gac 1.1.0__tar.gz → 1.2.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of gac might be problematic. Click here for more details.
- {gac-1.1.0 → gac-1.2.1}/PKG-INFO +1 -1
- {gac-1.1.0 → gac-1.2.1}/src/gac/__init__.py +6 -6
- {gac-1.1.0 → gac-1.2.1}/src/gac/__version__.py +1 -1
- gac-1.2.1/src/gac/ai.py +89 -0
- gac-1.2.1/src/gac/ai_utils.py +185 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/errors.py +5 -0
- gac-1.2.1/src/gac/providers/__init__.py +17 -0
- gac-1.2.1/src/gac/providers/anthropic.py +42 -0
- gac-1.2.1/src/gac/providers/cerebras.py +29 -0
- gac-1.2.1/src/gac/providers/groq.py +58 -0
- gac-1.2.1/src/gac/providers/ollama.py +35 -0
- gac-1.2.1/src/gac/providers/openai.py +29 -0
- gac-1.2.1/src/gac/providers/openrouter.py +46 -0
- gac-1.1.0/src/gac/ai.py +0 -80
- gac-1.1.0/src/gac/ai_utils.py +0 -134
- gac-1.1.0/src/gac/providers/__init__.py +0 -1
- gac-1.1.0/src/gac/providers/anthropic.py +0 -141
- gac-1.1.0/src/gac/providers/cerebras.py +0 -134
- gac-1.1.0/src/gac/providers/groq.py +0 -134
- gac-1.1.0/src/gac/providers/ollama.py +0 -135
- gac-1.1.0/src/gac/providers/openai.py +0 -134
- gac-1.1.0/src/gac/providers/openrouter.py +0 -125
- {gac-1.1.0 → gac-1.2.1}/.gitignore +0 -0
- {gac-1.1.0 → gac-1.2.1}/LICENSE +0 -0
- {gac-1.1.0 → gac-1.2.1}/README.md +0 -0
- {gac-1.1.0 → gac-1.2.1}/pyproject.toml +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/cli.py +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/config.py +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/config_cli.py +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/constants.py +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/diff_cli.py +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/git.py +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/init_cli.py +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/main.py +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/preprocess.py +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/prompt.py +0 -0
- {gac-1.1.0 → gac-1.2.1}/src/gac/utils.py +0 -0
{gac-1.1.0 → gac-1.2.1}/PKG-INFO
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: gac
|
|
3
|
-
Version: 1.1
|
|
3
|
+
Version: 1.2.1
|
|
4
4
|
Summary: AI-powered Git commit message generator with multi-provider support
|
|
5
5
|
Project-URL: Homepage, https://github.com/cellwebb/gac
|
|
6
6
|
Project-URL: Documentation, https://github.com/cellwebb/gac#readme
|
|
@@ -4,12 +4,12 @@ from gac.__version__ import __version__
|
|
|
4
4
|
from gac.ai import generate_commit_message
|
|
5
5
|
from gac.git import get_staged_files, push_changes
|
|
6
6
|
from gac.prompt import build_prompt, clean_commit_message
|
|
7
|
-
from gac.providers.anthropic import
|
|
8
|
-
from gac.providers.cerebras import
|
|
9
|
-
from gac.providers.groq import
|
|
10
|
-
from gac.providers.ollama import
|
|
11
|
-
from gac.providers.openai import
|
|
12
|
-
from gac.providers.openrouter import
|
|
7
|
+
from gac.providers.anthropic import call_anthropic_api as anthropic_generate
|
|
8
|
+
from gac.providers.cerebras import call_cerebras_api as cerebras_generate
|
|
9
|
+
from gac.providers.groq import call_groq_api as groq_generate
|
|
10
|
+
from gac.providers.ollama import call_ollama_api as ollama_generate
|
|
11
|
+
from gac.providers.openai import call_openai_api as openai_generate
|
|
12
|
+
from gac.providers.openrouter import call_openrouter_api as openrouter_generate
|
|
13
13
|
|
|
14
14
|
__all__ = [
|
|
15
15
|
"__version__",
|
gac-1.2.1/src/gac/ai.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
"""AI provider integration for gac.
|
|
2
|
+
|
|
3
|
+
This module provides core functionality for AI provider interaction.
|
|
4
|
+
It consolidates all AI-related functionality including token counting and commit message generation.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
import logging
|
|
8
|
+
|
|
9
|
+
from gac.ai_utils import generate_with_retries
|
|
10
|
+
from gac.constants import EnvDefaults
|
|
11
|
+
from gac.errors import AIError
|
|
12
|
+
from gac.providers import (
|
|
13
|
+
call_anthropic_api,
|
|
14
|
+
call_cerebras_api,
|
|
15
|
+
call_groq_api,
|
|
16
|
+
call_ollama_api,
|
|
17
|
+
call_openai_api,
|
|
18
|
+
call_openrouter_api,
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
logger = logging.getLogger(__name__)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def generate_commit_message(
|
|
25
|
+
model: str,
|
|
26
|
+
prompt: str | tuple[str, str],
|
|
27
|
+
temperature: float = EnvDefaults.TEMPERATURE,
|
|
28
|
+
max_tokens: int = EnvDefaults.MAX_OUTPUT_TOKENS,
|
|
29
|
+
max_retries: int = EnvDefaults.MAX_RETRIES,
|
|
30
|
+
quiet: bool = False,
|
|
31
|
+
) -> str:
|
|
32
|
+
"""Generate a commit message using direct API calls to AI providers.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
model: The model to use in provider:model_name format (e.g., 'anthropic:claude-3-5-haiku-latest')
|
|
36
|
+
prompt: Either a string prompt (for backward compatibility) or tuple of (system_prompt, user_prompt)
|
|
37
|
+
temperature: Controls randomness (0.0-1.0), lower values are more deterministic
|
|
38
|
+
max_tokens: Maximum tokens in the response
|
|
39
|
+
max_retries: Number of retry attempts if generation fails
|
|
40
|
+
quiet: If True, suppress progress indicators
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
A formatted commit message string
|
|
44
|
+
|
|
45
|
+
Raises:
|
|
46
|
+
AIError: If generation fails after max_retries attempts
|
|
47
|
+
|
|
48
|
+
Example:
|
|
49
|
+
>>> model = "anthropic:claude-3-5-haiku-latest"
|
|
50
|
+
>>> system_prompt, user_prompt = build_prompt("On branch main", "diff --git a/README.md b/README.md")
|
|
51
|
+
>>> generate_commit_message(model, (system_prompt, user_prompt))
|
|
52
|
+
'docs: Update README with installation instructions'
|
|
53
|
+
"""
|
|
54
|
+
# Handle both old (string) and new (tuple) prompt formats
|
|
55
|
+
if isinstance(prompt, tuple):
|
|
56
|
+
system_prompt, user_prompt = prompt
|
|
57
|
+
else:
|
|
58
|
+
# Backward compatibility: treat string as user prompt with no system prompt
|
|
59
|
+
system_prompt = ""
|
|
60
|
+
user_prompt = prompt
|
|
61
|
+
|
|
62
|
+
# Provider functions mapping
|
|
63
|
+
provider_funcs = {
|
|
64
|
+
"anthropic": call_anthropic_api,
|
|
65
|
+
"openai": call_openai_api,
|
|
66
|
+
"groq": call_groq_api,
|
|
67
|
+
"cerebras": call_cerebras_api,
|
|
68
|
+
"ollama": call_ollama_api,
|
|
69
|
+
"openrouter": call_openrouter_api,
|
|
70
|
+
}
|
|
71
|
+
|
|
72
|
+
# Generate the commit message using centralized retry logic
|
|
73
|
+
try:
|
|
74
|
+
return generate_with_retries(
|
|
75
|
+
provider_funcs=provider_funcs,
|
|
76
|
+
model=model,
|
|
77
|
+
system_prompt=system_prompt,
|
|
78
|
+
user_prompt=user_prompt,
|
|
79
|
+
temperature=temperature,
|
|
80
|
+
max_tokens=max_tokens,
|
|
81
|
+
max_retries=max_retries,
|
|
82
|
+
quiet=quiet,
|
|
83
|
+
)
|
|
84
|
+
except AIError:
|
|
85
|
+
# Re-raise AIError exceptions as-is to preserve error classification
|
|
86
|
+
raise
|
|
87
|
+
except Exception as e:
|
|
88
|
+
logger.error(f"Failed to generate commit message: {e}")
|
|
89
|
+
raise AIError.model_error(f"Failed to generate commit message: {e}") from e
|
|
@@ -0,0 +1,185 @@
|
|
|
1
|
+
"""Utilities for AI provider integration for gac.
|
|
2
|
+
|
|
3
|
+
This module provides utility functions that support the AI provider implementations.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import logging
|
|
7
|
+
import time
|
|
8
|
+
from functools import lru_cache
|
|
9
|
+
from typing import Any
|
|
10
|
+
|
|
11
|
+
import tiktoken
|
|
12
|
+
from halo import Halo
|
|
13
|
+
|
|
14
|
+
from gac.constants import Utility
|
|
15
|
+
from gac.errors import AIError
|
|
16
|
+
|
|
17
|
+
logger = logging.getLogger(__name__)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def count_tokens(content: str | list[dict[str, str]] | dict[str, Any], model: str) -> int:
|
|
21
|
+
"""Count tokens in content using the model's tokenizer."""
|
|
22
|
+
text = extract_text_content(content)
|
|
23
|
+
if not text:
|
|
24
|
+
return 0
|
|
25
|
+
|
|
26
|
+
try:
|
|
27
|
+
encoding = get_encoding(model)
|
|
28
|
+
return len(encoding.encode(text))
|
|
29
|
+
except Exception as e:
|
|
30
|
+
logger.error(f"Error counting tokens: {e}")
|
|
31
|
+
return len(text) // 4
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def extract_text_content(content: str | list[dict[str, str]] | dict[str, Any]) -> str:
|
|
35
|
+
"""Extract text content from various input formats."""
|
|
36
|
+
if isinstance(content, str):
|
|
37
|
+
return content
|
|
38
|
+
elif isinstance(content, list):
|
|
39
|
+
return "\n".join(msg["content"] for msg in content if isinstance(msg, dict) and "content" in msg)
|
|
40
|
+
elif isinstance(content, dict) and "content" in content:
|
|
41
|
+
return content["content"]
|
|
42
|
+
return ""
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@lru_cache(maxsize=1)
|
|
46
|
+
def get_encoding(model: str) -> tiktoken.Encoding:
|
|
47
|
+
"""Get the appropriate encoding for a given model."""
|
|
48
|
+
model_name = model.split(":")[-1] if ":" in model else model
|
|
49
|
+
try:
|
|
50
|
+
return tiktoken.encoding_for_model(model_name)
|
|
51
|
+
except KeyError:
|
|
52
|
+
return tiktoken.get_encoding(Utility.DEFAULT_ENCODING)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def _classify_error(error_str: str) -> str:
|
|
56
|
+
"""Classify error types based on error message content."""
|
|
57
|
+
error_str = error_str.lower()
|
|
58
|
+
|
|
59
|
+
if (
|
|
60
|
+
"api key" in error_str
|
|
61
|
+
or "unauthorized" in error_str
|
|
62
|
+
or "authentication" in error_str
|
|
63
|
+
or "invalid api key" in error_str
|
|
64
|
+
):
|
|
65
|
+
return "authentication"
|
|
66
|
+
elif "timeout" in error_str or "timed out" in error_str or "request timeout" in error_str:
|
|
67
|
+
return "timeout"
|
|
68
|
+
elif "rate limit" in error_str or "too many requests" in error_str or "rate limit exceeded" in error_str:
|
|
69
|
+
return "rate_limit"
|
|
70
|
+
elif "connect" in error_str or "network" in error_str or "network connection failed" in error_str:
|
|
71
|
+
return "connection"
|
|
72
|
+
elif "model" in error_str or "not found" in error_str or "model not found" in error_str:
|
|
73
|
+
return "model"
|
|
74
|
+
else:
|
|
75
|
+
return "unknown"
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def generate_with_retries(
|
|
79
|
+
provider_funcs: dict,
|
|
80
|
+
model: str,
|
|
81
|
+
system_prompt: str,
|
|
82
|
+
user_prompt: str,
|
|
83
|
+
temperature: float,
|
|
84
|
+
max_tokens: int,
|
|
85
|
+
max_retries: int,
|
|
86
|
+
quiet: bool = False,
|
|
87
|
+
) -> str:
|
|
88
|
+
"""Generate content with retry logic using direct API calls."""
|
|
89
|
+
# Parse model string to determine provider and actual model
|
|
90
|
+
if ":" not in model:
|
|
91
|
+
raise AIError.model_error(f"Invalid model format. Expected 'provider:model', got '{model}'")
|
|
92
|
+
|
|
93
|
+
provider, model_name = model.split(":", 1)
|
|
94
|
+
|
|
95
|
+
# Validate provider
|
|
96
|
+
supported_providers = ["anthropic", "openai", "groq", "cerebras", "ollama", "openrouter"]
|
|
97
|
+
if provider not in supported_providers:
|
|
98
|
+
raise AIError.model_error(f"Unsupported provider: {provider}. Supported providers: {supported_providers}")
|
|
99
|
+
|
|
100
|
+
messages = [
|
|
101
|
+
{"role": "system", "content": system_prompt},
|
|
102
|
+
{"role": "user", "content": user_prompt},
|
|
103
|
+
]
|
|
104
|
+
|
|
105
|
+
# Set up spinner
|
|
106
|
+
if quiet:
|
|
107
|
+
spinner = None
|
|
108
|
+
else:
|
|
109
|
+
spinner = Halo(text=f"Generating commit message with {provider} {model_name}...", spinner="dots")
|
|
110
|
+
spinner.start()
|
|
111
|
+
|
|
112
|
+
last_exception = None
|
|
113
|
+
last_error_type = "unknown"
|
|
114
|
+
|
|
115
|
+
for attempt in range(max_retries):
|
|
116
|
+
try:
|
|
117
|
+
if not quiet and attempt > 0:
|
|
118
|
+
if spinner:
|
|
119
|
+
spinner.text = f"Retry {attempt + 1}/{max_retries} with {provider} {model_name}..."
|
|
120
|
+
logger.info(f"Retry attempt {attempt + 1}/{max_retries}")
|
|
121
|
+
|
|
122
|
+
# Call the appropriate provider function
|
|
123
|
+
provider_func = provider_funcs.get(provider)
|
|
124
|
+
if not provider_func:
|
|
125
|
+
raise AIError.model_error(f"Provider function not found for: {provider}")
|
|
126
|
+
|
|
127
|
+
content = provider_func(model=model_name, messages=messages, temperature=temperature, max_tokens=max_tokens)
|
|
128
|
+
|
|
129
|
+
if spinner:
|
|
130
|
+
spinner.succeed(f"Generated commit message with {provider} {model_name}")
|
|
131
|
+
|
|
132
|
+
if content is not None and content.strip():
|
|
133
|
+
return content.strip()
|
|
134
|
+
else:
|
|
135
|
+
logger.warning(f"Empty or None content received from {provider} {model_name}: {repr(content)}")
|
|
136
|
+
raise AIError.model_error("Empty response from AI model")
|
|
137
|
+
|
|
138
|
+
except Exception as e:
|
|
139
|
+
last_exception = e
|
|
140
|
+
error_type = _classify_error(str(e))
|
|
141
|
+
last_error_type = error_type
|
|
142
|
+
|
|
143
|
+
# For authentication and model errors, don't retry
|
|
144
|
+
if error_type in ["authentication", "model"]:
|
|
145
|
+
if spinner:
|
|
146
|
+
spinner.fail(f"Failed to generate commit message with {provider} {model_name}")
|
|
147
|
+
|
|
148
|
+
# Create the appropriate error type based on classification
|
|
149
|
+
if error_type == "authentication":
|
|
150
|
+
raise AIError.authentication_error(f"AI generation failed: {str(e)}") from e
|
|
151
|
+
elif error_type == "model":
|
|
152
|
+
raise AIError.model_error(f"AI generation failed: {str(e)}") from e
|
|
153
|
+
|
|
154
|
+
if attempt < max_retries - 1:
|
|
155
|
+
# Exponential backoff
|
|
156
|
+
wait_time = 2**attempt
|
|
157
|
+
if not quiet:
|
|
158
|
+
logger.warning(f"AI generation failed (attempt {attempt + 1}), retrying in {wait_time}s: {str(e)}")
|
|
159
|
+
|
|
160
|
+
if spinner:
|
|
161
|
+
for i in range(wait_time, 0, -1):
|
|
162
|
+
spinner.text = f"Retry {attempt + 1}/{max_retries} in {i}s..."
|
|
163
|
+
time.sleep(1)
|
|
164
|
+
else:
|
|
165
|
+
time.sleep(wait_time)
|
|
166
|
+
else:
|
|
167
|
+
logger.error(f"AI generation failed after {max_retries} attempts: {str(e)}")
|
|
168
|
+
|
|
169
|
+
if spinner:
|
|
170
|
+
spinner.fail(f"Failed to generate commit message with {provider} {model_name}")
|
|
171
|
+
|
|
172
|
+
# If we get here, all retries failed - use the last classified error type
|
|
173
|
+
error_message = f"Failed to generate commit message after {max_retries} attempts"
|
|
174
|
+
if last_error_type == "authentication":
|
|
175
|
+
raise AIError.authentication_error(error_message) from last_exception
|
|
176
|
+
elif last_error_type == "rate_limit":
|
|
177
|
+
raise AIError.rate_limit_error(error_message) from last_exception
|
|
178
|
+
elif last_error_type == "timeout":
|
|
179
|
+
raise AIError.timeout_error(error_message) from last_exception
|
|
180
|
+
elif last_error_type == "connection":
|
|
181
|
+
raise AIError.connection_error(error_message) from last_exception
|
|
182
|
+
elif last_error_type == "model":
|
|
183
|
+
raise AIError.model_error(error_message) from last_exception
|
|
184
|
+
else:
|
|
185
|
+
raise AIError.unknown_error(error_message) from last_exception
|
|
@@ -95,6 +95,11 @@ class AIError(GacError):
|
|
|
95
95
|
"""Create a model error."""
|
|
96
96
|
return cls(message, error_type="model")
|
|
97
97
|
|
|
98
|
+
@classmethod
|
|
99
|
+
def unknown_error(cls, message: str) -> "AIError":
|
|
100
|
+
"""Create an unknown error."""
|
|
101
|
+
return cls(message, error_type="unknown")
|
|
102
|
+
|
|
98
103
|
|
|
99
104
|
class FormattingError(GacError):
|
|
100
105
|
"""Error related to code formatting."""
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
"""AI provider implementations for commit message generation."""
|
|
2
|
+
|
|
3
|
+
from .anthropic import call_anthropic_api
|
|
4
|
+
from .cerebras import call_cerebras_api
|
|
5
|
+
from .groq import call_groq_api
|
|
6
|
+
from .ollama import call_ollama_api
|
|
7
|
+
from .openai import call_openai_api
|
|
8
|
+
from .openrouter import call_openrouter_api
|
|
9
|
+
|
|
10
|
+
__all__ = [
|
|
11
|
+
"call_anthropic_api",
|
|
12
|
+
"call_cerebras_api",
|
|
13
|
+
"call_groq_api",
|
|
14
|
+
"call_ollama_api",
|
|
15
|
+
"call_openai_api",
|
|
16
|
+
"call_openrouter_api",
|
|
17
|
+
]
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
"""Anthropic AI provider implementation."""
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
|
|
5
|
+
import httpx
|
|
6
|
+
|
|
7
|
+
from gac.errors import AIError
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def call_anthropic_api(model: str, messages: list[dict], temperature: float, max_tokens: int) -> str:
|
|
11
|
+
"""Call Anthropic API directly."""
|
|
12
|
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
13
|
+
if not api_key:
|
|
14
|
+
raise AIError.model_error("ANTHROPIC_API_KEY not found in environment variables")
|
|
15
|
+
|
|
16
|
+
url = "https://api.anthropic.com/v1/messages"
|
|
17
|
+
headers = {"x-api-key": api_key, "anthropic-version": "2023-06-01", "content-type": "application/json"}
|
|
18
|
+
|
|
19
|
+
# Convert messages to Anthropic format
|
|
20
|
+
anthropic_messages = []
|
|
21
|
+
system_message = ""
|
|
22
|
+
|
|
23
|
+
for msg in messages:
|
|
24
|
+
if msg["role"] == "system":
|
|
25
|
+
system_message = msg["content"]
|
|
26
|
+
else:
|
|
27
|
+
anthropic_messages.append({"role": msg["role"], "content": msg["content"]})
|
|
28
|
+
|
|
29
|
+
data = {"model": model, "messages": anthropic_messages, "temperature": temperature, "max_tokens": max_tokens}
|
|
30
|
+
|
|
31
|
+
if system_message:
|
|
32
|
+
data["system"] = system_message
|
|
33
|
+
|
|
34
|
+
try:
|
|
35
|
+
response = httpx.post(url, headers=headers, json=data, timeout=120)
|
|
36
|
+
response.raise_for_status()
|
|
37
|
+
response_data = response.json()
|
|
38
|
+
return response_data["content"][0]["text"]
|
|
39
|
+
except httpx.HTTPStatusError as e:
|
|
40
|
+
raise AIError.model_error(f"Anthropic API error: {e.response.status_code} - {e.response.text}") from e
|
|
41
|
+
except Exception as e:
|
|
42
|
+
raise AIError.model_error(f"Error calling Anthropic API: {str(e)}") from e
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
"""Cerebras AI provider implementation."""
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
|
|
5
|
+
import httpx
|
|
6
|
+
|
|
7
|
+
from gac.errors import AIError
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def call_cerebras_api(model: str, messages: list[dict], temperature: float, max_tokens: int) -> str:
|
|
11
|
+
"""Call Cerebras API directly."""
|
|
12
|
+
api_key = os.getenv("CEREBRAS_API_KEY")
|
|
13
|
+
if not api_key:
|
|
14
|
+
raise AIError.model_error("CEREBRAS_API_KEY not found in environment variables")
|
|
15
|
+
|
|
16
|
+
url = "https://api.cerebras.ai/v1/chat/completions"
|
|
17
|
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
|
18
|
+
|
|
19
|
+
data = {"model": model, "messages": messages, "temperature": temperature, "max_tokens": max_tokens}
|
|
20
|
+
|
|
21
|
+
try:
|
|
22
|
+
response = httpx.post(url, headers=headers, json=data, timeout=120)
|
|
23
|
+
response.raise_for_status()
|
|
24
|
+
response_data = response.json()
|
|
25
|
+
return response_data["choices"][0]["message"]["content"]
|
|
26
|
+
except httpx.HTTPStatusError as e:
|
|
27
|
+
raise AIError.model_error(f"Cerebras API error: {e.response.status_code} - {e.response.text}") from e
|
|
28
|
+
except Exception as e:
|
|
29
|
+
raise AIError.model_error(f"Error calling Cerebras API: {str(e)}") from e
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
"""Groq API provider for gac."""
|
|
2
|
+
|
|
3
|
+
import logging
|
|
4
|
+
import os
|
|
5
|
+
|
|
6
|
+
import httpx
|
|
7
|
+
|
|
8
|
+
from gac.errors import AIError
|
|
9
|
+
|
|
10
|
+
logger = logging.getLogger(__name__)
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def call_groq_api(model: str, messages: list[dict], temperature: float, max_tokens: int) -> str:
|
|
14
|
+
"""Call Groq API directly."""
|
|
15
|
+
api_key = os.getenv("GROQ_API_KEY")
|
|
16
|
+
if not api_key:
|
|
17
|
+
raise AIError.model_error("GROQ_API_KEY not found in environment variables")
|
|
18
|
+
|
|
19
|
+
url = "https://api.groq.com/openai/v1/chat/completions"
|
|
20
|
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
|
21
|
+
|
|
22
|
+
data = {"model": model, "messages": messages, "temperature": temperature, "max_tokens": max_tokens}
|
|
23
|
+
|
|
24
|
+
try:
|
|
25
|
+
response = httpx.post(url, headers=headers, json=data, timeout=120)
|
|
26
|
+
response.raise_for_status()
|
|
27
|
+
response_data = response.json()
|
|
28
|
+
|
|
29
|
+
# Debug logging to understand response structure
|
|
30
|
+
logger.debug(f"Groq API response: {response_data}")
|
|
31
|
+
|
|
32
|
+
# Handle different response formats
|
|
33
|
+
if "choices" in response_data and len(response_data["choices"]) > 0:
|
|
34
|
+
choice = response_data["choices"][0]
|
|
35
|
+
if "message" in choice and "content" in choice["message"]:
|
|
36
|
+
content = choice["message"]["content"]
|
|
37
|
+
logger.debug(f"Found content in message.content: {repr(content)}")
|
|
38
|
+
if content is None:
|
|
39
|
+
logger.warning("Groq API returned None content in message.content")
|
|
40
|
+
return ""
|
|
41
|
+
return content
|
|
42
|
+
elif "text" in choice:
|
|
43
|
+
content = choice["text"]
|
|
44
|
+
logger.debug(f"Found content in choice.text: {repr(content)}")
|
|
45
|
+
if content is None:
|
|
46
|
+
logger.warning("Groq API returned None content in choice.text")
|
|
47
|
+
return ""
|
|
48
|
+
return content
|
|
49
|
+
else:
|
|
50
|
+
logger.warning(f"Unexpected choice structure: {choice}")
|
|
51
|
+
|
|
52
|
+
# If we can't find content in the expected places, raise an error
|
|
53
|
+
logger.error(f"Unexpected response format from Groq API: {response_data}")
|
|
54
|
+
raise AIError.model_error(f"Unexpected response format from Groq API: {response_data}")
|
|
55
|
+
except httpx.HTTPStatusError as e:
|
|
56
|
+
raise AIError.model_error(f"Groq API error: {e.response.status_code} - {e.response.text}") from e
|
|
57
|
+
except Exception as e:
|
|
58
|
+
raise AIError.model_error(f"Error calling Groq API: {str(e)}") from e
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
"""Ollama AI provider implementation."""
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
|
|
5
|
+
import httpx
|
|
6
|
+
|
|
7
|
+
from gac.errors import AIError
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def call_ollama_api(model: str, messages: list[dict], temperature: float, max_tokens: int) -> str:
|
|
11
|
+
"""Call Ollama API directly."""
|
|
12
|
+
api_url = os.getenv("OLLAMA_API_URL", "http://localhost:11434")
|
|
13
|
+
|
|
14
|
+
url = f"{api_url.rstrip('/')}/api/chat"
|
|
15
|
+
data = {"model": model, "messages": messages, "temperature": temperature, "stream": False}
|
|
16
|
+
|
|
17
|
+
try:
|
|
18
|
+
response = httpx.post(url, json=data, timeout=120)
|
|
19
|
+
response.raise_for_status()
|
|
20
|
+
response_data = response.json()
|
|
21
|
+
|
|
22
|
+
# Handle different response formats from Ollama
|
|
23
|
+
if "message" in response_data and "content" in response_data["message"]:
|
|
24
|
+
return response_data["message"]["content"]
|
|
25
|
+
elif "response" in response_data:
|
|
26
|
+
return response_data["response"]
|
|
27
|
+
else:
|
|
28
|
+
# Fallback: return the full response as string
|
|
29
|
+
return str(response_data)
|
|
30
|
+
except httpx.ConnectError as e:
|
|
31
|
+
raise AIError.connection_error(f"Ollama connection failed. Make sure Ollama is running: {str(e)}") from e
|
|
32
|
+
except httpx.HTTPStatusError as e:
|
|
33
|
+
raise AIError.model_error(f"Ollama API error: {e.response.status_code} - {e.response.text}") from e
|
|
34
|
+
except Exception as e:
|
|
35
|
+
raise AIError.model_error(f"Error calling Ollama API: {str(e)}") from e
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
"""OpenAI API provider for gac."""
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
|
|
5
|
+
import httpx
|
|
6
|
+
|
|
7
|
+
from gac.errors import AIError
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def call_openai_api(model: str, messages: list[dict], temperature: float, max_tokens: int) -> str:
|
|
11
|
+
"""Call OpenAI API directly."""
|
|
12
|
+
api_key = os.getenv("OPENAI_API_KEY")
|
|
13
|
+
if not api_key:
|
|
14
|
+
raise AIError.model_error("OPENAI_API_KEY not found in environment variables")
|
|
15
|
+
|
|
16
|
+
url = "https://api.openai.com/v1/chat/completions"
|
|
17
|
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
|
18
|
+
|
|
19
|
+
data = {"model": model, "messages": messages, "temperature": temperature, "max_tokens": max_tokens}
|
|
20
|
+
|
|
21
|
+
try:
|
|
22
|
+
response = httpx.post(url, headers=headers, json=data, timeout=120)
|
|
23
|
+
response.raise_for_status()
|
|
24
|
+
response_data = response.json()
|
|
25
|
+
return response_data["choices"][0]["message"]["content"]
|
|
26
|
+
except httpx.HTTPStatusError as e:
|
|
27
|
+
raise AIError.model_error(f"OpenAI API error: {e.response.status_code} - {e.response.text}") from e
|
|
28
|
+
except Exception as e:
|
|
29
|
+
raise AIError.model_error(f"Error calling OpenAI API: {str(e)}") from e
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
"""OpenRouter API provider for gac."""
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
|
|
5
|
+
import httpx
|
|
6
|
+
|
|
7
|
+
from gac.errors import AIError
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def call_openrouter_api(model: str, messages: list[dict], temperature: float, max_tokens: int) -> str:
|
|
11
|
+
"""Call OpenRouter API directly."""
|
|
12
|
+
api_key = os.getenv("OPENROUTER_API_KEY")
|
|
13
|
+
if not api_key:
|
|
14
|
+
raise AIError.model_error("OPENROUTER_API_KEY environment variable not set")
|
|
15
|
+
|
|
16
|
+
url = "https://openrouter.ai/api/v1/chat/completions"
|
|
17
|
+
headers = {
|
|
18
|
+
"Content-Type": "application/json",
|
|
19
|
+
"Authorization": f"Bearer {api_key}",
|
|
20
|
+
}
|
|
21
|
+
|
|
22
|
+
# Add optional headers if environment variables are set
|
|
23
|
+
site_url = os.getenv("OPENROUTER_SITE_URL")
|
|
24
|
+
if site_url:
|
|
25
|
+
headers["HTTP-Referer"] = site_url
|
|
26
|
+
|
|
27
|
+
site_name = os.getenv("OPENROUTER_SITE_NAME")
|
|
28
|
+
if site_name:
|
|
29
|
+
headers["X-Title"] = site_name
|
|
30
|
+
|
|
31
|
+
data = {
|
|
32
|
+
"model": model,
|
|
33
|
+
"messages": messages,
|
|
34
|
+
"temperature": temperature,
|
|
35
|
+
"max_tokens": max_tokens,
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
try:
|
|
39
|
+
response = httpx.post(url, headers=headers, json=data, timeout=120)
|
|
40
|
+
response.raise_for_status()
|
|
41
|
+
response_data = response.json()
|
|
42
|
+
return response_data["choices"][0]["message"]["content"]
|
|
43
|
+
except httpx.HTTPStatusError as e:
|
|
44
|
+
raise AIError.model_error(f"OpenRouter API error: {e.response.status_code} - {e.response.text}") from e
|
|
45
|
+
except Exception as e:
|
|
46
|
+
raise AIError.model_error(f"Error calling OpenRouter API: {str(e)}") from e
|
gac-1.1.0/src/gac/ai.py
DELETED
|
@@ -1,80 +0,0 @@
|
|
|
1
|
-
"""AI provider integration for gac.
|
|
2
|
-
|
|
3
|
-
This module provides core functionality for AI provider interaction.
|
|
4
|
-
It consolidates all AI-related functionality including token counting and commit message generation.
|
|
5
|
-
"""
|
|
6
|
-
|
|
7
|
-
import logging
|
|
8
|
-
|
|
9
|
-
from gac.constants import EnvDefaults
|
|
10
|
-
from gac.errors import AIError
|
|
11
|
-
from gac.providers.anthropic import generate as anthropic_generate
|
|
12
|
-
from gac.providers.cerebras import generate as cerebras_generate
|
|
13
|
-
from gac.providers.groq import generate as groq_generate
|
|
14
|
-
from gac.providers.ollama import generate as ollama_generate
|
|
15
|
-
from gac.providers.openai import generate as openai_generate
|
|
16
|
-
from gac.providers.openrouter import generate as openrouter_generate
|
|
17
|
-
|
|
18
|
-
logger = logging.getLogger(__name__)
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
def generate_commit_message(
|
|
22
|
-
model: str,
|
|
23
|
-
prompt: str | tuple[str, str],
|
|
24
|
-
temperature: float = EnvDefaults.TEMPERATURE,
|
|
25
|
-
max_tokens: int = EnvDefaults.MAX_OUTPUT_TOKENS,
|
|
26
|
-
max_retries: int = EnvDefaults.MAX_RETRIES,
|
|
27
|
-
quiet: bool = False,
|
|
28
|
-
) -> str:
|
|
29
|
-
"""Generate a commit message using direct API calls to AI providers.
|
|
30
|
-
|
|
31
|
-
Args:
|
|
32
|
-
model: The model to use in provider:model_name format (e.g., 'anthropic:claude-3-5-haiku-latest')
|
|
33
|
-
prompt: Either a string prompt (for backward compatibility) or tuple of (system_prompt, user_prompt)
|
|
34
|
-
temperature: Controls randomness (0.0-1.0), lower values are more deterministic
|
|
35
|
-
max_tokens: Maximum tokens in the response
|
|
36
|
-
max_retries: Number of retry attempts if generation fails
|
|
37
|
-
quiet: If True, suppress progress indicators
|
|
38
|
-
|
|
39
|
-
Returns:
|
|
40
|
-
A formatted commit message string
|
|
41
|
-
|
|
42
|
-
Raises:
|
|
43
|
-
AIError: If generation fails after max_retries attempts
|
|
44
|
-
|
|
45
|
-
Example:
|
|
46
|
-
>>> model = "anthropic:claude-3-5-haiku-latest"
|
|
47
|
-
>>> system_prompt, user_prompt = build_prompt("On branch main", "diff --git a/README.md b/README.md")
|
|
48
|
-
>>> generate_commit_message(model, (system_prompt, user_prompt))
|
|
49
|
-
'docs: Update README with installation instructions'
|
|
50
|
-
"""
|
|
51
|
-
try:
|
|
52
|
-
_, _ = model.split(":", 1)
|
|
53
|
-
except ValueError as err:
|
|
54
|
-
raise AIError.model_error(
|
|
55
|
-
f"Invalid model format: {model}. Please use the format 'provider:model_name'."
|
|
56
|
-
) from err
|
|
57
|
-
|
|
58
|
-
# Parse the model string to extract provider and model name
|
|
59
|
-
try:
|
|
60
|
-
provider, model_name = model.split(":", 1)
|
|
61
|
-
except ValueError as err:
|
|
62
|
-
raise AIError.model_error(
|
|
63
|
-
f"Invalid model format: {model}. Please use the format 'provider:model_name'."
|
|
64
|
-
) from err
|
|
65
|
-
|
|
66
|
-
# Route to the appropriate provider function
|
|
67
|
-
if provider == "openai":
|
|
68
|
-
return openai_generate(model_name, prompt, temperature, max_tokens, max_retries, quiet)
|
|
69
|
-
elif provider == "anthropic":
|
|
70
|
-
return anthropic_generate(model_name, prompt, temperature, max_tokens, max_retries, quiet)
|
|
71
|
-
elif provider == "groq":
|
|
72
|
-
return groq_generate(model_name, prompt, temperature, max_tokens, max_retries, quiet)
|
|
73
|
-
elif provider == "cerebras":
|
|
74
|
-
return cerebras_generate(model_name, prompt, temperature, max_tokens, max_retries, quiet)
|
|
75
|
-
elif provider == "ollama":
|
|
76
|
-
return ollama_generate(model_name, prompt, temperature, max_tokens, max_retries, quiet)
|
|
77
|
-
elif provider == "openrouter":
|
|
78
|
-
return openrouter_generate(model_name, prompt, temperature, max_tokens, max_retries, quiet)
|
|
79
|
-
else:
|
|
80
|
-
raise AIError.model_error(f"Unsupported provider: {provider}")
|