fusion-bench 0.2.8__tar.gz → 0.2.10__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (742) hide show
  1. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/PKG-INFO +17 -18
  2. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/README.md +15 -16
  3. fusion_bench-0.2.10/fusion_bench/__main__.py +4 -0
  4. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/fer2013.py +1 -0
  5. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/__init__.py +26 -4
  6. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/classification/__init__.py +1 -0
  7. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/classification/clip_finetune.py +1 -3
  8. fusion_bench-0.2.10/fusion_bench/method/classification/continual_clip_finetune.py +297 -0
  9. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/dare/__init__.py +1 -0
  10. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/dare/task_arithmetic.py +14 -7
  11. fusion_bench-0.2.10/fusion_bench/method/dare/ties_merging.py +100 -0
  12. fusion_bench-0.2.10/fusion_bench/method/isotropic_merging/__init__.py +15 -0
  13. fusion_bench-0.2.10/fusion_bench/method/isotropic_merging/iso.py +114 -0
  14. fusion_bench-0.2.10/fusion_bench/method/isotropic_merging/iso_utils.py +176 -0
  15. fusion_bench-0.2.10/fusion_bench/method/opcm/__init__.py +4 -0
  16. fusion_bench-0.2.10/fusion_bench/method/opcm/opcm.py +277 -0
  17. fusion_bench-0.2.10/fusion_bench/method/opcm/task_arithmetic.py +115 -0
  18. fusion_bench-0.2.10/fusion_bench/method/opcm/ties_merging.py +156 -0
  19. fusion_bench-0.2.10/fusion_bench/method/opcm/utils.py +73 -0
  20. fusion_bench-0.2.10/fusion_bench/method/opcm/weight_average.py +120 -0
  21. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/slerp/slerp.py +1 -1
  22. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/task_singular_vector/TSVM.py +22 -2
  23. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +91 -93
  24. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/ties_merging/ties_merging.py +10 -0
  25. fusion_bench-0.2.10/fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
  26. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/mixins/clip_classification.py +4 -1
  27. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/programs/fabric_fusion_program.py +22 -11
  28. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/scripts/cli.py +1 -0
  29. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/base_pool.py +1 -1
  30. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/clip_vision/taskpool.py +12 -7
  31. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/__init__.py +2 -1
  32. fusion_bench-0.2.10/fusion_bench/utils/dict.py +43 -0
  33. fusion_bench-0.2.10/fusion_bench/utils/expr.py +90 -0
  34. fusion_bench-0.2.10/fusion_bench/utils/fabric.py +17 -0
  35. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/instantiate.py +7 -1
  36. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/json.py +30 -0
  37. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/parameters.py +27 -7
  38. fusion_bench-0.2.10/fusion_bench/utils/path.py +22 -0
  39. fusion_bench-0.2.10/fusion_bench/utils/plot/color_data.py +1726 -0
  40. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/rich_utils.py +15 -0
  41. fusion_bench-0.2.10/fusion_bench/utils/set.py +8 -0
  42. fusion_bench-0.2.10/fusion_bench/utils/tensorboard.py +51 -0
  43. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench.egg-info/PKG-INFO +17 -18
  44. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench.egg-info/SOURCES.txt +29 -0
  45. fusion_bench-0.2.10/fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
  46. {fusion_bench-0.2.8/fusion_bench_config/method → fusion_bench-0.2.10/fusion_bench_config/method/classification}/clip_finetune.yaml +2 -2
  47. fusion_bench-0.2.10/fusion_bench_config/method/clip_finetune.yaml +26 -0
  48. fusion_bench-0.2.10/fusion_bench_config/method/dare/ties_merging.yaml +15 -0
  49. fusion_bench-0.2.10/fusion_bench_config/method/isotropic_merging/iso_c.yaml +4 -0
  50. fusion_bench-0.2.10/fusion_bench_config/method/isotropic_merging/iso_cts.yaml +5 -0
  51. fusion_bench-0.2.10/fusion_bench_config/method/opcm/opcm.yaml +12 -0
  52. fusion_bench-0.2.10/fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
  53. fusion_bench-0.2.10/fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
  54. fusion_bench-0.2.10/fusion_bench_config/method/opcm/weight_average.yaml +10 -0
  55. fusion_bench-0.2.10/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +8 -0
  56. fusion_bench-0.2.10/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
  57. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/pyproject.toml +1 -1
  58. fusion_bench-0.2.8/fusion_bench/utils/path.py +0 -7
  59. fusion_bench-0.2.8/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +0 -2
  60. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/LICENSE +0 -0
  61. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/__init__.py +0 -0
  62. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/__init__.py +0 -0
  63. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/method/__init__.py +0 -0
  64. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/method/base_algorithm.py +0 -0
  65. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +0 -0
  66. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/modelpool/__init__.py +0 -0
  67. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/modelpool/base_pool.py +0 -0
  68. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/modelpool/huggingface_clip_vision.py +0 -0
  69. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/taskpool/__init__.py +0 -0
  70. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/taskpool/base_pool.py +0 -0
  71. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/taskpool/clip_image_classification.py +0 -0
  72. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +0 -0
  73. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/constants/__init__.py +0 -0
  74. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/constants/paths.py +0 -0
  75. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/__init__.py +0 -0
  76. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/arc_agi/__init__.py +0 -0
  77. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/arc_agi/arc.py +0 -0
  78. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/arc_agi/arc_agi.py +0 -0
  79. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/arc_agi/augmenters.py +0 -0
  80. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/arc_agi/messagers.py +0 -0
  81. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/arc_agi/np_cache.py +0 -0
  82. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/arc_agi/preprocess.py +0 -0
  83. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/arc_agi/representers.py +0 -0
  84. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/clip_dataset.py +0 -0
  85. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/gpt2_glue.py +0 -0
  86. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/gsm8k.py +0 -0
  87. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/image_dataset.py +0 -0
  88. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/imdb.py +0 -0
  89. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/__init__.py +0 -0
  90. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/alpaca.py +0 -0
  91. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/collate.py +0 -0
  92. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/metamathqa.py +0 -0
  93. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/openai.py +0 -0
  94. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/preference_700k.py +0 -0
  95. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/sharegpt.py +0 -0
  96. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/squad.py +0 -0
  97. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/stanford_shp.py +0 -0
  98. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/ultrachat.py +0 -0
  99. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/utils/__init__.py +0 -0
  100. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/llama/wikitext.py +0 -0
  101. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/dataset/nyuv2.py +0 -0
  102. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/ada_svd/__init__.py +0 -0
  103. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/ada_svd/clip_vision.py +0 -0
  104. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/__init__.py +0 -0
  105. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +0 -0
  106. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/clip_task_wise_adamerging.py +0 -0
  107. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/entropy_loss.py +0 -0
  108. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +0 -0
  109. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +0 -0
  110. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/layer_wise_adamerging.py +0 -0
  111. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/llama_adamerging.py +0 -0
  112. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/min_norm_solvers.py +0 -0
  113. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/task_wise_adamerging.py +0 -0
  114. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/adamerging/utils.py +0 -0
  115. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/analysis/__init__.py +0 -0
  116. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/analysis/task_vector_cos_similarity.py +0 -0
  117. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/analysis/task_vector_violin_plot.py +0 -0
  118. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/base_algorithm.py +0 -0
  119. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/concrete_subspace/__init__.py +0 -0
  120. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -0
  121. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +0 -0
  122. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/dare/simple_average.py +0 -0
  123. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/dare/utils.py +0 -0
  124. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/dawe/__init__.py +0 -0
  125. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/dawe/dawe_for_clip.py +0 -0
  126. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/dawe/warppers/__init__.py +0 -0
  127. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/dawe/warppers/dawe_model.py +0 -0
  128. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/depth_upscaling/__init__.py +0 -0
  129. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/depth_upscaling/depth_upscaling.py +0 -0
  130. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +0 -0
  131. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/dummy.py +0 -0
  132. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/ensemble.py +0 -0
  133. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/fisher_merging/__init__.py +0 -0
  134. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -0
  135. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/fisher_merging/fisher_merging.py +0 -0
  136. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +0 -0
  137. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/linear/__init__.py +0 -0
  138. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/linear/expo.py +0 -0
  139. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/linear/linear_interpolation.py +0 -0
  140. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/linear/llama_expo.py +0 -0
  141. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/linear/simple_average_for_llama.py +0 -0
  142. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/linear/task_arithmetic_for_llama.py +0 -0
  143. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/lm_finetune/__init__.py +0 -0
  144. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/lm_finetune/bradley_terry_rm.py +0 -0
  145. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/lm_finetune/causal_lm_pretrain.py +0 -0
  146. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/lm_finetune/fullfinetune_sft.py +0 -0
  147. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/lm_finetune/peftfinetune_sft.py +0 -0
  148. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/mixture_of_experts/__init__.py +0 -0
  149. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/mixture_of_experts/mixtral_merging.py +0 -0
  150. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +0 -0
  151. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/model_recombination.py +0 -0
  152. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/__init__.py +0 -0
  153. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/llama_magnitude_prune.py +0 -0
  154. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/llama_random_prune.py +0 -0
  155. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/llama_wanda_prune.py +0 -0
  156. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/magnitude_diff_pruning.py +0 -0
  157. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/prune_utils.py +0 -0
  158. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/wanda_utils/__init__.py +0 -0
  159. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/wanda_utils/ablate.py +0 -0
  160. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/wanda_utils/data.py +0 -0
  161. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/wanda_utils/eval.py +0 -0
  162. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/wanda_utils/layerwrapper.py +0 -0
  163. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/wanda_utils/prune.py +0 -0
  164. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/wanda_utils/prune_opt.py +0 -0
  165. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pruning/wanda_utils/sparsegpt.py +0 -0
  166. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pwe_moe/__init__.py +0 -0
  167. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pwe_moe/clip_pwe_moe.py +0 -0
  168. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pwe_moe/module.py +0 -0
  169. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pwe_moe/phn/__init__.py +0 -0
  170. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pwe_moe/phn/solvers.py +0 -0
  171. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/pwe_moe/utils.py +0 -0
  172. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/rankone_moe/__init__.py +0 -0
  173. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/rankone_moe/clip_rankone_moe.py +0 -0
  174. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/rankone_moe/rankone_moe.py +0 -0
  175. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/regmean/__init__.py +0 -0
  176. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/regmean/clip_regmean.py +0 -0
  177. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/regmean/gpt2_regmean.py +0 -0
  178. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/regmean/regmean.py +0 -0
  179. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/simple_average.py +0 -0
  180. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/slerp/__init__.py +0 -0
  181. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/slerp/slerp_utils.py +0 -0
  182. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/smile_upscaling/__init__.py +0 -0
  183. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/smile_upscaling/singular_projection_merging.py +0 -0
  184. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +0 -0
  185. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/smile_upscaling/smile_upscaling.py +0 -0
  186. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/sparse_we_moe/__init__.py +0 -0
  187. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +0 -0
  188. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/sparse_we_moe/sparse_we_moe.py +0 -0
  189. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/sparselo/__init__.py +0 -0
  190. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/sparselo/sparselo.py +0 -0
  191. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/surgery/__init__.py +0 -0
  192. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +0 -0
  193. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/tall_mask/__init__.py +0 -0
  194. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/tall_mask/utils.py +0 -0
  195. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/task_arithmetic/__init__.py +0 -0
  196. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/task_arithmetic/task_arithmetic.py +0 -0
  197. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/task_singular_vector/TSVC.py +0 -0
  198. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/task_singular_vector/__init__.py +0 -0
  199. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +0 -0
  200. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/task_singular_vector/utils/__init__.py +0 -0
  201. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/ties_merging/__init__.py +0 -0
  202. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/ties_merging/ties_merging_utils.py +0 -0
  203. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/trust_region/__init__.py +0 -0
  204. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/trust_region/clip_task_arithmetic.py +0 -0
  205. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/trust_region/utils.py +0 -0
  206. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/we_moe/__init__.py +0 -0
  207. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/we_moe/clip_we_moe.py +0 -0
  208. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/we_moe/we_moe.py +0 -0
  209. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/weighted_average/__init__.py +0 -0
  210. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/weighted_average/llama.py +0 -0
  211. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/method/weighted_average/weighted_average.py +0 -0
  212. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/__init__.py +0 -0
  213. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/nyuv2/__init__.py +0 -0
  214. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/nyuv2/depth.py +0 -0
  215. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/nyuv2/loss.py +0 -0
  216. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/nyuv2/noise.py +0 -0
  217. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/nyuv2/normal.py +0 -0
  218. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/nyuv2/segmentation.py +0 -0
  219. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/text_to_image_generation/__init__.py +0 -0
  220. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +0 -0
  221. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/text_to_image_generation/compressibility.py +0 -0
  222. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +0 -0
  223. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/mixins/__init__.py +0 -0
  224. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/mixins/fabric_training.py +0 -0
  225. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/mixins/lightning_fabric.py +0 -0
  226. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/mixins/optim/__init__.py +0 -0
  227. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/mixins/optim/adamw_with_warmup.py +0 -0
  228. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/mixins/rich_live.py +0 -0
  229. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/mixins/serialization.py +0 -0
  230. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/mixins/simple_profiler.py +0 -0
  231. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +0 -0
  232. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/__init__.py +0 -0
  233. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/base_pool.py +0 -0
  234. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/causal_lm/__init__.py +0 -0
  235. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/causal_lm/causal_lm.py +0 -0
  236. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/clip_vision/__init__.py +0 -0
  237. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/clip_vision/modelpool.py +0 -0
  238. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/huggingface_automodel.py +0 -0
  239. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/huggingface_gpt2_classification.py +0 -0
  240. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/nyuv2_modelpool.py +0 -0
  241. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/seq2seq_lm/__init__.py +0 -0
  242. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/seq2seq_lm/modelpool.py +0 -0
  243. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/seq_classification_lm/__init__.py +0 -0
  244. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/seq_classification_lm/reward_model.py +0 -0
  245. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +0 -0
  246. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/__init__.py +0 -0
  247. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/chat_templates/__init__.py +0 -0
  248. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/chat_templates/llama_3_Instruct.py +0 -0
  249. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/chat_templates/load_tokenizer.py +0 -0
  250. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/hf_clip.py +0 -0
  251. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/linearized/__init__.py +0 -0
  252. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/linearized/linearized_model_utils.py +0 -0
  253. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/linearized/vision_model.py +0 -0
  254. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/llama/__init__.py +0 -0
  255. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/llama/model_utils/__init__.py +0 -0
  256. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/llama/model_utils/embedding.py +0 -0
  257. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/llama/model_utils/liger_kernel.py +0 -0
  258. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/llama/model_utils/misc.py +0 -0
  259. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/llama/model_utils/mod.py +0 -0
  260. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/llama/model_utils/visual.py +0 -0
  261. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/llama/patcher.py +0 -0
  262. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/llama/tokenizer_loader.py +0 -0
  263. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/masks/__init__.py +0 -0
  264. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/masks/mask_model.py +0 -0
  265. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/modeling_losparse_llama/__init__.py +0 -0
  266. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +0 -0
  267. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/modeling_losparse_llama/losparse_linear.py +0 -0
  268. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +0 -0
  269. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/modeling_losparse_llama/register.py +0 -0
  270. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/modeling_losparse_llama/utils.py +0 -0
  271. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/modeling_smile_mistral/__init__.py +0 -0
  272. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +0 -0
  273. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +0 -0
  274. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/modeling_smile_mistral/register.py +0 -0
  275. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/nyuv2/__init__.py +0 -0
  276. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/nyuv2/aspp.py +0 -0
  277. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/nyuv2/lightning_module.py +0 -0
  278. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/nyuv2/resnet.py +0 -0
  279. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/nyuv2/resnet_dilated.py +0 -0
  280. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/parameter_dict.py +0 -0
  281. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/rankone_moe.py +0 -0
  282. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/separate_io.py +0 -0
  283. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/smile_moe/__init__.py +0 -0
  284. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/smile_moe/linear.py +0 -0
  285. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/sparse_we_moe.py +0 -0
  286. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/surgery/__init__.py +0 -0
  287. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/surgery/surgerymodelwrapper.py +0 -0
  288. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/utils.py +0 -0
  289. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/we_moe.py +0 -0
  290. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/wrappers/__init__.py +0 -0
  291. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/wrappers/ensemble.py +0 -0
  292. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/wrappers/layer_wise_fusion.py +0 -0
  293. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/models/wrappers/task_wise_fusion.py +0 -0
  294. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/optim/__init__.py +0 -0
  295. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/optim/exception.py +0 -0
  296. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/optim/lr_scheduler/__init__.py +0 -0
  297. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/optim/lr_scheduler/linear_warmup.py +0 -0
  298. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/optim/lr_scheduler/utils/__init__.py +0 -0
  299. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/optim/lr_scheduler/utils/visualization.py +0 -0
  300. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/optim/mezo.py +0 -0
  301. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/programs/__init__.py +0 -0
  302. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/programs/base_program.py +0 -0
  303. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/scripts/__init__.py +0 -0
  304. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/scripts/clip/__init__.py +0 -0
  305. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/scripts/clip/convert_checkpoint.py +0 -0
  306. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/scripts/imgui.py +0 -0
  307. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/scripts/nyuv2_mtl_train.py +0 -0
  308. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/scripts/webui.py +0 -0
  309. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/__init__.py +0 -0
  310. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/clip_vision/__init__.py +0 -0
  311. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +0 -0
  312. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +0 -0
  313. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/dummy.py +0 -0
  314. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/gpt2_text_classification.py +0 -0
  315. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/llama/__init__.py +0 -0
  316. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/llama/reward_model.py +0 -0
  317. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/llama/test_generation.py +0 -0
  318. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/taskpool/nyuv2_taskpool.py +0 -0
  319. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/__init__.py +0 -0
  320. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/base_task.py +0 -0
  321. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/classification.py +0 -0
  322. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/__init__.py +0 -0
  323. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/cifar10.py +0 -0
  324. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/cifar100.py +0 -0
  325. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/clip_dataset.py +0 -0
  326. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/cub_200_2011.py +0 -0
  327. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/dtd.py +0 -0
  328. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/emnist_letters.py +0 -0
  329. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/emnist_mnist.py +0 -0
  330. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/eurosat.py +0 -0
  331. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/fashion_mnist.py +0 -0
  332. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/fer2013.py +0 -0
  333. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/flower102.py +0 -0
  334. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/food101.py +0 -0
  335. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/gtsrb.py +0 -0
  336. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/imagenet.py +0 -0
  337. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/kmnist.py +0 -0
  338. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/mnist.py +0 -0
  339. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +0 -0
  340. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +0 -0
  341. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/pcam.py +0 -0
  342. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/rendered_sst2.py +0 -0
  343. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/resisc45.py +0 -0
  344. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/stanford_cars.py +0 -0
  345. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/stl10.py +0 -0
  346. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/sun397.py +0 -0
  347. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/svhn.py +0 -0
  348. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/clip_classification/tiny_imagenet.py +0 -0
  349. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
  350. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +0 -0
  351. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +0 -0
  352. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +0 -0
  353. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +0 -0
  354. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +0 -0
  355. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/auto.py +0 -0
  356. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/cache_utils.py +0 -0
  357. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/data.py +0 -0
  358. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/devices.py +0 -0
  359. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/dtype.py +0 -0
  360. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/functools.py +0 -0
  361. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/hydra_utils.py +0 -0
  362. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/lazy_imports.py +0 -0
  363. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/misc.py +0 -0
  364. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/packages.py +0 -0
  365. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/plot/__init__.py +0 -0
  366. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/plot/token.py +0 -0
  367. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/plot/token_notebook.py +0 -0
  368. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/pylogger.py +0 -0
  369. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/state_dict_arithmetic.py +0 -0
  370. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/strenum/__init__.py +0 -0
  371. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/strenum/_name_mangler.py +0 -0
  372. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/strenum/_version.py +0 -0
  373. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/timer.py +0 -0
  374. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench/utils/type.py +0 -0
  375. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench.egg-info/dependency_links.txt +0 -0
  376. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench.egg-info/entry_points.txt +0 -0
  377. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench.egg-info/requires.txt +0 -0
  378. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench.egg-info/top_level.txt +0 -0
  379. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/README.md +0 -0
  380. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  381. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/README.md +0 -0
  382. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/TALL14.yaml +0 -0
  383. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/TALL20.yaml +0 -0
  384. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/cifar10.yaml +0 -0
  385. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/cifar100.yaml +0 -0
  386. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +0 -0
  387. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/dtd.yaml +0 -0
  388. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +0 -0
  389. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +0 -0
  390. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/eurosat.yaml +0 -0
  391. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +0 -0
  392. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/fer2013.yaml +0 -0
  393. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/food101.yaml +0 -0
  394. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +0 -0
  395. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/kmnist.yaml +0 -0
  396. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +0 -0
  397. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/mnist.yaml +0 -0
  398. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +0 -0
  399. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +0 -0
  400. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/pcam.yaml +0 -0
  401. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +0 -0
  402. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/resisc45.yaml +0 -0
  403. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +0 -0
  404. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/stl10.yaml +0 -0
  405. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/sun397.yaml +0 -0
  406. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/svhn.yaml +0 -0
  407. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +0 -0
  408. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +0 -0
  409. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/TALL14.yaml +0 -0
  410. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/TALL20.yaml +0 -0
  411. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/cifar10.yaml +0 -0
  412. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/cifar100.yaml +0 -0
  413. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +0 -0
  414. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/dtd.yaml +0 -0
  415. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +0 -0
  416. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +0 -0
  417. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/eurosat.yaml +0 -0
  418. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +0 -0
  419. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/fer2013.yaml +0 -0
  420. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/food101.yaml +0 -0
  421. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +0 -0
  422. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/kmnist.yaml +0 -0
  423. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +0 -0
  424. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/mnist.yaml +0 -0
  425. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +0 -0
  426. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +0 -0
  427. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/pcam.yaml +0 -0
  428. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +0 -0
  429. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/resisc45.yaml +0 -0
  430. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +0 -0
  431. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/stl10.yaml +0 -0
  432. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/sun397.yaml +0 -0
  433. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/svhn.yaml +0 -0
  434. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +0 -0
  435. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +0 -0
  436. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/val/dtd.yaml +0 -0
  437. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/val/eurosat.yaml +0 -0
  438. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +0 -0
  439. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/val/mnist.yaml +0 -0
  440. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/val/resisc45.yaml +0 -0
  441. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +0 -0
  442. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/val/sun397.yaml +0 -0
  443. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/val/svhn.yaml +0 -0
  444. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +0 -0
  445. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +0 -0
  446. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +0 -0
  447. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/question_answering/search_qa.yaml +0 -0
  448. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/question_answering/test/search_qa.yaml +0 -0
  449. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +0 -0
  450. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/question_answering/train/search_qa.yaml +0 -0
  451. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/question_answering/val/search_qa.yaml +0 -0
  452. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/summarization/test/xsum.yaml +0 -0
  453. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/summarization/train/xsum.yaml +0 -0
  454. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/summarization/val/xsum.yaml +0 -0
  455. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/summarization/xsum.yaml +0 -0
  456. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +0 -0
  457. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +0 -0
  458. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +0 -0
  459. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +0 -0
  460. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +0 -0
  461. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +0 -0
  462. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric/auto.yaml +0 -0
  463. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric/llama_ddp.yaml +0 -0
  464. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric/llama_fsdp.yaml +0 -0
  465. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric/llama_peft_fsdp.yaml +0 -0
  466. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric/loggers/csv_logger.yaml +0 -0
  467. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +0 -0
  468. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric/loggers/wandb_logger.yaml +0 -0
  469. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric/strategy/deepspeed.yaml +0 -0
  470. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric/strategy/llama_fsdp.yaml +0 -0
  471. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +0 -0
  472. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/fabric_model_fusion.yaml +0 -0
  473. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/hydra/default.yaml +0 -0
  474. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/hydra/help/fusion_bench_help.yaml +0 -0
  475. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/hydra/job_logging/rich_logging.yaml +0 -0
  476. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/llama_full_finetune.yaml +0 -0
  477. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/llama_magnitude_pruning.yaml +0 -0
  478. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/llama_model_fusion.yaml +0 -0
  479. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/ada_svd/clip_vision.yaml +0 -0
  480. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/adamerging/clip.yaml +0 -0
  481. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +0 -0
  482. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +0 -0
  483. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/adamerging/llama_sft.yaml +0 -0
  484. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/adamerging.yaml +0 -0
  485. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +0 -0
  486. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +0 -0
  487. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +0 -0
  488. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +0 -0
  489. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +0 -0
  490. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/dare/simple_average.yaml +0 -0
  491. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/dare/task_arithmetic.yaml +0 -0
  492. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/dawe/dawe_for_clip.yaml +0 -0
  493. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/depth_upscaling.yaml +0 -0
  494. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/dummy.yaml +0 -0
  495. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/ensemble/max_model_predictor.yaml +0 -0
  496. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/ensemble/simple_ensemble.yaml +0 -0
  497. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/ensemble/weighted_ensemble.yaml +0 -0
  498. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -0
  499. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/fisher_merging/fisher_merging.yaml +0 -0
  500. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +0 -0
  501. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/linear/expo.yaml +0 -0
  502. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/linear/linear_interpolation.yaml +0 -0
  503. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/linear/llama_expo.yaml +0 -0
  504. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/linear/llama_expo_with_dare.yaml +0 -0
  505. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/linear/simple_average_for_llama.yaml +0 -0
  506. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -0
  507. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/linear/weighted_average.yaml +0 -0
  508. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/linear/weighted_average_for_llama.yaml +0 -0
  509. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +0 -0
  510. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +0 -0
  511. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +0 -0
  512. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/mixtral_moe_merging.yaml +0 -0
  513. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/mixtral_moe_upscaling.yaml +0 -0
  514. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/model_recombination.yaml +0 -0
  515. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +0 -0
  516. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/pruning/llama_random_pruning.yaml +0 -0
  517. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +0 -0
  518. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +0 -0
  519. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +0 -0
  520. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/rankone_moe/rankone_moe.yaml +0 -0
  521. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/regmean/clip_regmean.yaml +0 -0
  522. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/regmean/gpt2_regmean.yaml +0 -0
  523. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/regmean/regmean.yaml +0 -0
  524. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/simple_average.yaml +0 -0
  525. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/slerp/slerp.yaml +0 -0
  526. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +0 -0
  527. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +0 -0
  528. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +0 -0
  529. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +0 -0
  530. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +0 -0
  531. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +0 -0
  532. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/surgery/adamerging_surgery.yaml +0 -0
  533. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/task_arithmetic.yaml +0 -0
  534. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/ties_merging.yaml +0 -0
  535. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +0 -0
  536. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +0 -0
  537. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +0 -0
  538. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/README.md +0 -0
  539. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +0 -0
  540. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +0 -0
  541. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +0 -0
  542. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +0 -0
  543. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +0 -0
  544. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +0 -0
  545. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +0 -0
  546. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +0 -0
  547. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +0 -0
  548. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +0 -0
  549. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +0 -0
  550. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +0 -0
  551. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +0 -0
  552. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +0 -0
  553. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +0 -0
  554. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +0 -0
  555. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +0 -0
  556. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +0 -0
  557. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +0 -0
  558. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +0 -0
  559. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +0 -0
  560. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +0 -0
  561. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +0 -0
  562. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +0 -0
  563. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +0 -0
  564. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +0 -0
  565. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +0 -0
  566. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +0 -0
  567. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +0 -0
  568. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +0 -0
  569. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +0 -0
  570. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +0 -0
  571. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +0 -0
  572. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +0 -0
  573. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +0 -0
  574. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +0 -0
  575. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +0 -0
  576. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +0 -0
  577. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +0 -0
  578. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +0 -0
  579. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +0 -0
  580. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +0 -0
  581. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +0 -0
  582. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +0 -0
  583. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +0 -0
  584. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +0 -0
  585. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +0 -0
  586. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +0 -0
  587. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +0 -0
  588. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +0 -0
  589. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +0 -0
  590. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +0 -0
  591. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +0 -0
  592. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +0 -0
  593. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +0 -0
  594. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +0 -0
  595. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +0 -0
  596. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +0 -0
  597. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +0 -0
  598. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +0 -0
  599. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +0 -0
  600. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +0 -0
  601. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +0 -0
  602. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +0 -0
  603. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +0 -0
  604. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +0 -0
  605. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +0 -0
  606. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +0 -0
  607. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +0 -0
  608. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +0 -0
  609. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +0 -0
  610. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +0 -0
  611. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/download_TALL20_models.sh +0 -0
  612. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +0 -0
  613. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base.yaml +0 -0
  614. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +0 -0
  615. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +0 -0
  616. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +0 -0
  617. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +0 -0
  618. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +0 -0
  619. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +0 -0
  620. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +0 -0
  621. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +0 -0
  622. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +0 -0
  623. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +0 -0
  624. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +0 -0
  625. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +0 -0
  626. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +0 -0
  627. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +0 -0
  628. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +0 -0
  629. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +0 -0
  630. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-large.yaml +0 -0
  631. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +0 -0
  632. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +0 -0
  633. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +0 -0
  634. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +0 -0
  635. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +0 -0
  636. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +0 -0
  637. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +0 -0
  638. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +0 -0
  639. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/model/flan-t5/generate_flan-t5.sh +0 -0
  640. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +0 -0
  641. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +0 -0
  642. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +0 -0
  643. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +0 -0
  644. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +0 -0
  645. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +0 -0
  646. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +0 -0
  647. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +0 -0
  648. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +0 -0
  649. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +0 -0
  650. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +0 -0
  651. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +0 -0
  652. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +0 -0
  653. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +0 -0
  654. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +0 -0
  655. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +0 -0
  656. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +0 -0
  657. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +0 -0
  658. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +0 -0
  659. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +0 -0
  660. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +0 -0
  661. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
  662. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  663. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +0 -0
  664. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +0 -0
  665. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
  666. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +0 -0
  667. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +0 -0
  668. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +0 -0
  669. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +0 -0
  670. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +0 -0
  671. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +0 -0
  672. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +0 -0
  673. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +0 -0
  674. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +0 -0
  675. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +0 -0
  676. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +0 -0
  677. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +0 -0
  678. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +0 -0
  679. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +0 -0
  680. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +0 -0
  681. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +0 -0
  682. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +0 -0
  683. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +0 -0
  684. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +0 -0
  685. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +0 -0
  686. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +0 -0
  687. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +0 -0
  688. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/automodelpool.yaml +0 -0
  689. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/gpt-2_glue.yaml +0 -0
  690. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/mixtral_moe_merging.yaml +0 -0
  691. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +0 -0
  692. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/nyuv2_modelpool.yaml +0 -0
  693. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +0 -0
  694. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +0 -0
  695. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +0 -0
  696. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +0 -0
  697. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/nyuv2_config.yaml +0 -0
  698. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/nyuv2_mtl_train.yaml +0 -0
  699. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +0 -0
  700. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  701. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +0 -0
  702. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +0 -0
  703. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +0 -0
  704. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +0 -0
  705. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +0 -0
  706. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +0 -0
  707. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +0 -0
  708. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +0 -0
  709. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +0 -0
  710. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +0 -0
  711. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +0 -0
  712. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +0 -0
  713. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +0 -0
  714. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +0 -0
  715. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +0 -0
  716. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +0 -0
  717. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +0 -0
  718. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +0 -0
  719. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +0 -0
  720. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +0 -0
  721. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +0 -0
  722. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +0 -0
  723. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +0 -0
  724. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +0 -0
  725. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +0 -0
  726. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +0 -0
  727. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +0 -0
  728. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +0 -0
  729. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +0 -0
  730. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +0 -0
  731. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
  732. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  733. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
  734. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/dummy.yaml +0 -0
  735. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +0 -0
  736. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/gpt-2_glue.yaml +0 -0
  737. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/nyuv2_taskpool.yaml +0 -0
  738. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/fusion_bench_config/taskpool/reward_model_evaluation.yaml +0 -0
  739. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/setup.cfg +0 -0
  740. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/tests/test_depth_upscaling.py +0 -0
  741. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/tests/test_simple_average.py +0 -0
  742. {fusion_bench-0.2.8 → fusion_bench-0.2.10}/tests/test_weighed_ensemble.py +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: fusion_bench
3
- Version: 0.2.8
3
+ Version: 0.2.10
4
4
  Summary: A Comprehensive Benchmark of Deep Model Fusion
5
5
  Author-email: Anke Tang <tang.anke@foxmail.com>
6
6
  License: MIT License
@@ -70,22 +70,21 @@ FusionBench is a benchmark suite designed to evaluate the performance of various
70
70
  Projects based on FusionBench and news from the community (descending order of date):
71
71
 
72
72
  <details>
73
- <summary>Hongling Zheng, Li Shen, Anke Tang, Yong Luo et al. Learn From Model Beyond Fine-Tuning: A Survey. has been accepted for publication in Nature Machine Intelligence. Nov, 2024. https://arxiv.org/abs/2310.08184</summary>
74
-
75
- > Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields
76
- of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access
77
- extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the
78
- development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model
79
- training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call
80
- Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface,
81
- so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream
82
- tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse,
83
- meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the
84
- capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the
85
- perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the
86
- survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the
87
- research community. The relevant papers we investigated in this article can be accessed at
88
- https://github.com/ruthless-man/Awesome-Learn-from-Model.
73
+ <summary>Anke Tang, et al. Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging. Jan 2025. https://arxiv.org/pdf/2501.09522</summary>
74
+
75
+ Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their specialized capabilities across different tasks and domains. Current model merging techniques focus on merging all available models simultaneously, with weight interpolation-based methods being the predominant approaches. However, these conventional approaches are not well-suited for scenarios where models become available sequentially, and they often suffer from high memory requirements and potential interference between tasks. In this study, we propose a training-free projection-based continual merging method that processes models sequentially through orthogonal projections of weight matrices and adaptive scaling mechanisms. Our method operates by projecting new parameter updates onto subspaces orthogonal to existing merged parameter updates while using an adaptive scaling mechanism to maintain stable parameter distances, enabling efficient sequential integration of task-specific knowledge. Our approach maintains constant memory complexity to the number of models, minimizes interference between tasks through orthogonal projections, and retains the performance of previously merged models through adaptive task vector scaling. Extensive experiments on CLIP-ViT models demonstrate that our method achieves a 5-8% average accuracy improvement while maintaining robust performance in different task orderings.
76
+ </details>
77
+
78
+ <details>
79
+ <summary>Yongxian Wei, et al. Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent. Jan 2025. https://arxiv.org/abs/2501.01230</summary>
80
+
81
+ Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data. Existing methods attempt to alleviate task conflicts by sparsifying task vectors or promoting orthogonality among them. However, they overlook the fundamental requirement of model merging: ensuring the merged model performs comparably to task-specific models on respective tasks. We find these methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance. Based on our findings, we frame model merging as a constrained optimization problem (i.e., minimizing the gap between the merged model and individual models, subject to the constraint of retaining shared knowledge) and solve it via adaptive projective gradient descent. Specifically, we align the merged model with individual models by decomposing and reconstituting the loss function, alleviating conflicts through data-free optimization of task vectors. To retain shared knowledge, we optimize this objective by projecting gradients within a shared subspace spanning all tasks. Moreover, we view merging coefficients as adaptive learning rates and propose a task-aware, training-free strategy. Experiments show that our plug-andplay approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains. Our code is available here.
82
+ </details>
83
+
84
+ <details>
85
+ <summary>Hongling Zheng, Li Shen, Anke Tang, Yong Luo et al. Learn From Model Beyond Fine-Tuning: A Survey. Nature Machine Intelligence. Jan, 2025. https://www.nature.com/articles/s42256-024-00961-0</summary>
86
+
87
+ > Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at https://github.com/ruthless-man/Awesome-Learn-from-Model.
89
88
  </details>
90
89
 
91
90
  <details>
@@ -22,22 +22,21 @@ FusionBench is a benchmark suite designed to evaluate the performance of various
22
22
  Projects based on FusionBench and news from the community (descending order of date):
23
23
 
24
24
  <details>
25
- <summary>Hongling Zheng, Li Shen, Anke Tang, Yong Luo et al. Learn From Model Beyond Fine-Tuning: A Survey. has been accepted for publication in Nature Machine Intelligence. Nov, 2024. https://arxiv.org/abs/2310.08184</summary>
26
-
27
- > Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields
28
- of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access
29
- extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the
30
- development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model
31
- training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call
32
- Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface,
33
- so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream
34
- tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse,
35
- meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the
36
- capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the
37
- perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the
38
- survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the
39
- research community. The relevant papers we investigated in this article can be accessed at
40
- https://github.com/ruthless-man/Awesome-Learn-from-Model.
25
+ <summary>Anke Tang, et al. Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging. Jan 2025. https://arxiv.org/pdf/2501.09522</summary>
26
+
27
+ Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their specialized capabilities across different tasks and domains. Current model merging techniques focus on merging all available models simultaneously, with weight interpolation-based methods being the predominant approaches. However, these conventional approaches are not well-suited for scenarios where models become available sequentially, and they often suffer from high memory requirements and potential interference between tasks. In this study, we propose a training-free projection-based continual merging method that processes models sequentially through orthogonal projections of weight matrices and adaptive scaling mechanisms. Our method operates by projecting new parameter updates onto subspaces orthogonal to existing merged parameter updates while using an adaptive scaling mechanism to maintain stable parameter distances, enabling efficient sequential integration of task-specific knowledge. Our approach maintains constant memory complexity to the number of models, minimizes interference between tasks through orthogonal projections, and retains the performance of previously merged models through adaptive task vector scaling. Extensive experiments on CLIP-ViT models demonstrate that our method achieves a 5-8% average accuracy improvement while maintaining robust performance in different task orderings.
28
+ </details>
29
+
30
+ <details>
31
+ <summary>Yongxian Wei, et al. Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent. Jan 2025. https://arxiv.org/abs/2501.01230</summary>
32
+
33
+ Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data. Existing methods attempt to alleviate task conflicts by sparsifying task vectors or promoting orthogonality among them. However, they overlook the fundamental requirement of model merging: ensuring the merged model performs comparably to task-specific models on respective tasks. We find these methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance. Based on our findings, we frame model merging as a constrained optimization problem (i.e., minimizing the gap between the merged model and individual models, subject to the constraint of retaining shared knowledge) and solve it via adaptive projective gradient descent. Specifically, we align the merged model with individual models by decomposing and reconstituting the loss function, alleviating conflicts through data-free optimization of task vectors. To retain shared knowledge, we optimize this objective by projecting gradients within a shared subspace spanning all tasks. Moreover, we view merging coefficients as adaptive learning rates and propose a task-aware, training-free strategy. Experiments show that our plug-andplay approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains. Our code is available here.
34
+ </details>
35
+
36
+ <details>
37
+ <summary>Hongling Zheng, Li Shen, Anke Tang, Yong Luo et al. Learn From Model Beyond Fine-Tuning: A Survey. Nature Machine Intelligence. Jan, 2025. https://www.nature.com/articles/s42256-024-00961-0</summary>
38
+
39
+ > Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at https://github.com/ruthless-man/Awesome-Learn-from-Model.
41
40
  </details>
42
41
 
43
42
  <details>
@@ -0,0 +1,4 @@
1
+ from fusion_bench.scripts.cli import main
2
+
3
+ if __name__ == "__main__":
4
+ main()
@@ -7,6 +7,7 @@ def load_fer2013(path: str = "clip-benchmark/wds_fer2013", split: str = "train")
7
7
  dataset = dataset.rename_columns({"jpg": "image", "cls": "label"})
8
8
  return dataset
9
9
 
10
+
10
11
  if __name__ == "__main__":
11
12
  dataset = load_fer2013(split="test")
12
13
  print(dataset)
@@ -9,7 +9,10 @@ _import_structure = {
9
9
  "base_algorithm": ["BaseModelFusionAlgorithm", "BaseAlgorithm"],
10
10
  "dummy": ["DummyAlgorithm"],
11
11
  # single task learning (fine-tuning)
12
- "classification": ["ImageClassificationFineTuningForCLIP"],
12
+ "classification": [
13
+ "ImageClassificationFineTuningForCLIP",
14
+ "ContinualImageClassificationFineTuningForCLIP",
15
+ ],
13
16
  "lm_finetune": ["FullFinetuneSFT", "PeftFinetuneSFT", "BradleyTerryRewardModeling"],
14
17
  # analysis
15
18
  "analysis": ["TaskVectorCosSimilarity", "TaskVectorViolinPlot"],
@@ -27,11 +30,12 @@ _import_structure = {
27
30
  "TaskArithmeticForLlama",
28
31
  "LinearInterpolationAlgorithm",
29
32
  ],
33
+ "slerp": ["SlerpMergeAlgorithm"],
30
34
  "simple_average": ["SimpleAverageAlgorithm"],
31
35
  "weighted_average": ["WeightedAverageAlgorithm", "WeightedAverageForLLama"],
32
36
  "task_arithmetic": ["TaskArithmeticAlgorithm"],
33
37
  "ties_merging": ["TiesMergingAlgorithm"],
34
- "dare": ["DareSimpleAverage", "DareTaskArithmetic"],
38
+ "dare": ["DareSimpleAverage", "DareTaskArithmetic", "DareTiesMerging"],
35
39
  "fisher_merging": [
36
40
  "FisherMergingForCLIPVisionModel",
37
41
  "FisherMergingAlgorithmForGPT2",
@@ -50,6 +54,13 @@ _import_structure = {
50
54
  ],
51
55
  "ada_svd": ["AdaSVDMergingForCLIPVisionModel"],
52
56
  "task_singular_vector": ["TaskSingularVectorMerging"],
57
+ "isotropic_merging": [
58
+ "ISO_C_Merge", # alias
59
+ "ISO_CTS_Merge", # alias
60
+ "IsotropicMergingInCommonAndTaskSubspace",
61
+ "IsotropicMergingInCommonSubspace",
62
+ ],
63
+ "opcm": ["OPCMForCLIP"],
53
64
  # plug-and-play model merging methods
54
65
  "concrete_subspace": [
55
66
  "ConcreteTaskArithmeticAlgorithmForCLIP",
@@ -96,13 +107,16 @@ if TYPE_CHECKING:
96
107
  from .adamerging import *
97
108
  from .analysis import TaskVectorCosSimilarity, TaskVectorViolinPlot
98
109
  from .base_algorithm import BaseAlgorithm, BaseModelFusionAlgorithm
99
- from .classification import ImageClassificationFineTuningForCLIP
110
+ from .classification import (
111
+ ContinualImageClassificationFineTuningForCLIP,
112
+ ImageClassificationFineTuningForCLIP,
113
+ )
100
114
  from .concrete_subspace import (
101
115
  ConcreteLayerWiseAdaMergingForCLIP,
102
116
  ConcreteTaskArithmeticAlgorithmForCLIP,
103
117
  ConcreteTaskWiseAdaMergingForCLIP,
104
118
  )
105
- from .dare import DareSimpleAverage, DareTaskArithmetic
119
+ from .dare import DareSimpleAverage, DareTaskArithmetic, DareTiesMerging
106
120
  from .dawe import DataAdaptiveWeightEnsemblingForCLIP
107
121
  from .depth_upscaling import DepthUpscalingAlgorithm, DepthUpscalingForLlama
108
122
  from .dummy import DummyAlgorithm
@@ -112,6 +126,12 @@ if TYPE_CHECKING:
112
126
  WeightedEnsembleAlgorithm,
113
127
  )
114
128
  from .fisher_merging import FisherMergingForCLIPVisionModel
129
+ from .isotropic_merging import (
130
+ ISO_C_Merge,
131
+ ISO_CTS_Merge,
132
+ IsotropicMergingInCommonAndTaskSubspace,
133
+ IsotropicMergingInCommonSubspace,
134
+ )
115
135
  from .linear import (
116
136
  ExPOAlgorithm,
117
137
  ExPOAlgorithmForLlama,
@@ -127,6 +147,7 @@ if TYPE_CHECKING:
127
147
  MixtralUpscalingAlgorithm,
128
148
  )
129
149
  from .model_recombination import ModelRecombinationAlgorithm
150
+ from .opcm import OPCMForCLIP
130
151
  from .pruning import (
131
152
  MagnitudeDiffPruningAlgorithm,
132
153
  MagnitudePruningForLlama,
@@ -140,6 +161,7 @@ if TYPE_CHECKING:
140
161
  from .rankone_moe import CLIPRankOneMoEAlgorithm, RankOneMoEAlgorithm
141
162
  from .regmean import RegMeanAlgorithmForCLIP, RegMeanAlgorithmForGPT2
142
163
  from .simple_average import SimpleAverageAlgorithm
164
+ from .slerp import SlerpMergeAlgorithm
143
165
  from .smile_upscaling import (
144
166
  SingularProjectionMergingAlgorithm,
145
167
  SmileUpscalingAlgorithm,
@@ -1,2 +1,3 @@
1
1
  # flake8: noqa F401
2
2
  from .clip_finetune import ImageClassificationFineTuningForCLIP
3
+ from .continual_clip_finetune import ContinualImageClassificationFineTuningForCLIP
@@ -184,9 +184,7 @@ class ImageClassificationFineTuningForCLIP(
184
184
  self.save_model(classifier, save_path)
185
185
 
186
186
  if config.state_dict_save_path is not None:
187
- self.save_model(
188
- classifier, config.state_dict_save_path, trainable_only=True
189
- )
187
+ self.save_model(classifier, config.state_dict_save_path)
190
188
  self.print_profile_summary()
191
189
  return classifier.clip_model.vision_model
192
190
 
@@ -0,0 +1,297 @@
1
+ import os
2
+ import random
3
+ import time
4
+ from copy import deepcopy
5
+ from typing import Optional, Tuple, cast
6
+
7
+ import lightning as L
8
+ import torch
9
+ from omegaconf import DictConfig, OmegaConf
10
+ from peft import LoraConfig, PeftModel, get_peft_model
11
+ from peft.tuners.lora import LoraLayer
12
+ from safetensors.torch import save_file
13
+ from torch import nn
14
+ from torch.utils.data import DataLoader
15
+ from tqdm.auto import tqdm
16
+ from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
17
+ from transformers.models.clip.modeling_clip import CLIPVisionTransformer
18
+
19
+ from fusion_bench import BaseAlgorithm, print_parameters
20
+ from fusion_bench.compat.modelpool import to_modelpool
21
+ from fusion_bench.dataset.clip_dataset import CLIPDataset
22
+ from fusion_bench.mixins import CLIPClassificationMixin
23
+ from fusion_bench.mixins.simple_profiler import SimpleProfilerMixin
24
+ from fusion_bench.modelpool import CLIPVisionModelPool
25
+ from fusion_bench.models.hf_clip import HFCLIPClassifier
26
+ from fusion_bench.models.linearized.linearized_model_utils import LinearizedModelWraper
27
+ from fusion_bench.taskpool import CLIPVisionModelTaskPool
28
+ from fusion_bench.utils.data import InfiniteDataLoader
29
+ from fusion_bench.utils.fabric import seed_everything_by_time
30
+ from fusion_bench.utils.json import load_from_json, save_to_json
31
+
32
+
33
+ class ContinualImageClassificationFineTuningForCLIP(
34
+ CLIPClassificationMixin,
35
+ SimpleProfilerMixin,
36
+ BaseAlgorithm,
37
+ ):
38
+ # attributes to configuration keys mapping
39
+ _config_mapping = BaseAlgorithm._config_mapping | {
40
+ "seed": "seed",
41
+ "shuffle_order": "shuffle_order",
42
+ "learning_rate": "learning_rate",
43
+ "weight_decay": "weight_decay",
44
+ "num_steps": "num_steps",
45
+ "batch_size": "batch_size",
46
+ "num_workers": "num_workers",
47
+ "save_interval": "save_interval",
48
+ "state_dict_load_path": "state_dict_load_path",
49
+ "state_dict_save_path": "state_dict_save_path",
50
+ "skip_training": "skip_training",
51
+ "use_lora": "use_lora",
52
+ "lora_config": "lora_config",
53
+ }
54
+
55
+ def __init__(
56
+ self,
57
+ seed: int = 42,
58
+ shuffle_order: bool = True,
59
+ learning_rate: float = 1e-5,
60
+ weight_decay: float = 0,
61
+ num_steps: int = 4000,
62
+ batch_size: int = 128,
63
+ num_workers: int = 16,
64
+ save_interval: int = 500,
65
+ state_dict_load_path: Optional[str] = None,
66
+ state_dict_save_path: Optional[str] = None,
67
+ skip_training: bool = False,
68
+ use_lora: bool = False,
69
+ lora_config: Optional[LoraConfig] = None,
70
+ ):
71
+ self.seed = seed
72
+ self.shuffle_order = shuffle_order
73
+ self.learning_rate = learning_rate
74
+ self.weight_decay = weight_decay
75
+ self.num_steps = num_steps
76
+ self.batch_size = batch_size
77
+ self.num_workers = num_workers
78
+ self.save_interval = save_interval
79
+ self.state_dict_load_path = state_dict_load_path
80
+ self.state_dict_save_path = state_dict_save_path
81
+ self.skip_training = skip_training
82
+ self.use_lora = use_lora
83
+ self.lora_config = lora_config
84
+
85
+ def run(self, modelpool: CLIPVisionModelPool):
86
+ self.modelpool = to_modelpool(modelpool)
87
+ config = self.config
88
+ self.log_hyperparams(config, filename="method_config.yaml")
89
+ self.finetune_method = "fine-tune"
90
+
91
+ if self.seed is not None:
92
+ L.seed_everything(self.seed)
93
+ else:
94
+ seed_everything_by_time(self.fabric)
95
+
96
+ task_names = list(modelpool.train_dataset_names)
97
+ if self.shuffle_order:
98
+ random.shuffle(task_names)
99
+ if self.fabric.is_global_zero:
100
+ save_to_json(task_names, os.path.join(self.log_dir, "task_names.json"))
101
+
102
+ if self._program.taskpool is not None and isinstance(
103
+ self._program.taskpool, CLIPVisionModelTaskPool
104
+ ):
105
+ has_taskpool = True
106
+ taskpool = cast(CLIPVisionModelTaskPool, self._program.taskpool)
107
+ test_datasets = taskpool._test_datasets
108
+ else:
109
+ has_taskpool = False
110
+
111
+ with self.profile("setup model and optimizer"):
112
+ processor, classifier, optimizer, lr_scheduler = self.setup_model()
113
+
114
+ if self.state_dict_load_path is not None:
115
+ self.fabric.load(
116
+ self.state_dict_load_path,
117
+ {"vision_model": classifier.clip_model.vision_model},
118
+ )
119
+ if self.skip_training:
120
+ return classifier.clip_model.vision_model
121
+
122
+ self.setup_zero_shot_classification_head(
123
+ clip_processor=processor,
124
+ clip_model=classifier.clip_model,
125
+ task_names=task_names,
126
+ )
127
+
128
+ init_optimizer_state_dict = optimizer.state_dict()
129
+ init_lr_scheduler_state_dict = lr_scheduler.state_dict()
130
+ self.fabric.setup(classifier, optimizer)
131
+
132
+ with self.profile("setup data"):
133
+ train_datasets = [
134
+ CLIPDataset(modelpool.load_train_dataset(task_name), processor)
135
+ for task_name in task_names
136
+ ]
137
+ train_dataloaders = [
138
+ DataLoader(
139
+ dataset,
140
+ shuffle=True,
141
+ batch_size=self.batch_size,
142
+ num_workers=self.num_workers,
143
+ )
144
+ for dataset in train_datasets
145
+ ]
146
+ train_dataloaders = self.fabric.setup_dataloaders(*train_dataloaders)
147
+ if not isinstance(train_dataloaders, (list, tuple)):
148
+ train_dataloaders = [train_dataloaders]
149
+ train_dataloader_iters = [
150
+ iter(InfiniteDataLoader(loader)) for loader in train_dataloaders
151
+ ]
152
+
153
+ # continual train
154
+ for task_idx, task_name in tqdm(
155
+ enumerate(task_names),
156
+ dynamic_ncols=True,
157
+ disable=not self.fabric.is_global_zero,
158
+ ):
159
+ train_dataloader_iter = train_dataloader_iters[task_idx]
160
+
161
+ # reset optimizer and lr scheduler
162
+ print("reset optimizer and lr scheduler")
163
+ optimizer.load_state_dict(init_optimizer_state_dict)
164
+ lr_scheduler.load_state_dict(init_lr_scheduler_state_dict)
165
+
166
+ for step_idx in tqdm(
167
+ range(self.num_steps),
168
+ desc=f"continual fine-tune on {task_name}",
169
+ disable=not self.fabric.is_global_zero,
170
+ dynamic_ncols=True,
171
+ leave=False,
172
+ ):
173
+ optimizer.zero_grad()
174
+ loss = 0
175
+ with self.profile("data loading"):
176
+ batch = next(train_dataloader_iter)
177
+ images, labels = batch
178
+ with self.profile("forward"):
179
+ classifier.zeroshot_weights = self.zeroshot_weights[task_name]
180
+ logits = classifier(images)
181
+ assert (
182
+ labels.max() < logits.shape[1]
183
+ ), f"for task {task_name}, labels.max() = {labels.max()}, logits.shape[1] = {logits.shape[1]}"
184
+ loss = loss + nn.functional.cross_entropy(logits, labels)
185
+
186
+ with self.profile("backward"):
187
+ self.fabric.backward(loss)
188
+ with self.profile("optimizer step"):
189
+ optimizer.step()
190
+ lr_scheduler.step()
191
+
192
+ metrics = {"train/loss": loss}
193
+ self.fabric.log_dict(metrics, step=step_idx)
194
+
195
+ if (step_idx + 1) % self.save_interval == 0:
196
+ save_path = os.path.join(
197
+ self.log_dir,
198
+ "checkpoints",
199
+ f"task={task_idx}_step={step_idx}.ckpt",
200
+ )
201
+ self.save_model(classifier, save_path)
202
+
203
+ if has_taskpool:
204
+ taskpool._is_setup = False
205
+ taskpool._test_datasets = DictConfig(
206
+ {t: test_datasets[t] for t in task_names[: task_idx + 1]}
207
+ )
208
+ eval_report = taskpool.evaluate(
209
+ deepcopy(classifier.clip_model.vision_model),
210
+ name=task_name,
211
+ )
212
+ if self.fabric.is_global_zero:
213
+ save_to_json(
214
+ eval_report,
215
+ os.path.join(self.log_dir, f"results_{task_idx}.json"),
216
+ )
217
+
218
+ if self.state_dict_save_path is not None:
219
+ self.save_model(classifier, self.state_dict_save_path)
220
+ self.print_profile_summary()
221
+ return classifier.clip_model.vision_model
222
+
223
+ def save_model(
224
+ self,
225
+ model: HFCLIPClassifier | CLIPModel | CLIPVisionModel | CLIPVisionTransformer,
226
+ save_path: str,
227
+ ):
228
+ """
229
+ Save the vision model to the specified path.
230
+
231
+ Args:
232
+ model (Union[HFCLIPClassifier, CLIPModel, CLIPVisionModel, CLIPVisionTransformer]): The model to save.
233
+ save_path (str): The path to save the model.
234
+ """
235
+ if isinstance(model, HFCLIPClassifier):
236
+ vision_model = model.clip_model.vision_model
237
+ elif isinstance(model, CLIPModel):
238
+ vision_model = model.vision_model
239
+ elif isinstance(model, CLIPVisionModel):
240
+ vision_model = model.vision_model
241
+ elif isinstance(model, CLIPVisionTransformer):
242
+ vision_model = model
243
+ else:
244
+ raise ValueError(f"Unsupported model type: {type(model)}")
245
+
246
+ save_dir = os.path.dirname(save_path)
247
+ if save_dir and not os.path.exists(save_dir):
248
+ os.makedirs(save_dir, exist_ok=True)
249
+ self.fabric.save(save_path, {"vision_model": vision_model})
250
+
251
+ def setup_model(self):
252
+ """
253
+ Sets up the model, optimizer, and learning rate scheduler.
254
+
255
+ This method initializes the CLIP model, applies LoRA if specified, and configures the optimizer and learning rate scheduler.
256
+
257
+ Returns:
258
+ Tuple: A tuple containing the processor, classifier, optimizer, and learning rate scheduler.
259
+ """
260
+ config = self.config
261
+ modelpool = self.modelpool
262
+
263
+ clip_model: CLIPModel = modelpool.load_clip_model("_pretrained_")
264
+ processor = modelpool.load_processor()
265
+
266
+ self.finetune_method = "full fine-tune"
267
+ if self.use_lora:
268
+ self.finetune_method = "lora fine-tune"
269
+ lora_config = LoraConfig(
270
+ **OmegaConf.to_container(
271
+ self.lora_config, resolve=True, enum_to_str=True
272
+ )
273
+ )
274
+ clip_model.vision_model = get_peft_model(
275
+ clip_model.vision_model, lora_config
276
+ )
277
+
278
+ classifier = HFCLIPClassifier(clip_model, processor=processor)
279
+
280
+ if self.fabric.is_global_zero:
281
+ print("=== Model Summary (For Vision Model Only) ===")
282
+ print_parameters(classifier.clip_model.vision_model)
283
+ # configure optimizers
284
+ optimizer = torch.optim.Adam(
285
+ [
286
+ p
287
+ for p in classifier.clip_model.vision_model.parameters()
288
+ if p.requires_grad
289
+ ],
290
+ lr=self.learning_rate,
291
+ weight_decay=self.weight_decay,
292
+ )
293
+ lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
294
+ optimizer=optimizer, T_max=self.num_steps
295
+ )
296
+
297
+ return processor, classifier, optimizer, lr_scheduler
@@ -1,3 +1,4 @@
1
1
  # flake8: noqa F401
2
2
  from .simple_average import DareSimpleAverage
3
3
  from .task_arithmetic import DareTaskArithmetic
4
+ from .ties_merging import DareTiesMerging
@@ -33,21 +33,28 @@ class DareTaskArithmetic(BaseAlgorithm):
33
33
  self.rescale = rescale
34
34
  super().__init__(**kwargs)
35
35
 
36
+ def _load_task_vector(
37
+ self,
38
+ modelpool: BaseModelPool,
39
+ model_name: str,
40
+ pretrained_model: nn.Module,
41
+ ):
42
+ finetuned_model = modelpool.load_model(model_name)
43
+ task_vector = module_sub_(finetuned_model, pretrained_model)
44
+ return task_vector
45
+
36
46
  @torch.no_grad()
37
47
  def run(self, modelpool: BaseModelPool):
38
48
  assert (
39
49
  self.sparsity_ratio >= 0 and self.sparsity_ratio <= 1
40
50
  ), "Sparsity ratio must be between 0 and 1"
41
51
  pretrained_model = modelpool.load_pretrained_model()
42
- finetuned_models = {
43
- model_name: modelpool.load_model(model_name)
44
- for model_name in modelpool.model_names
45
- }
52
+
53
+ # load task vectors
46
54
  task_vectors = {
47
- model_name: module_sub_(finetuned_models[model_name], pretrained_model)
48
- for model_name in finetuned_models
55
+ model_name: self._load_task_vector(modelpool, model_name, pretrained_model)
56
+ for model_name in modelpool.model_names
49
57
  }
50
- del finetuned_models
51
58
 
52
59
  # drop and rescale task vectors
53
60
  for model_name, tv in task_vectors.items():