style_kwds={\"color\": \"yellow\", \"fillOpacity\": 0}, tiles=\"Satellite\"\n",
|
|
190
|
+
")"
|
|
191
|
+
]
|
|
192
|
+
},
|
|
193
|
+
{
|
|
194
|
+
"cell_type": "markdown",
|
|
195
|
+
"metadata": {},
|
|
196
|
+
"source": [
|
|
197
|
+
"## Compare regularization methods"
|
|
198
|
+
]
|
|
199
|
+
},
|
|
200
|
+
{
|
|
201
|
+
"cell_type": "code",
|
|
202
|
+
"execution_count": null,
|
|
203
|
+
"metadata": {},
|
|
204
|
+
"outputs": [],
|
|
205
|
+
"source": [
|
|
206
|
+
"import leafmap.foliumap as leafmap"
|
|
207
|
+
]
|
|
208
|
+
},
|
|
209
|
+
{
|
|
210
|
+
"cell_type": "code",
|
|
211
|
+
"execution_count": null,
|
|
212
|
+
"metadata": {},
|
|
213
|
+
"outputs": [],
|
|
214
|
+
"source": [
|
|
215
|
+
"m = leafmap.Map()\n",
|
|
216
|
+
"m.add_basemap(\"SATELLITE\")\n",
|
|
217
|
+
"m.add_gdf(gdf, layer_name=\"Original\")\n",
|
|
218
|
+
"m.add_gdf(\n",
|
|
219
|
+
" gdf_regularized, style={\"color\": \"red\", \"fillOpacity\": 0}, layer_name=\"Regularized\"\n",
|
|
220
|
+
")\n",
|
|
221
|
+
"m.add_gdf(gdf_hybrid, style={\"color\": \"green\", \"fillOpacity\": 0}, layer_name=\"Hybrid\")\n",
|
|
222
|
+
"m.add_gdf(\n",
|
|
223
|
+
" gdf_adaptive, style={\"color\": \"yellow\", \"fillOpacity\": 0}, layer_name=\"Adaptive\"\n",
|
|
224
|
+
")\n",
|
|
225
|
+
"legend = {\n",
|
|
226
|
+
" \"Original\": \"blue\",\n",
|
|
227
|
+
" \"Regularized\": \"red\",\n",
|
|
228
|
+
" \"Hybrid\": \"green\",\n",
|
|
229
|
+
" \"Adaptive\": \"yellow\",\n",
|
|
230
|
+
"}\n",
|
|
231
|
+
"m.add_legend(title=\"Building Footprints\", legend_dict=legend)\n",
|
|
232
|
+
"m"
|
|
233
|
+
]
|
|
234
|
+
}
|
|
235
|
+
],
|
|
236
|
+
"metadata": {
|
|
237
|
+
"kernelspec": {
|
|
238
|
+
"display_name": "torch",
|
|
239
|
+
"language": "python",
|
|
240
|
+
"name": "python3"
|
|
241
|
+
},
|
|
242
|
+
"language_info": {
|
|
243
|
+
"codemirror_mode": {
|
|
244
|
+
"name": "ipython",
|
|
245
|
+
"version": 3
|
|
246
|
+
},
|
|
247
|
+
"file_extension": ".py",
|
|
248
|
+
"mimetype": "text/x-python",
|
|
249
|
+
"name": "python",
|
|
250
|
+
"nbconvert_exporter": "python",
|
|
251
|
+
"pygments_lexer": "ipython3",
|
|
252
|
+
"version": "3.11.8"
|
|
253
|
+
}
|
|
254
|
+
},
|
|
255
|
+
"nbformat": 4,
|
|
256
|
+
"nbformat_minor": 2
|
|
257
|
+
}
|
|
@@ -40,7 +40,7 @@
|
|
|
40
40
|
"source": [
|
|
41
41
|
"from torchgeo.datasets import NAIP\n",
|
|
42
42
|
"from torchgeo.samplers import RandomGeoSampler, GridGeoSampler\n",
|
|
43
|
-
"from geoai.
|
|
43
|
+
"from geoai.utils import view_image, view_raster, dict_to_image\n",
|
|
44
44
|
"from geoai.download import download_naip"
|
|
45
45
|
]
|
|
46
46
|
},
|
|
@@ -82,7 +82,7 @@
|
|
|
82
82
|
"- **torchgeo.samplers**: Contains sampling strategies for geospatial data:\n",
|
|
83
83
|
" - **RandomGeoSampler**: Samples random patches from the dataset\n",
|
|
84
84
|
" - **GridGeoSampler**: Samples patches in a grid pattern with specified stride\n",
|
|
85
|
-
"- **geoai.
|
|
85
|
+
"- **geoai.utils**: Custom utility functions for visualization:\n",
|
|
86
86
|
" - **view_image**: Visualizes tensor images\n",
|
|
87
87
|
" - **view_raster**: Displays georeferenced data on an interactive map\n",
|
|
88
88
|
" - **dict_to_image**: Converts dictionary representation to image format\n",
|
|
@@ -76,6 +76,14 @@ If you encounter issues with the sqlite package, you can update it using the fol
|
|
|
76
76
|
mamba update -c conda-forge sqlite
|
|
77
77
|
```
|
|
78
78
|
|
|
79
|
+
### Notes for Windows Users
|
|
80
|
+
|
|
81
|
+
If you use mamba to install geoai, you may not have the latest version of torchgeo, which may cause issues when importing geoai. To fix this, you can install the latest version of torchgeo using the following command:
|
|
82
|
+
|
|
83
|
+
```bash
|
|
84
|
+
pip install -U torchgeo
|
|
85
|
+
```
|
|
86
|
+
|
|
79
87
|
### 👩💻 Development Installation
|
|
80
88
|
|
|
81
89
|
For contributing to GeoAI development, install directly from the source repository:
|