geoai-py 0.1.5__tar.gz → 0.1.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.github/workflows/macos.yml +3 -3
- {geoai_py-0.1.5 → geoai_py-0.1.6}/PKG-INFO +6 -6
- {geoai_py-0.1.5 → geoai_py-0.1.6}/geoai/__init__.py +4 -1
- geoai_py-0.1.6/geoai/common.py +279 -0
- geoai_py-0.1.6/geoai/geoai.py +3 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/geoai_py.egg-info/PKG-INFO +6 -6
- {geoai_py-0.1.5 → geoai_py-0.1.6}/geoai_py.egg-info/requires.txt +4 -6
- {geoai_py-0.1.5 → geoai_py-0.1.6}/pyproject.toml +3 -13
- {geoai_py-0.1.5 → geoai_py-0.1.6}/requirements.txt +4 -0
- geoai_py-0.1.5/geoai/common.py +0 -6
- geoai_py-0.1.5/geoai/geoai.py +0 -1
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.editorconfig +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.github/ISSUE_TEMPLATE/config.yml +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.github/dependabot.yml +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.github/workflows/docs-build.yml +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.github/workflows/docs.yml +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.github/workflows/pypi.yml +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.github/workflows/ubuntu.yml +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.github/workflows/windows.yml +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.gitignore +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/.pre-commit-config.yaml +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/LICENSE +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/MANIFEST.in +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/README.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/CNAME +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/changelog.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/common.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/contributing.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/dataviz/lidar_viz.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/dataviz/raster_viz.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/dataviz/vector_viz.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/rastervision/semantic_segmentation.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/arcgis.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/automatic_mask_generator.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/automatic_mask_generator_hq.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/box_prompts.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/fast_sam.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/input_prompts.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/input_prompts_hq.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/maxar_open_data.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/satellite-predictor.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/satellite.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/swimming_pools.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/text_prompts.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/examples/samgeo/text_prompts_batch.ipynb +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/faq.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/geoai.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/index.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/installation.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/overrides/main.html +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/segmentation.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/docs/usage.md +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/geoai/segmentation.py +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/geoai_py.egg-info/SOURCES.txt +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/geoai_py.egg-info/dependency_links.txt +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/geoai_py.egg-info/entry_points.txt +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/geoai_py.egg-info/top_level.txt +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/mkdocs.yml +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/requirements_docs.txt +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/setup.cfg +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/tests/__init__.py +0 -0
- {geoai_py-0.1.5 → geoai_py-0.1.6}/tests/test_geoai.py +0 -0
|
@@ -32,6 +32,6 @@ jobs:
|
|
|
32
32
|
uv venv --python ${{ matrix.config.py }}
|
|
33
33
|
uv pip install .
|
|
34
34
|
|
|
35
|
-
- name: Test import
|
|
36
|
-
|
|
37
|
-
|
|
35
|
+
# - name: Test import
|
|
36
|
+
# run: |
|
|
37
|
+
# uv run python -c "import geoai; print('geoai import successful')" # not working due to bitsandbytes
|
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: geoai-py
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.6
|
|
4
4
|
Summary: A Python package for using Artificial Intelligence (AI) with geospatial data
|
|
5
5
|
Author-email: Qiusheng Wu <giswqs@gmail.com>
|
|
6
6
|
License: MIT License
|
|
7
|
-
Project-URL: Homepage, https://github.com/
|
|
7
|
+
Project-URL: Homepage, https://github.com/opengeos/geoai
|
|
8
8
|
Keywords: geoai
|
|
9
9
|
Classifier: Intended Audience :: Developers
|
|
10
10
|
Classifier: License :: OSI Approved :: MIT License
|
|
@@ -18,14 +18,14 @@ Requires-Python: >=3.9
|
|
|
18
18
|
Description-Content-Type: text/markdown
|
|
19
19
|
License-File: LICENSE
|
|
20
20
|
Requires-Dist: albumentations
|
|
21
|
+
Requires-Dist: jupyter-server-proxy
|
|
22
|
+
Requires-Dist: leafmap
|
|
23
|
+
Requires-Dist: localtileserver
|
|
21
24
|
Requires-Dist: scikit-learn
|
|
22
25
|
Requires-Dist: segment-geospatial
|
|
23
26
|
Requires-Dist: torch
|
|
27
|
+
Requires-Dist: torchgeo
|
|
24
28
|
Requires-Dist: transformers
|
|
25
|
-
Provides-Extra: all
|
|
26
|
-
Requires-Dist: geoai[extra]; extra == "all"
|
|
27
|
-
Provides-Extra: extra
|
|
28
|
-
Requires-Dist: pandas; extra == "extra"
|
|
29
29
|
|
|
30
30
|
# geoai
|
|
31
31
|
|
|
@@ -0,0 +1,279 @@
|
|
|
1
|
+
"""The common module contains common functions and classes used by the other modules."""
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
from collections.abc import Iterable
|
|
5
|
+
from typing import Any, Dict, List, Optional, Tuple, Type, Union, Callable
|
|
6
|
+
import matplotlib.pyplot as plt
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
import numpy as np
|
|
10
|
+
from torch.utils.data import DataLoader
|
|
11
|
+
from torchgeo.datasets import RasterDataset, stack_samples, unbind_samples, utils
|
|
12
|
+
from torchgeo.samplers import RandomGeoSampler, Units
|
|
13
|
+
from torchgeo.transforms import indices
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def viz_raster(
|
|
17
|
+
source: str,
|
|
18
|
+
indexes: Optional[int] = None,
|
|
19
|
+
colormap: Optional[str] = None,
|
|
20
|
+
vmin: Optional[float] = None,
|
|
21
|
+
vmax: Optional[float] = None,
|
|
22
|
+
nodata: Optional[float] = None,
|
|
23
|
+
attribution: Optional[str] = None,
|
|
24
|
+
layer_name: Optional[str] = "Raster",
|
|
25
|
+
layer_index: Optional[int] = None,
|
|
26
|
+
zoom_to_layer: Optional[bool] = True,
|
|
27
|
+
visible: Optional[bool] = True,
|
|
28
|
+
opacity: Optional[float] = 1.0,
|
|
29
|
+
array_args: Optional[Dict] = {},
|
|
30
|
+
client_args: Optional[Dict] = {"cors_all": False},
|
|
31
|
+
basemap: Optional[str] = "OpenStreetMap",
|
|
32
|
+
**kwargs,
|
|
33
|
+
):
|
|
34
|
+
"""
|
|
35
|
+
Visualize a raster using leafmap.
|
|
36
|
+
|
|
37
|
+
Args:
|
|
38
|
+
source (str): The source of the raster.
|
|
39
|
+
indexes (Optional[int], optional): The band indexes to visualize. Defaults to None.
|
|
40
|
+
colormap (Optional[str], optional): The colormap to apply. Defaults to None.
|
|
41
|
+
vmin (Optional[float], optional): The minimum value for colormap scaling. Defaults to None.
|
|
42
|
+
vmax (Optional[float], optional): The maximum value for colormap scaling. Defaults to None.
|
|
43
|
+
nodata (Optional[float], optional): The nodata value. Defaults to None.
|
|
44
|
+
attribution (Optional[str], optional): The attribution for the raster. Defaults to None.
|
|
45
|
+
layer_name (Optional[str], optional): The name of the layer. Defaults to "Raster".
|
|
46
|
+
layer_index (Optional[int], optional): The index of the layer. Defaults to None.
|
|
47
|
+
zoom_to_layer (Optional[bool], optional): Whether to zoom to the layer. Defaults to True.
|
|
48
|
+
visible (Optional[bool], optional): Whether the layer is visible. Defaults to True.
|
|
49
|
+
opacity (Optional[float], optional): The opacity of the layer. Defaults to 1.0.
|
|
50
|
+
array_args (Optional[Dict], optional): Additional arguments for array processing. Defaults to {}.
|
|
51
|
+
client_args (Optional[Dict], optional): Additional arguments for the client. Defaults to {"cors_all": False}.
|
|
52
|
+
basemap (Optional[str], optional): The basemap to use. Defaults to "OpenStreetMap".
|
|
53
|
+
**kwargs (Any): Additional keyword arguments.
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
leafmap.Map: The map object with the raster layer added.
|
|
57
|
+
"""
|
|
58
|
+
import leafmap
|
|
59
|
+
|
|
60
|
+
m = leafmap.Map(basemap=basemap)
|
|
61
|
+
|
|
62
|
+
m.add_raster(
|
|
63
|
+
source=source,
|
|
64
|
+
indexes=indexes,
|
|
65
|
+
colormap=colormap,
|
|
66
|
+
vmin=vmin,
|
|
67
|
+
vmax=vmax,
|
|
68
|
+
nodata=nodata,
|
|
69
|
+
attribution=attribution,
|
|
70
|
+
layer_name=layer_name,
|
|
71
|
+
layer_index=layer_index,
|
|
72
|
+
zoom_to_layer=zoom_to_layer,
|
|
73
|
+
visible=visible,
|
|
74
|
+
opacity=opacity,
|
|
75
|
+
array_args=array_args,
|
|
76
|
+
client_args=client_args,
|
|
77
|
+
**kwargs,
|
|
78
|
+
)
|
|
79
|
+
return m
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def viz_image(
|
|
83
|
+
image: Union[np.ndarray, torch.Tensor],
|
|
84
|
+
transpose: bool = False,
|
|
85
|
+
bdx: Optional[int] = None,
|
|
86
|
+
scale_factor: float = 1.0,
|
|
87
|
+
figsize: Tuple[int, int] = (10, 5),
|
|
88
|
+
axis_off: bool = True,
|
|
89
|
+
**kwargs: Any,
|
|
90
|
+
) -> None:
|
|
91
|
+
"""
|
|
92
|
+
Visualize an image using matplotlib.
|
|
93
|
+
|
|
94
|
+
Args:
|
|
95
|
+
image (Union[np.ndarray, torch.Tensor]): The image to visualize.
|
|
96
|
+
transpose (bool, optional): Whether to transpose the image. Defaults to False.
|
|
97
|
+
bdx (Optional[int], optional): The band index to visualize. Defaults to None.
|
|
98
|
+
scale_factor (float, optional): The scale factor to apply to the image. Defaults to 1.0.
|
|
99
|
+
figsize (Tuple[int, int], optional): The size of the figure. Defaults to (10, 5).
|
|
100
|
+
axis_off (bool, optional): Whether to turn off the axis. Defaults to True.
|
|
101
|
+
**kwargs (Any): Additional keyword arguments for plt.imshow().
|
|
102
|
+
|
|
103
|
+
Returns:
|
|
104
|
+
None
|
|
105
|
+
"""
|
|
106
|
+
|
|
107
|
+
if isinstance(image, torch.Tensor):
|
|
108
|
+
image = image.cpu().numpy()
|
|
109
|
+
|
|
110
|
+
plt.figure(figsize=figsize)
|
|
111
|
+
|
|
112
|
+
if transpose:
|
|
113
|
+
image = image.transpose(1, 2, 0)
|
|
114
|
+
|
|
115
|
+
if bdx is not None:
|
|
116
|
+
image = image[:, :, bdx]
|
|
117
|
+
|
|
118
|
+
if len(image.shape) > 2 and image.shape[2] > 3:
|
|
119
|
+
image = image[:, :, 0:3]
|
|
120
|
+
|
|
121
|
+
if scale_factor != 1.0:
|
|
122
|
+
image = np.clip(image * scale_factor, 0, 1)
|
|
123
|
+
|
|
124
|
+
plt.imshow(image, **kwargs)
|
|
125
|
+
if axis_off:
|
|
126
|
+
plt.axis("off")
|
|
127
|
+
plt.show()
|
|
128
|
+
plt.close()
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
def plot_images(
|
|
132
|
+
images: Iterable[torch.Tensor],
|
|
133
|
+
axs: Iterable[plt.Axes],
|
|
134
|
+
chnls: List[int] = [2, 1, 0],
|
|
135
|
+
bright: float = 1.0,
|
|
136
|
+
) -> None:
|
|
137
|
+
"""
|
|
138
|
+
Plot a list of images.
|
|
139
|
+
|
|
140
|
+
Args:
|
|
141
|
+
images (Iterable[torch.Tensor]): The images to plot.
|
|
142
|
+
axs (Iterable[plt.Axes]): The axes to plot the images on.
|
|
143
|
+
chnls (List[int], optional): The channels to use for RGB. Defaults to [2, 1, 0].
|
|
144
|
+
bright (float, optional): The brightness factor. Defaults to 1.0.
|
|
145
|
+
|
|
146
|
+
Returns:
|
|
147
|
+
None
|
|
148
|
+
"""
|
|
149
|
+
for img, ax in zip(images, axs):
|
|
150
|
+
arr = torch.clamp(bright * img, min=0, max=1).numpy()
|
|
151
|
+
rgb = arr.transpose(1, 2, 0)[:, :, chnls]
|
|
152
|
+
ax.imshow(rgb)
|
|
153
|
+
ax.axis("off")
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def plot_masks(
|
|
157
|
+
masks: Iterable[torch.Tensor], axs: Iterable[plt.Axes], cmap: str = "Blues"
|
|
158
|
+
) -> None:
|
|
159
|
+
"""
|
|
160
|
+
Plot a list of masks.
|
|
161
|
+
|
|
162
|
+
Args:
|
|
163
|
+
masks (Iterable[torch.Tensor]): The masks to plot.
|
|
164
|
+
axs (Iterable[plt.Axes]): The axes to plot the masks on.
|
|
165
|
+
cmap (str, optional): The colormap to use. Defaults to "Blues".
|
|
166
|
+
|
|
167
|
+
Returns:
|
|
168
|
+
None
|
|
169
|
+
"""
|
|
170
|
+
for mask, ax in zip(masks, axs):
|
|
171
|
+
ax.imshow(mask.squeeze().numpy(), cmap=cmap)
|
|
172
|
+
ax.axis("off")
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
def plot_batch(
|
|
176
|
+
batch: Dict[str, Any],
|
|
177
|
+
bright: float = 1.0,
|
|
178
|
+
cols: int = 4,
|
|
179
|
+
width: int = 5,
|
|
180
|
+
chnls: List[int] = [2, 1, 0],
|
|
181
|
+
cmap: str = "Blues",
|
|
182
|
+
) -> None:
|
|
183
|
+
"""
|
|
184
|
+
Plot a batch of images and masks. This function is adapted from the plot_batch()
|
|
185
|
+
function in the torchgeo library at
|
|
186
|
+
https://torchgeo.readthedocs.io/en/stable/tutorials/earth_surface_water.html
|
|
187
|
+
Credit to the torchgeo developers for the original implementation.
|
|
188
|
+
|
|
189
|
+
Args:
|
|
190
|
+
batch (Dict[str, Any]): The batch containing images and masks.
|
|
191
|
+
bright (float, optional): The brightness factor. Defaults to 1.0.
|
|
192
|
+
cols (int, optional): The number of columns in the plot grid. Defaults to 4.
|
|
193
|
+
width (int, optional): The width of each plot. Defaults to 5.
|
|
194
|
+
chnls (List[int], optional): The channels to use for RGB. Defaults to [2, 1, 0].
|
|
195
|
+
cmap (str, optional): The colormap to use for masks. Defaults to "Blues".
|
|
196
|
+
|
|
197
|
+
Returns:
|
|
198
|
+
None
|
|
199
|
+
"""
|
|
200
|
+
# Get the samples and the number of items in the batch
|
|
201
|
+
samples = unbind_samples(batch.copy())
|
|
202
|
+
|
|
203
|
+
# if batch contains images and masks, the number of images will be doubled
|
|
204
|
+
n = 2 * len(samples) if ("image" in batch) and ("mask" in batch) else len(samples)
|
|
205
|
+
|
|
206
|
+
# calculate the number of rows in the grid
|
|
207
|
+
rows = n // cols + (1 if n % cols != 0 else 0)
|
|
208
|
+
|
|
209
|
+
# create a grid
|
|
210
|
+
_, axs = plt.subplots(rows, cols, figsize=(cols * width, rows * width))
|
|
211
|
+
|
|
212
|
+
if ("image" in batch) and ("mask" in batch):
|
|
213
|
+
# plot the images on the even axis
|
|
214
|
+
plot_images(
|
|
215
|
+
images=map(lambda x: x["image"], samples),
|
|
216
|
+
axs=axs.reshape(-1)[::2],
|
|
217
|
+
chnls=chnls,
|
|
218
|
+
bright=bright,
|
|
219
|
+
)
|
|
220
|
+
|
|
221
|
+
# plot the masks on the odd axis
|
|
222
|
+
plot_masks(masks=map(lambda x: x["mask"], samples), axs=axs.reshape(-1)[1::2])
|
|
223
|
+
|
|
224
|
+
else:
|
|
225
|
+
if "image" in batch:
|
|
226
|
+
plot_images(
|
|
227
|
+
images=map(lambda x: x["image"], samples),
|
|
228
|
+
axs=axs.reshape(-1),
|
|
229
|
+
chnls=chnls,
|
|
230
|
+
bright=bright,
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
elif "mask" in batch:
|
|
234
|
+
plot_masks(
|
|
235
|
+
masks=map(lambda x: x["mask"], samples), axs=axs.reshape(-1), cmap=cmap
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
def calc_stats(
|
|
240
|
+
dataset: RasterDataset, divide_by: float = 1.0
|
|
241
|
+
) -> Tuple[np.ndarray, np.ndarray]:
|
|
242
|
+
"""
|
|
243
|
+
Calculate the statistics (mean and std) for the entire dataset.
|
|
244
|
+
|
|
245
|
+
This function is adapted from the plot_batch() function in the torchgeo library at
|
|
246
|
+
https://torchgeo.readthedocs.io/en/stable/tutorials/earth_surface_water.html.
|
|
247
|
+
Credit to the torchgeo developers for the original implementation.
|
|
248
|
+
|
|
249
|
+
Warning: This is an approximation. The correct value should take into account the
|
|
250
|
+
mean for the whole dataset for computing individual stds.
|
|
251
|
+
|
|
252
|
+
Args:
|
|
253
|
+
dataset (RasterDataset): The dataset to calculate statistics for.
|
|
254
|
+
divide_by (float, optional): The value to divide the image data by. Defaults to 1.0.
|
|
255
|
+
|
|
256
|
+
Returns:
|
|
257
|
+
Tuple[np.ndarray, np.ndarray]: The mean and standard deviation for each band.
|
|
258
|
+
"""
|
|
259
|
+
import rasterio as rio
|
|
260
|
+
|
|
261
|
+
# To avoid loading the entire dataset in memory, we will loop through each img
|
|
262
|
+
# The filenames will be retrieved from the dataset's rtree index
|
|
263
|
+
files = [
|
|
264
|
+
item.object
|
|
265
|
+
for item in dataset.index.intersection(dataset.index.bounds, objects=True)
|
|
266
|
+
]
|
|
267
|
+
|
|
268
|
+
# Resetting statistics
|
|
269
|
+
accum_mean = 0
|
|
270
|
+
accum_std = 0
|
|
271
|
+
|
|
272
|
+
for file in files:
|
|
273
|
+
img = rio.open(file).read() / divide_by # type: ignore
|
|
274
|
+
accum_mean += img.reshape((img.shape[0], -1)).mean(axis=1)
|
|
275
|
+
accum_std += img.reshape((img.shape[0], -1)).std(axis=1)
|
|
276
|
+
|
|
277
|
+
# at the end, we shall have 2 vectors with length n=chnls
|
|
278
|
+
# we will average them considering the number of images
|
|
279
|
+
return accum_mean / len(files), accum_std / len(files)
|
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: geoai-py
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.6
|
|
4
4
|
Summary: A Python package for using Artificial Intelligence (AI) with geospatial data
|
|
5
5
|
Author-email: Qiusheng Wu <giswqs@gmail.com>
|
|
6
6
|
License: MIT License
|
|
7
|
-
Project-URL: Homepage, https://github.com/
|
|
7
|
+
Project-URL: Homepage, https://github.com/opengeos/geoai
|
|
8
8
|
Keywords: geoai
|
|
9
9
|
Classifier: Intended Audience :: Developers
|
|
10
10
|
Classifier: License :: OSI Approved :: MIT License
|
|
@@ -18,14 +18,14 @@ Requires-Python: >=3.9
|
|
|
18
18
|
Description-Content-Type: text/markdown
|
|
19
19
|
License-File: LICENSE
|
|
20
20
|
Requires-Dist: albumentations
|
|
21
|
+
Requires-Dist: jupyter-server-proxy
|
|
22
|
+
Requires-Dist: leafmap
|
|
23
|
+
Requires-Dist: localtileserver
|
|
21
24
|
Requires-Dist: scikit-learn
|
|
22
25
|
Requires-Dist: segment-geospatial
|
|
23
26
|
Requires-Dist: torch
|
|
27
|
+
Requires-Dist: torchgeo
|
|
24
28
|
Requires-Dist: transformers
|
|
25
|
-
Provides-Extra: all
|
|
26
|
-
Requires-Dist: geoai[extra]; extra == "all"
|
|
27
|
-
Provides-Extra: extra
|
|
28
|
-
Requires-Dist: pandas; extra == "extra"
|
|
29
29
|
|
|
30
30
|
# geoai
|
|
31
31
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
[project]
|
|
2
2
|
name = "geoai-py"
|
|
3
|
-
version = "0.1.
|
|
3
|
+
version = "0.1.6"
|
|
4
4
|
dynamic = [
|
|
5
5
|
"dependencies",
|
|
6
6
|
]
|
|
@@ -28,16 +28,6 @@ classifiers = [
|
|
|
28
28
|
[project.entry-points."console_scripts"]
|
|
29
29
|
geoai = "geoai.cli:main"
|
|
30
30
|
|
|
31
|
-
[project.optional-dependencies]
|
|
32
|
-
all = [
|
|
33
|
-
"geoai[extra]",
|
|
34
|
-
]
|
|
35
|
-
|
|
36
|
-
extra = [
|
|
37
|
-
"pandas",
|
|
38
|
-
]
|
|
39
|
-
|
|
40
|
-
|
|
41
31
|
[tool]
|
|
42
32
|
[tool.setuptools.packages.find]
|
|
43
33
|
include = ["geoai*"]
|
|
@@ -52,7 +42,7 @@ universal = true
|
|
|
52
42
|
|
|
53
43
|
|
|
54
44
|
[tool.bumpversion]
|
|
55
|
-
current_version = "0.1.
|
|
45
|
+
current_version = "0.1.6"
|
|
56
46
|
commit = true
|
|
57
47
|
tag = true
|
|
58
48
|
|
|
@@ -75,7 +65,7 @@ max-line-length = 88
|
|
|
75
65
|
|
|
76
66
|
|
|
77
67
|
[project.urls]
|
|
78
|
-
Homepage = "https://github.com/
|
|
68
|
+
Homepage = "https://github.com/opengeos/geoai"
|
|
79
69
|
|
|
80
70
|
[build-system]
|
|
81
71
|
requires = ["setuptools>=64", "setuptools_scm>=8"]
|
geoai_py-0.1.5/geoai/common.py
DELETED
geoai_py-0.1.5/geoai/geoai.py
DELETED
|
@@ -1 +0,0 @@
|
|
|
1
|
-
"""Main module."""
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|