futurehouse-client 0.3.16__tar.gz → 0.3.17.dev94__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/PKG-INFO +143 -22
  2. futurehouse_client-0.3.17.dev94/README.md +273 -0
  3. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/docs/client_notebook.ipynb +27 -32
  4. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client/clients/job_client.py +1 -0
  5. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client/clients/rest_client.py +523 -22
  6. futurehouse_client-0.3.17.dev94/futurehouse_client/models/rest.py +36 -0
  7. futurehouse_client-0.3.17.dev94/futurehouse_client/utils/general.py +29 -0
  8. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client.egg-info/PKG-INFO +143 -22
  9. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client.egg-info/SOURCES.txt +1 -0
  10. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client.egg-info/requires.txt +2 -0
  11. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/pyproject.toml +2 -0
  12. futurehouse_client-0.3.17.dev94/tests/test_rest.py +214 -0
  13. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/uv.lock +44 -9
  14. futurehouse_client-0.3.16/README.md +0 -154
  15. futurehouse_client-0.3.16/futurehouse_client/models/rest.py +0 -19
  16. futurehouse_client-0.3.16/tests/test_rest.py +0 -96
  17. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/LICENSE +0 -0
  18. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/docs/__init__.py +0 -0
  19. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client/__init__.py +0 -0
  20. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client/clients/__init__.py +0 -0
  21. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client/models/__init__.py +0 -0
  22. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client/models/app.py +0 -0
  23. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client/models/client.py +0 -0
  24. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client/utils/__init__.py +0 -0
  25. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client/utils/module_utils.py +0 -0
  26. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client/utils/monitoring.py +0 -0
  27. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client.egg-info/dependency_links.txt +0 -0
  28. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/futurehouse_client.egg-info/top_level.txt +0 -0
  29. {futurehouse_client-0.3.16 → futurehouse_client-0.3.17.dev94}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: futurehouse-client
3
- Version: 0.3.16
3
+ Version: 0.3.17.dev94
4
4
  Summary: A client for interacting with endpoints of the FutureHouse service.
5
5
  Author-email: FutureHouse technical staff <hello@futurehouse.org>
6
6
  Classifier: Operating System :: OS Independent
@@ -19,6 +19,7 @@ Requires-Dist: litellm==1.67.4.post1
19
19
  Requires-Dist: pydantic
20
20
  Requires-Dist: python-dotenv
21
21
  Requires-Dist: tenacity
22
+ Requires-Dist: tqdm>=4.62
22
23
  Provides-Extra: dev
23
24
  Requires-Dist: black; extra == "dev"
24
25
  Requires-Dist: jupyter; extra == "dev"
@@ -30,6 +31,7 @@ Requires-Dist: pylint; extra == "dev"
30
31
  Requires-Dist: pylint-per-file-ignores; extra == "dev"
31
32
  Requires-Dist: pylint-pydantic; extra == "dev"
32
33
  Requires-Dist: pytest; extra == "dev"
34
+ Requires-Dist: pytest-asyncio; extra == "dev"
33
35
  Requires-Dist: pytest-rerunfailures; extra == "dev"
34
36
  Requires-Dist: pytest-subtests; extra == "dev"
35
37
  Requires-Dist: pytest-timeout; extra == "dev"
@@ -49,9 +51,9 @@ Documentation and tutorials for futurehouse-client, a client for interacting wit
49
51
  - [Quickstart](#quickstart)
50
52
  - [Functionalities](#functionalities)
51
53
  - [Authentication](#authentication)
52
- - [Task submission](#task-submission)
54
+ - [Simple task running](#simple-task-running)
53
55
  - [Task Continuation](#task-continuation)
54
- - [Task retrieval](#task-retrieval)
56
+ - [Asynchronous tasks](#asynchronous-tasks)
55
57
 
56
58
  <!--TOC-->
57
59
 
@@ -78,19 +80,17 @@ task_data = {
78
80
  "query": "Which neglected diseases had a treatment developed by artificial intelligence?",
79
81
  }
80
82
 
81
- task_run_id = client.create_task(task_data)
82
-
83
- task_status = client.get_task(task_run_id)
83
+ task_response = client.run_tasks_until_done(task_data)
84
84
  ```
85
85
 
86
- A quickstart example can be found in the [client_notebook.ipynb](https://github.com/Future-House/futurehouse-client-docs/blob/main/docs/client_notebook.ipynb) file, where we show how to submit and retrieve a job task, pass runtime configuration to the agent, and ask follow-up questions to the previous job.
86
+ A quickstart example can be found in the [client_notebook.ipynb](https://futurehouse.gitbook.io/futurehouse-cookbook/futurehouse-client/docs/client_notebook) file, where we show how to submit and retrieve a job task, pass runtime configuration to the agent, and ask follow-up questions to the previous job.
87
87
 
88
88
  ## Functionalities
89
89
 
90
90
  FutureHouse client implements a RestClient (called `FutureHouseClient`) with the following functionalities:
91
91
 
92
- - [Task submission](#task-submission): `create_task(TaskRequest)`
93
- - [Task status](#task-status): `get_task(task_id)`
92
+ - [Simple task running](#simple-task-running): `run_tasks_until_done(TaskRequest)` or `await arun_tasks_until_done(TaskRequest)`
93
+ - [Asynchronous tasks](#asynchronous-tasks): `get_task(task_id)` or `aget_task(task_id)` and `create_task(TaskRequest)` or `acreate_task(TaskRequest)`
94
94
 
95
95
  To create a `FutureHouseClient`, you need to pass an FutureHouse platform api key (see [Authentication](#authentication)):
96
96
 
@@ -106,9 +106,9 @@ client = FutureHouseClient(
106
106
 
107
107
  In order to use the `FutureHouseClient`, you need to authenticate yourself. Authentication is done by providing an API key, which can be obtained directly from your [profile page in the FutureHouse platform](https://platform.futurehouse.org/profile).
108
108
 
109
- ## Task submission
109
+ ## Simple task running
110
110
 
111
- In the futurehouse platform, we define the deployed combination of an agent and an environment as a `job`. To invoke a job, we need to submit a `task` (also called a `query`) to it.
111
+ In the FutureHouse platform, we define the deployed combination of an agent and an environment as a `job`. To invoke a job, we need to submit a `task` (also called a `query`) to it.
112
112
  `FutureHouseClient` can be used to submit tasks/queries to available jobs in the FutureHouse platform. Using a `FutureHouseClient` instance, you can submit tasks to the platform by calling the `create_task` method, which receives a `TaskRequest` (or a dictionary with `kwargs`) and returns the task id.
113
113
  Aiming to make the submission of tasks as simple as possible, we have created a `JobNames` `enum` that contains the available task types.
114
114
 
@@ -118,10 +118,10 @@ The available supported jobs are:
118
118
  | `JobNames.CROW` | `job-futurehouse-paperqa2` | Fast Search | Ask a question of scientific data sources, and receive a high-accuracy, cited response. Built with [PaperQA2](https://github.com/Future-House/paper-qa). |
119
119
  | `JobNames.FALCON` | `job-futurehouse-paperqa2-deep` | Deep Search | Use a plethora of sources to deeply research. Receive a detailed, structured report as a response. |
120
120
  | `JobNames.OWL` | `job-futurehouse-hasanyone` | Precedent Search | Formerly known as HasAnyone, query if anyone has ever done something in science. |
121
+ | `JobNames.PHOENIX` | `job-futurehouse-phoenix` | Chemistry Tasks | A new iteration of ChemCrow, Phoenix uses cheminformatics tools to do chemistry. Good for planning synthesis and design of new molecules. |
121
122
  | `JobNames.DUMMY` | `job-futurehouse-dummy` | Dummy Task | This is a dummy task. Mainly for testing purposes. |
122
123
 
123
- Using `JobNames`, the client automatically adapts the job name to the current stage.
124
- The task submission looks like this:
124
+ Using `JobNames`, the task submission looks like this:
125
125
 
126
126
  ```python
127
127
  from futurehouse_client import FutureHouseClient, JobNames
@@ -135,10 +135,73 @@ task_data = {
135
135
  "query": "Has anyone tested therapeutic exerkines in humans or NHPs?",
136
136
  }
137
137
 
138
- task_id = client.create_task(task_data)
138
+ task_response = client.run_tasks_until_done(task_data)
139
+
140
+ print(task_response.answer)
141
+ ```
142
+
143
+ Or if running async code:
144
+
145
+ ```python
146
+ import asyncio
147
+ from futurehouse_client import FutureHouseClient, JobNames
148
+
149
+
150
+ async def main():
151
+ client = FutureHouseClient(
152
+ api_key="your_api_key",
153
+ )
154
+
155
+ task_data = {
156
+ "name": JobNames.OWL,
157
+ "query": "Has anyone tested therapeutic exerkines in humans or NHPs?",
158
+ }
159
+
160
+ task_response = await client.arun_tasks_until_done(task_data)
161
+ print(task_response.answer)
162
+ return task_id
163
+
164
+
165
+ # For Python 3.7+
166
+ if __name__ == "__main__":
167
+ task_id = asyncio.run(main())
139
168
  ```
140
169
 
141
- `TaskRequest` has the following fields:
170
+ Note that in either the sync or the async code, collections of tasks can be given to the client to run them in a batch:
171
+
172
+ ```python
173
+ import asyncio
174
+ from futurehouse_client import FutureHouseClient, JobNames
175
+
176
+
177
+ async def main():
178
+ client = FutureHouseClient(
179
+ api_key="your_api_key",
180
+ )
181
+
182
+ task_data = [
183
+ {
184
+ "name": JobNames.OWL,
185
+ "query": "Has anyone tested therapeutic exerkines in humans or NHPs?",
186
+ },
187
+ {
188
+ "name": JobNames.CROW,
189
+ "query": "Are there any clinically validated therapeutic exerkines for humans?",
190
+ },
191
+ ]
192
+
193
+ task_responses = await client.arun_tasks_until_done(task_data)
194
+ print(task_responses[0].answer)
195
+ print(task_responses[1].answer)
196
+ return task_id
197
+
198
+
199
+ # For Python 3.7+
200
+ if __name__ == "__main__":
201
+ task_id = asyncio.run(main())
202
+ ```
203
+
204
+ `TaskRequest` can also be used to submit jobs and it has the following fields:
142
205
 
143
206
  | Field | Type | Description |
144
207
  | -------------- | ------------- | ------------------------------------------------------------------------------------------------------------------- |
@@ -148,13 +211,67 @@ task_id = client.create_task(task_data)
148
211
  | runtime_config | RuntimeConfig | Optional runtime parameters for the job |
149
212
 
150
213
  `runtime_config` can receive a `AgentConfig` object with the desired kwargs. Check the available `AgentConfig` fields in the [LDP documentation](https://github.com/Future-House/ldp/blob/main/src/ldp/agent/agent.py#L87). Besides the `AgentConfig` object, we can also pass `timeout` and `max_steps` to limit the execution time and the number of steps the agent can take.
151
- Other especialised configurations are also available but are outside the scope of this documentation.
214
+
215
+ ```python
216
+ from futurehouse_client import FutureHouseClient, JobNames
217
+ from futurehouse_client.models.app import TaskRequest
218
+
219
+ client = FutureHouseClient(
220
+ api_key="your_api_key",
221
+ )
222
+
223
+ task_response = client.run_tasks_until_done(
224
+ TaskRequest(
225
+ name=JobNames.OWL,
226
+ query="Has anyone tested therapeutic exerkines in humans or NHPs?",
227
+ )
228
+ )
229
+
230
+ print(task_response.answer)
231
+ ```
232
+
233
+ A `TaskResponse` will be returned from using our agents. For Owl, Crow, and Falcon, we default to a subclass, `PQATaskResponse` which has some key attributes:
234
+
235
+ | Field | Type | Description |
236
+ | --------------------- | ---- | ------------------------------------------------------------------------------- |
237
+ | answer | str | Answer to your query. |
238
+ | formatted_answer | str | Specially formatted answer with references. |
239
+ | has_successful_answer | bool | Flag for whether the agent was able to find a good answer to your query or not. |
240
+
241
+ If using the `verbose` setting, much more data can be pulled down from your `TaskResponse`, which will exist across all agents (not just Owl, Crow, and Falcon).
242
+
243
+ ```python
244
+ from futurehouse_client import FutureHouseClient, JobNames
245
+ from futurehouse_client.models.app import TaskRequest
246
+
247
+ client = FutureHouseClient(
248
+ api_key="your_api_key",
249
+ )
250
+
251
+ task_response = client.run_tasks_until_done(
252
+ TaskRequest(
253
+ name=JobNames.OWL,
254
+ query="Has anyone tested therapeutic exerkines in humans or NHPs?",
255
+ ),
256
+ verbose=True,
257
+ )
258
+
259
+ print(task_response.environment_frame)
260
+ ```
261
+
262
+ In that case, a `TaskResponseVerbose` will have the following fields:
263
+
264
+ | Field | Type | Description |
265
+ | ----------------- | ---- | ---------------------------------------------------------------------------------------------------------------------- | --- |
266
+ | agent_state | dict | Large object with all agent states during the progress of your task. |
267
+ | environment_frame | dict | Large nested object with all environment data, for PQA environments it includes contexts, paper metadata, and answers. |
268
+ | metadata | dict | Extra metadata about your query. | |
152
269
 
153
270
  ## Task Continuation
154
271
 
155
272
  Once a task is submitted and the answer is returned, FutureHouse platform allow you to ask follow-up questions to the previous task.
156
273
  It is also possible through the platform API.
157
- To accomplish that, we can use the `runtime_config` we discussed in the [Task submission](#task-submission) section.
274
+ To accomplish that, we can use the `runtime_config` we discussed in the [Simple task running](#simple-task-running) section.
158
275
 
159
276
  ```python
160
277
  from futurehouse_client import FutureHouseClient, JobNames
@@ -173,12 +290,12 @@ continued_task_data = {
173
290
  "runtime_config": {"continued_task_id": task_id},
174
291
  }
175
292
 
176
- continued_task_id = client.create_task(continued_task_data)
293
+ task_result = client.run_tasks_until_done(continued_task_data)
177
294
  ```
178
295
 
179
- ## Task retrieval
296
+ ## Asynchronous tasks
180
297
 
181
- Once a task is submitted, you can retrieve it by calling the `get_task` method, which receives a task id and returns a `TaskResponse` object.
298
+ Sometimes you may want to submit many jobs, while querying results at a later time. In this way you can do other things while waiting for a response. The platform API supports this as well rather than waiting for a result.
182
299
 
183
300
  ```python
184
301
  from futurehouse_client import FutureHouseClient
@@ -187,9 +304,13 @@ client = FutureHouseClient(
187
304
  api_key="your_api_key",
188
305
  )
189
306
 
190
- task_id = "task_id"
307
+ task_data = {"name": JobNames.CROW, "query": "How many species of birds are there?"}
308
+
309
+ task_id = client.create_task(task_data)
310
+
311
+ # move on to do other things
191
312
 
192
313
  task_status = client.get_task(task_id)
193
314
  ```
194
315
 
195
- `task_status` contains information about the task. For instance, its `status`, `task`, `environment_name` and `agent_name`, and other fields specific to the job.
316
+ `task_status` contains information about the task. For instance, its `status`, `task`, `environment_name` and `agent_name`, and other fields specific to the job. You can continually query the status until it's `success` before moving on.
@@ -0,0 +1,273 @@
1
+ # FutureHouse Platform API Documentation
2
+
3
+ Documentation and tutorials for futurehouse-client, a client for interacting with endpoints of the FutureHouse platform.
4
+
5
+ <!--TOC-->
6
+
7
+ - [Installation](#installation)
8
+ - [Quickstart](#quickstart)
9
+ - [Functionalities](#functionalities)
10
+ - [Authentication](#authentication)
11
+ - [Simple task running](#simple-task-running)
12
+ - [Task Continuation](#task-continuation)
13
+ - [Asynchronous tasks](#asynchronous-tasks)
14
+
15
+ <!--TOC-->
16
+
17
+ ## Installation
18
+
19
+ ```bash
20
+ uv pip install futurehouse-client
21
+ ```
22
+
23
+ ## Quickstart
24
+
25
+ ```python
26
+ from futurehouse_client import FutureHouseClient, JobNames
27
+ from pathlib import Path
28
+ from aviary.core import DummyEnv
29
+ import ldp
30
+
31
+ client = FutureHouseClient(
32
+ api_key="your_api_key",
33
+ )
34
+
35
+ task_data = {
36
+ "name": JobNames.CROW,
37
+ "query": "Which neglected diseases had a treatment developed by artificial intelligence?",
38
+ }
39
+
40
+ task_response = client.run_tasks_until_done(task_data)
41
+ ```
42
+
43
+ A quickstart example can be found in the [client_notebook.ipynb](https://futurehouse.gitbook.io/futurehouse-cookbook/futurehouse-client/docs/client_notebook) file, where we show how to submit and retrieve a job task, pass runtime configuration to the agent, and ask follow-up questions to the previous job.
44
+
45
+ ## Functionalities
46
+
47
+ FutureHouse client implements a RestClient (called `FutureHouseClient`) with the following functionalities:
48
+
49
+ - [Simple task running](#simple-task-running): `run_tasks_until_done(TaskRequest)` or `await arun_tasks_until_done(TaskRequest)`
50
+ - [Asynchronous tasks](#asynchronous-tasks): `get_task(task_id)` or `aget_task(task_id)` and `create_task(TaskRequest)` or `acreate_task(TaskRequest)`
51
+
52
+ To create a `FutureHouseClient`, you need to pass an FutureHouse platform api key (see [Authentication](#authentication)):
53
+
54
+ ```python
55
+ from futurehouse_client import FutureHouseClient
56
+
57
+ client = FutureHouseClient(
58
+ api_key="your_api_key",
59
+ )
60
+ ```
61
+
62
+ ## Authentication
63
+
64
+ In order to use the `FutureHouseClient`, you need to authenticate yourself. Authentication is done by providing an API key, which can be obtained directly from your [profile page in the FutureHouse platform](https://platform.futurehouse.org/profile).
65
+
66
+ ## Simple task running
67
+
68
+ In the FutureHouse platform, we define the deployed combination of an agent and an environment as a `job`. To invoke a job, we need to submit a `task` (also called a `query`) to it.
69
+ `FutureHouseClient` can be used to submit tasks/queries to available jobs in the FutureHouse platform. Using a `FutureHouseClient` instance, you can submit tasks to the platform by calling the `create_task` method, which receives a `TaskRequest` (or a dictionary with `kwargs`) and returns the task id.
70
+ Aiming to make the submission of tasks as simple as possible, we have created a `JobNames` `enum` that contains the available task types.
71
+
72
+ The available supported jobs are:
73
+ | Alias | Job Name | Task type | Description |
74
+ | --- | --- | --- | --- |
75
+ | `JobNames.CROW` | `job-futurehouse-paperqa2` | Fast Search | Ask a question of scientific data sources, and receive a high-accuracy, cited response. Built with [PaperQA2](https://github.com/Future-House/paper-qa). |
76
+ | `JobNames.FALCON` | `job-futurehouse-paperqa2-deep` | Deep Search | Use a plethora of sources to deeply research. Receive a detailed, structured report as a response. |
77
+ | `JobNames.OWL` | `job-futurehouse-hasanyone` | Precedent Search | Formerly known as HasAnyone, query if anyone has ever done something in science. |
78
+ | `JobNames.PHOENIX` | `job-futurehouse-phoenix` | Chemistry Tasks | A new iteration of ChemCrow, Phoenix uses cheminformatics tools to do chemistry. Good for planning synthesis and design of new molecules. |
79
+ | `JobNames.DUMMY` | `job-futurehouse-dummy` | Dummy Task | This is a dummy task. Mainly for testing purposes. |
80
+
81
+ Using `JobNames`, the task submission looks like this:
82
+
83
+ ```python
84
+ from futurehouse_client import FutureHouseClient, JobNames
85
+
86
+ client = FutureHouseClient(
87
+ api_key="your_api_key",
88
+ )
89
+
90
+ task_data = {
91
+ "name": JobNames.OWL,
92
+ "query": "Has anyone tested therapeutic exerkines in humans or NHPs?",
93
+ }
94
+
95
+ task_response = client.run_tasks_until_done(task_data)
96
+
97
+ print(task_response.answer)
98
+ ```
99
+
100
+ Or if running async code:
101
+
102
+ ```python
103
+ import asyncio
104
+ from futurehouse_client import FutureHouseClient, JobNames
105
+
106
+
107
+ async def main():
108
+ client = FutureHouseClient(
109
+ api_key="your_api_key",
110
+ )
111
+
112
+ task_data = {
113
+ "name": JobNames.OWL,
114
+ "query": "Has anyone tested therapeutic exerkines in humans or NHPs?",
115
+ }
116
+
117
+ task_response = await client.arun_tasks_until_done(task_data)
118
+ print(task_response.answer)
119
+ return task_id
120
+
121
+
122
+ # For Python 3.7+
123
+ if __name__ == "__main__":
124
+ task_id = asyncio.run(main())
125
+ ```
126
+
127
+ Note that in either the sync or the async code, collections of tasks can be given to the client to run them in a batch:
128
+
129
+ ```python
130
+ import asyncio
131
+ from futurehouse_client import FutureHouseClient, JobNames
132
+
133
+
134
+ async def main():
135
+ client = FutureHouseClient(
136
+ api_key="your_api_key",
137
+ )
138
+
139
+ task_data = [
140
+ {
141
+ "name": JobNames.OWL,
142
+ "query": "Has anyone tested therapeutic exerkines in humans or NHPs?",
143
+ },
144
+ {
145
+ "name": JobNames.CROW,
146
+ "query": "Are there any clinically validated therapeutic exerkines for humans?",
147
+ },
148
+ ]
149
+
150
+ task_responses = await client.arun_tasks_until_done(task_data)
151
+ print(task_responses[0].answer)
152
+ print(task_responses[1].answer)
153
+ return task_id
154
+
155
+
156
+ # For Python 3.7+
157
+ if __name__ == "__main__":
158
+ task_id = asyncio.run(main())
159
+ ```
160
+
161
+ `TaskRequest` can also be used to submit jobs and it has the following fields:
162
+
163
+ | Field | Type | Description |
164
+ | -------------- | ------------- | ------------------------------------------------------------------------------------------------------------------- |
165
+ | id | UUID | Optional job identifier. A UUID will be generated if not provided |
166
+ | name | str | Name of the job to execute eg. `job-futurehouse-paperqa2`, or using the `JobNames` for convenience: `JobNames.CROW` |
167
+ | query | str | Query or task to be executed by the job |
168
+ | runtime_config | RuntimeConfig | Optional runtime parameters for the job |
169
+
170
+ `runtime_config` can receive a `AgentConfig` object with the desired kwargs. Check the available `AgentConfig` fields in the [LDP documentation](https://github.com/Future-House/ldp/blob/main/src/ldp/agent/agent.py#L87). Besides the `AgentConfig` object, we can also pass `timeout` and `max_steps` to limit the execution time and the number of steps the agent can take.
171
+
172
+ ```python
173
+ from futurehouse_client import FutureHouseClient, JobNames
174
+ from futurehouse_client.models.app import TaskRequest
175
+
176
+ client = FutureHouseClient(
177
+ api_key="your_api_key",
178
+ )
179
+
180
+ task_response = client.run_tasks_until_done(
181
+ TaskRequest(
182
+ name=JobNames.OWL,
183
+ query="Has anyone tested therapeutic exerkines in humans or NHPs?",
184
+ )
185
+ )
186
+
187
+ print(task_response.answer)
188
+ ```
189
+
190
+ A `TaskResponse` will be returned from using our agents. For Owl, Crow, and Falcon, we default to a subclass, `PQATaskResponse` which has some key attributes:
191
+
192
+ | Field | Type | Description |
193
+ | --------------------- | ---- | ------------------------------------------------------------------------------- |
194
+ | answer | str | Answer to your query. |
195
+ | formatted_answer | str | Specially formatted answer with references. |
196
+ | has_successful_answer | bool | Flag for whether the agent was able to find a good answer to your query or not. |
197
+
198
+ If using the `verbose` setting, much more data can be pulled down from your `TaskResponse`, which will exist across all agents (not just Owl, Crow, and Falcon).
199
+
200
+ ```python
201
+ from futurehouse_client import FutureHouseClient, JobNames
202
+ from futurehouse_client.models.app import TaskRequest
203
+
204
+ client = FutureHouseClient(
205
+ api_key="your_api_key",
206
+ )
207
+
208
+ task_response = client.run_tasks_until_done(
209
+ TaskRequest(
210
+ name=JobNames.OWL,
211
+ query="Has anyone tested therapeutic exerkines in humans or NHPs?",
212
+ ),
213
+ verbose=True,
214
+ )
215
+
216
+ print(task_response.environment_frame)
217
+ ```
218
+
219
+ In that case, a `TaskResponseVerbose` will have the following fields:
220
+
221
+ | Field | Type | Description |
222
+ | ----------------- | ---- | ---------------------------------------------------------------------------------------------------------------------- | --- |
223
+ | agent_state | dict | Large object with all agent states during the progress of your task. |
224
+ | environment_frame | dict | Large nested object with all environment data, for PQA environments it includes contexts, paper metadata, and answers. |
225
+ | metadata | dict | Extra metadata about your query. | |
226
+
227
+ ## Task Continuation
228
+
229
+ Once a task is submitted and the answer is returned, FutureHouse platform allow you to ask follow-up questions to the previous task.
230
+ It is also possible through the platform API.
231
+ To accomplish that, we can use the `runtime_config` we discussed in the [Simple task running](#simple-task-running) section.
232
+
233
+ ```python
234
+ from futurehouse_client import FutureHouseClient, JobNames
235
+
236
+ client = FutureHouseClient(
237
+ api_key="your_api_key",
238
+ )
239
+
240
+ task_data = {"name": JobNames.CROW, "query": "How many species of birds are there?"}
241
+
242
+ task_id = client.create_task(task_data)
243
+
244
+ continued_task_data = {
245
+ "name": JobNames.CROW,
246
+ "query": "From the previous answer, specifically,how many species of crows are there?",
247
+ "runtime_config": {"continued_task_id": task_id},
248
+ }
249
+
250
+ task_result = client.run_tasks_until_done(continued_task_data)
251
+ ```
252
+
253
+ ## Asynchronous tasks
254
+
255
+ Sometimes you may want to submit many jobs, while querying results at a later time. In this way you can do other things while waiting for a response. The platform API supports this as well rather than waiting for a result.
256
+
257
+ ```python
258
+ from futurehouse_client import FutureHouseClient
259
+
260
+ client = FutureHouseClient(
261
+ api_key="your_api_key",
262
+ )
263
+
264
+ task_data = {"name": JobNames.CROW, "query": "How many species of birds are there?"}
265
+
266
+ task_id = client.create_task(task_data)
267
+
268
+ # move on to do other things
269
+
270
+ task_status = client.get_task(task_id)
271
+ ```
272
+
273
+ `task_status` contains information about the task. For instance, its `status`, `task`, `environment_name` and `agent_name`, and other fields specific to the job. You can continually query the status until it's `success` before moving on.
@@ -25,14 +25,12 @@
25
25
  "metadata": {},
26
26
  "outputs": [],
27
27
  "source": [
28
- "import time\n",
29
- "\n",
30
- "from futurehouse_client import Client, JobNames\n",
28
+ "from futurehouse_client import FutureHouseClient, JobNames\n",
31
29
  "from futurehouse_client.models import (\n",
32
30
  " AuthType,\n",
33
- " JobRequest,\n",
34
31
  " RuntimeConfig,\n",
35
32
  " Stage,\n",
33
+ " TaskRequest,\n",
36
34
  ")\n",
37
35
  "from ldp.agent import AgentConfig"
38
36
  ]
@@ -53,7 +51,7 @@
53
51
  "metadata": {},
54
52
  "outputs": [],
55
53
  "source": [
56
- "client = Client(\n",
54
+ "client = FutureHouseClient(\n",
57
55
  " stage=Stage.PROD,\n",
58
56
  " auth_type=AuthType.API_KEY,\n",
59
57
  " api_key=\"your-api-key\",\n",
@@ -71,7 +69,7 @@
71
69
  "cell_type": "markdown",
72
70
  "metadata": {},
73
71
  "source": [
74
- "Submitting jobs is done by calling the `create_job` method, which receives a `JobRequest` object."
72
+ "Submitting jobs is done by calling the `run_tasks_until_done` method, which receives a `TaskRequest` object."
75
73
  ]
76
74
  },
77
75
  {
@@ -80,24 +78,22 @@
80
78
  "metadata": {},
81
79
  "outputs": [],
82
80
  "source": [
83
- "job_data = JobRequest(\n",
81
+ "task_data = TaskRequest(\n",
84
82
  " name=JobNames.from_string(\"crow\"),\n",
85
83
  " query=\"What is the molecule known to have the greatest solubility in water?\",\n",
86
84
  ")\n",
87
- "client.create_job(job_data)\n",
85
+ "task_response = client.run_tasks_until_done(task_data)\n",
88
86
  "\n",
89
- "while client.get_job().status != \"success\":\n",
90
- " time.sleep(5)\n",
91
- "print(f\"Job status: {client.get_job().status}\")\n",
92
- "print(f\"Job answer: \\n{client.get_job().formatted_answer}\")"
87
+ "print(f\"Job status: {task_response.status}\")\n",
88
+ "print(f\"Job answer: \\n{task_response.formatted_answer}\")"
93
89
  ]
94
90
  },
95
91
  {
96
92
  "cell_type": "markdown",
97
93
  "metadata": {},
98
94
  "source": [
99
- "You can also pass a `runtime_config` to the job, which will be used to configure the agent on runtime.\n",
100
- "Here, we will define a agent configuration and pass it to the job. This agent is used to decide the next action to take.\n",
95
+ "You can also pass a `runtime_config` to the task, which will be used to configure the agent on runtime.\n",
96
+ "Here, we will define a agent configuration and pass it to the task. This agent is used to decide the next action to take.\n",
101
97
  "We will also use the `max_steps` parameter to limit the number of steps the agent will take."
102
98
  ]
103
99
  },
@@ -114,17 +110,15 @@
114
110
  " \"temperature\": 0.0,\n",
115
111
  " },\n",
116
112
  ")\n",
117
- "job_data = JobRequest(\n",
113
+ "task_data = TaskRequest(\n",
118
114
  " name=JobNames.CROW,\n",
119
115
  " query=\"How many moons does earth have?\",\n",
120
116
  " runtime_config=RuntimeConfig(agent=agent, max_steps=10),\n",
121
117
  ")\n",
122
- "client.create_job(job_data)\n",
118
+ "task_response = client.run_tasks_until_done(task_data)\n",
123
119
  "\n",
124
- "while client.get_job().status != \"success\":\n",
125
- " time.sleep(5)\n",
126
- "print(f\"Job status: {client.get_job().status}\")\n",
127
- "print(f\"Job answer: \\n{client.get_job().formatted_answer}\")"
120
+ "print(f\"Job status: {task_response.status}\")\n",
121
+ "print(f\"Job answer: \\n{task_response.formatted_answer}\")"
128
122
  ]
129
123
  },
130
124
  {
@@ -145,13 +139,14 @@
145
139
  "metadata": {},
146
140
  "outputs": [],
147
141
  "source": [
148
- "job_data = JobRequest(name=JobNames.CROW, query=\"How many species of birds are there?\")\n",
142
+ "task_data = TaskRequest(\n",
143
+ " name=JobNames.CROW, query=\"How many species of birds are there?\"\n",
144
+ ")\n",
145
+ "\n",
146
+ "task_response = client.run_tasks_until_done(task_data)\n",
149
147
  "\n",
150
- "job_id = client.create_job(job_data)\n",
151
- "while client.get_job().status != \"success\":\n",
152
- " time.sleep(5)\n",
153
- "print(f\"First job status: {client.get_job().status}\")\n",
154
- "print(f\"First job answer: \\n{client.get_job().formatted_answer}\")"
148
+ "print(f\"First job status: {task_response.status}\")\n",
149
+ "print(f\"First job answer: \\n{task_response.formatted_answer}\")"
155
150
  ]
156
151
  },
157
152
  {
@@ -163,14 +158,14 @@
163
158
  "continued_job_data = {\n",
164
159
  " \"name\": JobNames.CROW,\n",
165
160
  " \"query\": \"From the previous answer, specifically,how many species of crows are there?\",\n",
166
- " \"runtime_config\": {\"continued_job_id\": job_id},\n",
161
+ " \"runtime_config\": {\"continued_job_id\": task_response.task_id},\n",
167
162
  "}\n",
168
163
  "\n",
169
- "continued_job_id = client.create_job(continued_job_data)\n",
170
- "while client.get_job().status != \"success\":\n",
171
- " time.sleep(5)\n",
172
- "print(f\"Continued job status: {client.get_job().status}\")\n",
173
- "print(f\"Continued job answer: \\n{client.get_job().formatted_answer}\")"
164
+ "continued_task_response = client.run_tasks_until_done(continued_job_data)\n",
165
+ "\n",
166
+ "\n",
167
+ "print(f\"Continued job status: {continued_task_response.status}\")\n",
168
+ "print(f\"Continued job answer: \\n{continued_task_response.formatted_answer}\")"
174
169
  ]
175
170
  }
176
171
  ],
@@ -29,6 +29,7 @@ class JobNames(StrEnum):
29
29
  FALCON = "job-futurehouse-paperqa2-deep"
30
30
  OWL = "job-futurehouse-hasanyone"
31
31
  DUMMY = "job-futurehouse-dummy-env"
32
+ PHOENIX = "job-futurehouse-phoenix"
32
33
 
33
34
  @classmethod
34
35
  def from_stage(cls, job_name: str, stage: Stage | None = None) -> str: