fusion-bench 0.2.22__tar.gz → 0.2.23__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/PKG-INFO +1 -1
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/__init__.py +4 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/method/__init__.py +5 -2
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/method/base_algorithm.py +3 -2
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/modelpool/base_pool.py +3 -3
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/taskpool/clip_image_classification.py +1 -1
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/gpt2_glue.py +1 -1
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/__init__.py +4 -2
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/analysis/task_vector_cos_similarity.py +95 -12
- fusion_bench-0.2.23/fusion_bench/method/analysis/task_vector_violin_plot.py +313 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/bitdelta/bitdelta.py +7 -23
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py +2 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py +2 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py +2 -0
- fusion_bench-0.2.23/fusion_bench/method/model_stock/__init__.py +1 -0
- fusion_bench-0.2.23/fusion_bench/method/model_stock/model_stock.py +309 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/regmean/clip_regmean.py +3 -6
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/regmean/regmean.py +27 -56
- fusion_bench-0.2.23/fusion_bench/method/regmean/utils.py +56 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/regmean_plusplus/regmean_plusplus.py +21 -60
- fusion_bench-0.2.23/fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench-0.2.23/fusion_bench/method/slerp/slerp.py +200 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/we_moe/flan_t5_we_moe.py +9 -20
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/clip_classification.py +26 -6
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/serialization.py +25 -15
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/base_pool.py +1 -1
- fusion_bench-0.2.23/fusion_bench/modelpool/causal_lm/causal_lm.py +463 -0
- fusion_bench-0.2.23/fusion_bench/modelpool/seq2seq_lm/modelpool.py +211 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/hf_utils.py +9 -4
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/linearized/vision_model.py +6 -6
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_mistral/__init__.py +1 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/we_moe.py +8 -8
- fusion_bench-0.2.23/fusion_bench/taskpool/base_pool.py +119 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/clip_vision/taskpool.py +1 -1
- fusion_bench-0.2.23/fusion_bench/taskpool/dummy.py +148 -0
- fusion_bench-0.2.23/fusion_bench/taskpool/lm_eval_harness/taskpool.py +166 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/nyuv2_taskpool.py +28 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/__init__.py +1 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/data.py +6 -4
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/devices.py +7 -4
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/dtype.py +3 -2
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/lazy_state_dict.py +82 -19
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/packages.py +3 -3
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/parameters.py +0 -2
- fusion_bench-0.2.23/fusion_bench/utils/timer.py +131 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench.egg-info/PKG-INFO +1 -1
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench.egg-info/SOURCES.txt +6 -0
- fusion_bench-0.2.23/fusion_bench_config/_get_started/llm_slerp.yaml +12 -0
- fusion_bench-0.2.23/fusion_bench_config/method/model_stock/model_stock.yaml +12 -0
- fusion_bench-0.2.23/fusion_bench_config/method/slerp/slerp_lm.yaml +4 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/pyproject.toml +1 -1
- fusion_bench-0.2.22/fusion_bench/method/analysis/task_vector_violin_plot.py +0 -205
- fusion_bench-0.2.22/fusion_bench/method/slerp/__init__.py +0 -2
- fusion_bench-0.2.22/fusion_bench/method/slerp/slerp.py +0 -104
- fusion_bench-0.2.22/fusion_bench/modelpool/causal_lm/causal_lm.py +0 -244
- fusion_bench-0.2.22/fusion_bench/modelpool/seq2seq_lm/modelpool.py +0 -65
- fusion_bench-0.2.22/fusion_bench/taskpool/base_pool.py +0 -37
- fusion_bench-0.2.22/fusion_bench/taskpool/dummy.py +0 -60
- fusion_bench-0.2.22/fusion_bench/taskpool/lm_eval_harness/taskpool.py +0 -86
- fusion_bench-0.2.22/fusion_bench/utils/timer.py +0 -49
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/LICENSE +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/README.md +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/__main__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/_get_started/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/_get_started/greeting_program.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/modelpool/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/modelpool/huggingface_clip_vision.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/taskpool/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/taskpool/base_pool.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/constants/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/constants/banner.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/constants/clip_vision.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/constants/paths.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/constants/runtime.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/arc_agi/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/arc_agi/arc.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/arc_agi/arc_agi.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/arc_agi/augmenters.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/arc_agi/messagers.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/arc_agi/np_cache.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/arc_agi/preprocess.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/arc_agi/representers.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/clip_dataset.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/fer2013.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/gsm8k.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/image_corruption/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/image_corruption/make_corruption.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/image_dataset.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/imdb.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/alpaca.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/collate.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/metamathqa.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/openai.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/preference_700k.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/sharegpt.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/squad.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/stanford_shp.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/ultrachat.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/utils/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/llama/wikitext.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/dataset/nyuv2.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/ada_svd/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/ada_svd/clip_vision.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/clip_task_wise_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/entropy_loss.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/llama_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/min_norm_solvers.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/task_wise_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/adamerging/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/analysis/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/base_algorithm.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/bitdelta/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/bitdelta/bitdelta_utils/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/bitdelta/bitdelta_utils/data.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/bitdelta/bitdelta_utils/diff.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/classification/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/classification/clip_finetune.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/classification/continual_clip_finetune.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/concrete_subspace/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/concrete_subspace/clip_post_defense.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/dare/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/dare/simple_average.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/dare/task_arithmetic.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/dare/ties_merging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/dare/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/dawe/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/dawe/dawe_for_clip.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/dawe/warppers/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/dawe/warppers/dawe_model.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/depth_upscaling/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/depth_upscaling/depth_upscaling.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/doge_ta/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/doge_ta/doge_ta.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/doge_ta/layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/dummy.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/ensemble.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/expert_sparsity/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/expert_sparsity/mixtral/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/expert_sparsity/utils/calibration_data.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/fisher_merging/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/fisher_merging/fisher_merging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/fw_merging/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/fw_merging/fw_hard.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/fw_merging/fw_soft.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/fw_merging/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/gossip/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/gossip/clip_layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/gossip/clip_task_wise_gossip.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/gossip/entropy_loss.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/gossip/layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/gossip/min_norm_solvers.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/gossip/task_wise_gossip.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/gossip/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/isotropic_merging/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/isotropic_merging/iso.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/isotropic_merging/iso_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/knots/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/knots/knots_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/linear/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/linear/expo.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/linear/linear_interpolation.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/linear/llama_expo.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/linear/simple_average_for_llama.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/linear/task_arithmetic_for_llama.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/lm_finetune/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/lm_finetune/bradley_terry_rm.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/lm_finetune/causal_lm_pretrain.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/lm_finetune/fullfinetune_sft.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/lm_finetune/peftfinetune_sft.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/mixture_of_experts/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/mixture_of_experts/mixtral_merging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/model_recombination.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/hooks/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/hooks/deepseek_v2.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/hooks/hook.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/hooks/mixtral.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/moe_pruner.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/utils/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/utils/data.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/utils/layerwrapper.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/utils/prune.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/moe_pruner/utils/score.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/opcm/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/opcm/opcm.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/opcm/task_arithmetic.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/opcm/ties_merging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/opcm/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/opcm/weight_average.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/llama_magnitude_prune.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/llama_random_prune.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/llama_sparsegpt_prune.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/llama_wanda_prune.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/magnitude_diff_pruning.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/prune_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/sparsegpt_utils/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/wanda_utils/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/wanda_utils/ablate.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/wanda_utils/data.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/wanda_utils/eval.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/wanda_utils/layerwrapper.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/wanda_utils/prune.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/wanda_utils/prune_opt.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pruning/wanda_utils/sparsegpt.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pwe_moe/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pwe_moe/clip_pwe_moe.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pwe_moe/module.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pwe_moe/openclip_pwe_moe.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pwe_moe/phn/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pwe_moe/phn/solvers.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/pwe_moe/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/randes/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/randes/base_algorithm.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/randes/modelsoup.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/randes/task_arithmetic.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/rankone_moe/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/rankone_moe/clip_rankone_moe.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/rankone_moe/rankone_moe.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/regmean/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/regmean/gpt2_regmean.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/regmean_plusplus/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/regmean_plusplus/clip_regmean_plusplus.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/simple_average.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/slerp/slerp_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/smile_upscaling/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/smile_upscaling/causal_lm_upscaling.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/smile_upscaling/error_accumulation.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/smile_upscaling/projected_energy.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/smile_upscaling/singular_projection_merging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/smile_upscaling/smile_upscaling.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/sparse_we_moe/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/sparse_we_moe/sparse_we_moe.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/sparselo/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/sparselo/sparselo.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/surgery/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/tall_mask/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/tall_mask/task_arithmetic.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/tall_mask/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/task_arithmetic/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/task_arithmetic/task_arithmetic.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/task_singular_vector/TSVC.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/task_singular_vector/TSVM.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/task_singular_vector/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/task_singular_vector/utils/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/task_singular_vector/utils/task_singular_interference.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/ties_merging/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/ties_merging/ties_merging.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/ties_merging/ties_merging_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/trust_region/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/trust_region/clip_task_arithmetic.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/trust_region/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/we_moe/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/we_moe/clip_we_moe.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/we_moe/entropy_loss.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/we_moe/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/we_moe/we_moe.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/weighted_average/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/weighted_average/llama.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/method/weighted_average/weighted_average.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/continual_learning/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/continual_learning/backward_transfer.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/nyuv2/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/nyuv2/depth.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/nyuv2/loss.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/nyuv2/noise.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/nyuv2/normal.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/nyuv2/segmentation.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/text_to_image_generation/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/text_to_image_generation/compressibility.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/fabric_training.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/hydra_config.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/lightning_fabric.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/openclip_classification.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/optim/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/optim/adamw_with_warmup.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/rich_live.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/mixins/simple_profiler.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/causal_lm/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/clip_vision/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/clip_vision/modelpool.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/huggingface_automodel.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/huggingface_gpt2_classification.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/lazy_state_dict_pool.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/nyuv2_modelpool.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/openclip_vision/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/openclip_vision/modelpool.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/seq2seq_lm/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/seq_classification_lm/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/seq_classification_lm/reward_model.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/chat_templates/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/chat_templates/llama_3_Instruct.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/chat_templates/load_tokenizer.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/expert_sparsity/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/expert_sparsity/mixtral/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/expert_sparsity/mixtral/dataset.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/expert_sparsity/mixtral/modeling_mixtral.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/expert_sparsity/mixtral/wrapper.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/hf_clip.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/linearized/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/linearized/linearized_model_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/llama/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/llama/model_utils/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/llama/model_utils/embedding.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/llama/model_utils/liger_kernel.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/llama/model_utils/misc.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/llama/model_utils/mod.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/llama/model_utils/visual.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/llama/patcher.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/llama/tokenizer_loader.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/masks/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/masks/mask_model.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/model_card_templates/default.md +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_deepseek_v2/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_losparse_llama/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_losparse_llama/losparse_linear.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_losparse_llama/register.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_losparse_llama/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_gemma2/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_gemma2/configuration_smile_gemma2.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_gemma2/modeling_smile_gemma2.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_gemma2/register.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_llama/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_llama/configuration_smile_llama.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_llama/register.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_mistral/register.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_qwen2/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/modeling_smile_qwen2/register.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/nyuv2/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/nyuv2/aspp.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/nyuv2/lightning_module.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/nyuv2/resnet.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/nyuv2/resnet_dilated.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/open_clip/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/open_clip/modeling.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/open_clip/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/open_clip/variables_and_paths.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/parameter_dict.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/rankone_moe.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/separate_io.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/smile_moe/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/smile_moe/linear_from_hf_config.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/smile_moe/linear_from_module.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/smile_moe/utils/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/smile_moe/utils/svd_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/sparse_we_moe.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/surgery/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/surgery/surgerymodelwrapper.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/wrappers/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/wrappers/ensemble.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/wrappers/layer_wise_fusion.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/models/wrappers/task_wise_fusion.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/optim/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/optim/exception.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/optim/lr_scheduler/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/optim/lr_scheduler/linear_warmup.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/optim/lr_scheduler/utils/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/optim/lr_scheduler/utils/visualization.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/optim/mezo.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/programs/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/programs/base_program.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/programs/fabric_fusion_program.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/scripts/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/scripts/cli.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/scripts/clip/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/scripts/clip/convert_checkpoint.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/scripts/imgui.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/scripts/nyuv2_mtl_train.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/scripts/webui.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/clip_vision/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/clip_vision/utils/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/gpt2_text_classification.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/llama/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/llama/reward_model.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/llama/test_generation.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/lm_eval_harness/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/openclip_vision/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/taskpool/openclip_vision/openclip_taskpool.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/base_task.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/classification.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/cifar10.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/cifar100.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/clip_dataset.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/cub_200_2011.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/dtd.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/emnist_letters.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/emnist_mnist.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/eurosat.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/fashion_mnist.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/fer2013.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/flower102.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/food101.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/gtsrb.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/imagenet.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/kmnist.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/mnist.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/pcam.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/rendered_sst2.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/resisc45.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/stanford_cars.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/stl10.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/sun397.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/svhn.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/clip_classification/tiny_imagenet.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/auto.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/cache_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/dict.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/expr.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/fabric.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/functools.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/hydra_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/instantiate_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/json.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/lazy_imports.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/misc.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/modelscope.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/path.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/plot/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/plot/color_data.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/plot/token.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/plot/token_notebook.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/pylogger.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/rich_utils.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/set.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/state_dict_arithmetic.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/strenum/__init__.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/strenum/_name_mangler.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/strenum/_version.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/tensorboard.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench/utils/type.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench.egg-info/dependency_links.txt +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench.egg-info/entry_points.txt +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench.egg-info/requires.txt +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench.egg-info/top_level.txt +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/README.md +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/_get_started/clip_evaluate_single_model.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/_get_started/clip_simple_average.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/_get_started/clip_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/_get_started/greeting_program.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/README.md +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/TALL10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/TALL12.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/TALL14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/TALL16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/TALL18.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/TALL20.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/cifar10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/cifar100.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/eurosat.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/fer2013.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/food101.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/kmnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/pcam.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/resisc45.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/stl10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/sun397.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/svhn.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/TALL10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/TALL12.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/TALL14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/TALL16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/TALL18.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/TALL20.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/cifar10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/cifar100.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/eurosat.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/fer2013.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/food101.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/kmnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/pcam.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/resisc45.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/stl10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/sun397.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/svhn.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/val/dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/val/eurosat.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/val/mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/val/resisc45.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/val/sun397.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/val/svhn.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/question_answering/search_qa.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/question_answering/test/search_qa.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/question_answering/train/search_qa.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/question_answering/val/search_qa.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/summarization/test/xsum.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/summarization/train/xsum.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/summarization/val/xsum.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/summarization/xsum.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/auto.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/llama_ddp.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/llama_fsdp.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/llama_peft_fsdp.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/loggers/csv_logger.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/loggers/mlflow_logger.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/loggers/wandb_logger.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/strategy/deepspeed.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/strategy/llama_fsdp.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/fabric_model_fusion.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/hydra/default.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/hydra/help/fusion_bench_help.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/hydra/job_logging/rich_logging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/llama_full_finetune.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/llama_magnitude_pruning.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/llama_model_fusion.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/ada_svd/clip_vision.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/adamerging/clip.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/adamerging/llama_sft.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/bitdelta/bitdelta.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/classification/clip_continual_finetune.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/classification/clip_finetune.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/clip_finetune.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/dare/simple_average.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/dare/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/dare/ties_merging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/dawe/dawe_for_clip.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/depth_upscaling.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/doge_ta/doge_ta.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/dummy.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/ensemble/max_model_predictor.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/ensemble/simple_ensemble.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/ensemble/weighted_ensemble.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/expert_sparsity/README.md +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/expert_sparsity/mixtral.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/fisher_merging/fisher_merging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/fw_merging/fw_hard.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/fw_merging/fw_soft.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/gossip/layer_wise_clip.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/isotropic_merging/iso_c.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/isotropic_merging/iso_cts.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/linear/expo.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/linear/linear_interpolation.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/linear/llama_expo.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/linear/llama_expo_with_dare.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/linear/simple_average_for_llama.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/linear/weighted_average.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/linear/weighted_average_for_llama.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/mixtral_moe_merging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/mixtral_moe_upscaling.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/model_recombination.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/moe_pruner/moe_pruner.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/opcm/opcm.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/opcm/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/opcm/ties_merging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/opcm/weight_average.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/pruning/llama_random_pruning.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/randes/superposed_model_soup.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/randes/superposed_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/rankone_moe/rankone_moe.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/regmean/clip_regmean.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/regmean/gpt2_regmean.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/regmean/regmean.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/simple_average.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/slerp/slerp.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/smile_upscaling/error_accumulation.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/smile_upscaling/projected_energy.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/surgery/adamerging_surgery.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/tall_mask/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/ties_merging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/README.md +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/download_TALL20_models.sh +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-large.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/model/flan-t5/generate_flan-t5.sh +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_cars_and_dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_cars.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_cars_and_dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-7B-math_and_coder.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B-Instruct.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B-Instruct.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mistral-7b.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/mixtral_moe_merging.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/CausalLMPool/vicuna-7b-v1.5.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_cars_dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/SequenceClassificationModelPool/llama_preference700k.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/SequenceClassificationModelPool/roberta-base_glue.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/SequenceClassificationModelPool/single_reward_model.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/automodelpool.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/gpt-2_glue.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/nyuv2_modelpool.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/nyuv2_config.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/nyuv2_mtl_train.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/path/default.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/dummy.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/gpt-2_glue.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/nyuv2_taskpool.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/fusion_bench_config/taskpool/reward_model_evaluation.yaml +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/setup.cfg +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/tests/test_depth_upscaling.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/tests/test_simple_average.py +0 -0
- {fusion_bench-0.2.22 → fusion_bench-0.2.23}/tests/test_weighed_ensemble.py +0 -0
|
@@ -32,6 +32,10 @@ from .models import (
|
|
|
32
32
|
from .programs import BaseHydraProgram
|
|
33
33
|
from .taskpool import BaseTaskPool
|
|
34
34
|
from .utils import (
|
|
35
|
+
BoolStateDictType,
|
|
36
|
+
LazyStateDict,
|
|
37
|
+
StateDictType,
|
|
38
|
+
TorchModelType,
|
|
35
39
|
cache_with_joblib,
|
|
36
40
|
get_rankzero_logger,
|
|
37
41
|
import_object,
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
import warnings
|
|
2
|
+
from typing import Any, List, Type
|
|
2
3
|
|
|
3
4
|
from omegaconf import DictConfig
|
|
4
5
|
|
|
@@ -76,7 +77,9 @@ class AlgorithmFactory:
|
|
|
76
77
|
return algorithm_cls(method_config)
|
|
77
78
|
|
|
78
79
|
@staticmethod
|
|
79
|
-
def register_algorithm(
|
|
80
|
+
def register_algorithm(
|
|
81
|
+
name: str, algorithm_cls: Type[ModelFusionAlgorithm]
|
|
82
|
+
) -> None:
|
|
80
83
|
"""
|
|
81
84
|
Register a new algorithm with the factory.
|
|
82
85
|
|
|
@@ -87,7 +90,7 @@ class AlgorithmFactory:
|
|
|
87
90
|
AlgorithmFactory._aglorithms[name] = algorithm_cls
|
|
88
91
|
|
|
89
92
|
@classmethod
|
|
90
|
-
def available_algorithms(cls):
|
|
93
|
+
def available_algorithms(cls) -> List[str]:
|
|
91
94
|
"""
|
|
92
95
|
Get a list of available algorithms.
|
|
93
96
|
|
|
@@ -1,9 +1,10 @@
|
|
|
1
1
|
from abc import ABC, abstractmethod
|
|
2
|
-
from typing import TYPE_CHECKING, Optional
|
|
2
|
+
from typing import TYPE_CHECKING, Any, Optional
|
|
3
3
|
|
|
4
4
|
from omegaconf import DictConfig
|
|
5
5
|
|
|
6
6
|
if TYPE_CHECKING:
|
|
7
|
+
from fusion_bench import BaseModelPool
|
|
7
8
|
from fusion_bench.programs.base_program import BaseHydraProgram
|
|
8
9
|
|
|
9
10
|
__all__ = ["ModelFusionAlgorithm"]
|
|
@@ -51,7 +52,7 @@ class ModelFusionAlgorithm(ABC):
|
|
|
51
52
|
pass
|
|
52
53
|
|
|
53
54
|
@abstractmethod
|
|
54
|
-
def run(self, modelpool):
|
|
55
|
+
def run(self, modelpool: "BaseModelPool") -> Any:
|
|
55
56
|
"""
|
|
56
57
|
Fuse the models in the given model pool.
|
|
57
58
|
|
|
@@ -42,7 +42,7 @@ class ModelPool(ABC):
|
|
|
42
42
|
), "Duplicate model names found in model pool"
|
|
43
43
|
self._model_names = model_names
|
|
44
44
|
|
|
45
|
-
def __len__(self):
|
|
45
|
+
def __len__(self) -> int:
|
|
46
46
|
"""
|
|
47
47
|
Return the number of models in the model pool, exclude special models such as `_pretrained_`.
|
|
48
48
|
|
|
@@ -66,7 +66,7 @@ class ModelPool(ABC):
|
|
|
66
66
|
return names
|
|
67
67
|
|
|
68
68
|
@property
|
|
69
|
-
def has_pretrained(self):
|
|
69
|
+
def has_pretrained(self) -> bool:
|
|
70
70
|
"""
|
|
71
71
|
Check if the pretrained model is available in the model pool.
|
|
72
72
|
|
|
@@ -78,7 +78,7 @@ class ModelPool(ABC):
|
|
|
78
78
|
return True
|
|
79
79
|
return False
|
|
80
80
|
|
|
81
|
-
def get_model_config(self, model_name: str):
|
|
81
|
+
def get_model_config(self, model_name: str) -> Dict:
|
|
82
82
|
"""
|
|
83
83
|
Retrieves the configuration for a specific model from the model pool.
|
|
84
84
|
|
|
@@ -169,7 +169,7 @@ class CLIPImageClassificationTaskPool(TaskPool):
|
|
|
169
169
|
self._fabric = L.Fabric(devices=1)
|
|
170
170
|
self._fabric.launch()
|
|
171
171
|
|
|
172
|
-
# CLIPVisionModel works the same with
|
|
172
|
+
# CLIPVisionModel works the same with CLIPVisionTransformer, so we can use it directly
|
|
173
173
|
self.clip_model.vision_model = model
|
|
174
174
|
report = {}
|
|
175
175
|
training_params, all_params = count_parameters(model)
|
|
@@ -30,7 +30,7 @@ _import_structure = {
|
|
|
30
30
|
"TaskArithmeticForLlama",
|
|
31
31
|
"LinearInterpolationAlgorithm",
|
|
32
32
|
],
|
|
33
|
-
"slerp": ["SlerpMergeAlgorithm"],
|
|
33
|
+
"slerp": ["SlerpMergeAlgorithm", "SlerpForCausalLM"],
|
|
34
34
|
"simple_average": ["SimpleAverageAlgorithm"],
|
|
35
35
|
"weighted_average": ["WeightedAverageAlgorithm", "WeightedAverageForLLama"],
|
|
36
36
|
"task_arithmetic": ["TaskArithmeticAlgorithm"],
|
|
@@ -71,6 +71,7 @@ _import_structure = {
|
|
|
71
71
|
],
|
|
72
72
|
"fw_merging": ["FrankWolfeHardAlgorithm", "FrankWolfeSoftAlgorithm"],
|
|
73
73
|
"tall_mask": ["TallMaskTaskArithmeticAlgorithm"],
|
|
74
|
+
"model_stock": ["ModelStock"],
|
|
74
75
|
# plug-and-play model merging methods
|
|
75
76
|
"concrete_subspace": [
|
|
76
77
|
"ConcreteTaskArithmeticAlgorithmForCLIP",
|
|
@@ -194,6 +195,7 @@ if TYPE_CHECKING:
|
|
|
194
195
|
MixtralUpscalingAlgorithm,
|
|
195
196
|
)
|
|
196
197
|
from .model_recombination import ModelRecombinationAlgorithm
|
|
198
|
+
from .model_stock import ModelStock
|
|
197
199
|
from .opcm import OPCMForCLIP
|
|
198
200
|
from .pruning import (
|
|
199
201
|
MagnitudeDiffPruningAlgorithm,
|
|
@@ -213,7 +215,7 @@ if TYPE_CHECKING:
|
|
|
213
215
|
RegMeanAlgorithmPlusPlus,
|
|
214
216
|
)
|
|
215
217
|
from .simple_average import SimpleAverageAlgorithm
|
|
216
|
-
from .slerp import SlerpMergeAlgorithm
|
|
218
|
+
from .slerp import SlerpForCausalLM, SlerpMergeAlgorithm
|
|
217
219
|
from .smile_upscaling import (
|
|
218
220
|
SingularProjectionMergingAlgorithm,
|
|
219
221
|
SmileUpscalingAlgorithm,
|
|
@@ -11,7 +11,7 @@ from torch import nn
|
|
|
11
11
|
from tqdm.auto import tqdm
|
|
12
12
|
|
|
13
13
|
from fusion_bench.method import BaseAlgorithm
|
|
14
|
-
from fusion_bench.mixins import LightningFabricMixin
|
|
14
|
+
from fusion_bench.mixins import LightningFabricMixin, auto_register_config
|
|
15
15
|
from fusion_bench.modelpool import BaseModelPool
|
|
16
16
|
from fusion_bench.utils.parameters import (
|
|
17
17
|
StateDictType,
|
|
@@ -23,14 +23,50 @@ from fusion_bench.utils.state_dict_arithmetic import state_dict_sub
|
|
|
23
23
|
log = logging.getLogger(__name__)
|
|
24
24
|
|
|
25
25
|
|
|
26
|
-
|
|
26
|
+
@auto_register_config
|
|
27
|
+
class TaskVectorCosSimilarity(
|
|
28
|
+
LightningFabricMixin,
|
|
29
|
+
BaseAlgorithm,
|
|
30
|
+
):
|
|
27
31
|
"""
|
|
28
|
-
|
|
29
|
-
|
|
32
|
+
Computes and analyzes cosine similarity between task vectors of models in a model pool.
|
|
33
|
+
|
|
34
|
+
This algorithm extracts task vectors from fine-tuned models by computing the difference
|
|
35
|
+
between their parameters and a pretrained base model. It then calculates the pairwise
|
|
36
|
+
cosine similarity between all task vectors to understand the relationships and overlap
|
|
37
|
+
between different tasks.
|
|
38
|
+
|
|
39
|
+
The task vector for a model is defined as:
|
|
40
|
+
task_vector = finetuned_model_params - pretrained_model_params
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
plot_heatmap (bool): Whether to generate and save a heatmap visualization
|
|
44
|
+
trainable_only (bool, optional): If True, only consider trainable parameters
|
|
45
|
+
when computing task vectors. Defaults to True.
|
|
46
|
+
max_points_per_model (int, optional): Maximum number of parameters to sample
|
|
47
|
+
per model for memory efficiency. If None, uses all parameters.
|
|
48
|
+
output_path (str, optional): Directory to save outputs. If None, uses the
|
|
49
|
+
fabric logger directory.
|
|
50
|
+
|
|
51
|
+
Outputs:
|
|
52
|
+
- task_vector_cos_similarity.csv: Pairwise cosine similarity matrix
|
|
53
|
+
- task_vector_cos_similarity.pdf: Heatmap visualization (if plot_heatmap=True)
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
The pretrained model from the model pool.
|
|
57
|
+
|
|
58
|
+
Example:
|
|
59
|
+
```python
|
|
60
|
+
>>> algorithm = TaskVectorCosSimilarity(
|
|
61
|
+
... plot_heatmap=True,
|
|
62
|
+
... trainable_only=True,
|
|
63
|
+
... output_path="/path/to/outputs"
|
|
64
|
+
... )
|
|
65
|
+
>>> result = algorithm.run(modelpool)
|
|
66
|
+
```
|
|
30
67
|
"""
|
|
31
68
|
|
|
32
69
|
_config_mapping = BaseAlgorithm._config_mapping | {
|
|
33
|
-
"plot_heatmap": "plot_heatmap",
|
|
34
70
|
"_output_path": "output_path",
|
|
35
71
|
}
|
|
36
72
|
|
|
@@ -42,11 +78,8 @@ class TaskVectorCosSimilarity(BaseAlgorithm, LightningFabricMixin):
|
|
|
42
78
|
output_path: Optional[str] = None,
|
|
43
79
|
**kwargs,
|
|
44
80
|
):
|
|
45
|
-
self.plot_heatmap = plot_heatmap
|
|
46
|
-
self.trainable_only = trainable_only
|
|
47
|
-
self.max_points_per_model = max_points_per_model
|
|
48
|
-
self._output_path = output_path
|
|
49
81
|
super().__init__(**kwargs)
|
|
82
|
+
self._output_path = output_path
|
|
50
83
|
|
|
51
84
|
@property
|
|
52
85
|
def output_path(self):
|
|
@@ -57,6 +90,22 @@ class TaskVectorCosSimilarity(BaseAlgorithm, LightningFabricMixin):
|
|
|
57
90
|
|
|
58
91
|
@torch.no_grad()
|
|
59
92
|
def run(self, modelpool: BaseModelPool):
|
|
93
|
+
"""
|
|
94
|
+
Execute the task vector cosine similarity analysis.
|
|
95
|
+
|
|
96
|
+
This method:
|
|
97
|
+
1. Loads the pretrained base model from the model pool
|
|
98
|
+
2. Computes task vectors for each fine-tuned model
|
|
99
|
+
3. Calculates pairwise cosine similarities between all task vectors
|
|
100
|
+
4. Saves the similarity matrix as a CSV file
|
|
101
|
+
5. Optionally generates and saves a heatmap visualization
|
|
102
|
+
|
|
103
|
+
Args:
|
|
104
|
+
modelpool (BaseModelPool): Pool containing pretrained and fine-tuned models
|
|
105
|
+
|
|
106
|
+
Returns:
|
|
107
|
+
nn.Module: The pretrained model from the model pool
|
|
108
|
+
"""
|
|
60
109
|
pretrained_model = modelpool.load_pretrained_model()
|
|
61
110
|
|
|
62
111
|
task_vectors = []
|
|
@@ -103,11 +152,14 @@ class TaskVectorCosSimilarity(BaseAlgorithm, LightningFabricMixin):
|
|
|
103
152
|
|
|
104
153
|
def _plot_heatmap(self, data: pd.DataFrame):
|
|
105
154
|
"""
|
|
106
|
-
|
|
155
|
+
Generate and save a heatmap visualization of the cosine similarity matrix.
|
|
156
|
+
|
|
157
|
+
Creates a color-coded heatmap showing pairwise cosine similarities between
|
|
158
|
+
task vectors. The heatmap is saved as a PDF file in the output directory.
|
|
107
159
|
|
|
108
160
|
Args:
|
|
109
|
-
data (pd.DataFrame):
|
|
110
|
-
|
|
161
|
+
data (pd.DataFrame): Symmetric matrix of cosine similarities between
|
|
162
|
+
task vectors, with model names as both index and columns.
|
|
111
163
|
|
|
112
164
|
Returns:
|
|
113
165
|
None
|
|
@@ -141,6 +193,26 @@ class TaskVectorCosSimilarity(BaseAlgorithm, LightningFabricMixin):
|
|
|
141
193
|
def get_task_vector(
|
|
142
194
|
self, pretrained_model: nn.Module, finetuned_model: nn.Module
|
|
143
195
|
) -> torch.Tensor:
|
|
196
|
+
"""
|
|
197
|
+
Compute the task vector for a fine-tuned model.
|
|
198
|
+
|
|
199
|
+
The task vector represents the parameter changes from pretraining to
|
|
200
|
+
fine-tuning and is computed as:
|
|
201
|
+
task_vector = finetuned_params - pretrained_params
|
|
202
|
+
|
|
203
|
+
Args:
|
|
204
|
+
pretrained_model (nn.Module): The base pretrained model
|
|
205
|
+
finetuned_model (nn.Module): The fine-tuned model for a specific task
|
|
206
|
+
|
|
207
|
+
Returns:
|
|
208
|
+
torch.Tensor: Flattened task vector containing parameter differences.
|
|
209
|
+
If max_points_per_model is set, the vector may be downsampled.
|
|
210
|
+
|
|
211
|
+
Note:
|
|
212
|
+
- Converts parameters to float64 for numerical precision
|
|
213
|
+
- Supports optional downsampling for memory efficiency
|
|
214
|
+
- Uses only trainable parameters if trainable_only=True
|
|
215
|
+
"""
|
|
144
216
|
task_vector = state_dict_sub(
|
|
145
217
|
self.get_state_dict(finetuned_model),
|
|
146
218
|
self.get_state_dict(pretrained_model),
|
|
@@ -166,6 +238,17 @@ class TaskVectorCosSimilarity(BaseAlgorithm, LightningFabricMixin):
|
|
|
166
238
|
return task_vector
|
|
167
239
|
|
|
168
240
|
def get_state_dict(self, model: nn.Module):
|
|
241
|
+
"""
|
|
242
|
+
Extract the state dictionary from a model.
|
|
243
|
+
|
|
244
|
+
Args:
|
|
245
|
+
model (nn.Module): The model to extract parameters from
|
|
246
|
+
|
|
247
|
+
Returns:
|
|
248
|
+
Dict[str, torch.Tensor]: State dictionary containing model parameters.
|
|
249
|
+
Returns only trainable parameters if trainable_only=True,
|
|
250
|
+
otherwise returns all parameters.
|
|
251
|
+
"""
|
|
169
252
|
if self.trainable_only:
|
|
170
253
|
return trainable_state_dict(model)
|
|
171
254
|
else:
|
|
@@ -0,0 +1,313 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import os
|
|
3
|
+
from typing import Dict, List, Optional, cast
|
|
4
|
+
|
|
5
|
+
import matplotlib as mpl
|
|
6
|
+
import matplotlib.pyplot as plt
|
|
7
|
+
import numpy as np
|
|
8
|
+
import seaborn as sns
|
|
9
|
+
import torch
|
|
10
|
+
from numpy.typing import NDArray
|
|
11
|
+
from torch import nn
|
|
12
|
+
from tqdm.auto import tqdm
|
|
13
|
+
|
|
14
|
+
from fusion_bench import BaseAlgorithm, BaseModelPool, StateDictType, timeit_context
|
|
15
|
+
from fusion_bench.mixins import (
|
|
16
|
+
LightningFabricMixin,
|
|
17
|
+
SimpleProfilerMixin,
|
|
18
|
+
auto_register_config,
|
|
19
|
+
)
|
|
20
|
+
from fusion_bench.utils import state_dict_to_vector, trainable_state_dict
|
|
21
|
+
from fusion_bench.utils.state_dict_arithmetic import state_dict_sub
|
|
22
|
+
|
|
23
|
+
log = logging.getLogger(__name__)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@auto_register_config
|
|
27
|
+
class TaskVectorViolinPlot(
|
|
28
|
+
LightningFabricMixin,
|
|
29
|
+
SimpleProfilerMixin,
|
|
30
|
+
BaseAlgorithm,
|
|
31
|
+
):
|
|
32
|
+
"""
|
|
33
|
+
Creates violin plots to visualize the distribution of task vector values across models.
|
|
34
|
+
|
|
35
|
+
This class implements the task vector visualization technique described in:
|
|
36
|
+
"Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging"
|
|
37
|
+
by L. Shen, A. Tang, E. Yang et al. (https://arxiv.org/abs/2410.21804)
|
|
38
|
+
|
|
39
|
+
Task vectors represent the parameter differences between fine-tuned models and their
|
|
40
|
+
pretrained base model, computed as:
|
|
41
|
+
task_vector = finetuned_params - pretrained_params
|
|
42
|
+
|
|
43
|
+
The algorithm generates two types of violin plots:
|
|
44
|
+
1. Distribution of raw task vector values (positive and negative)
|
|
45
|
+
2. Distribution of absolute task vector values
|
|
46
|
+
|
|
47
|
+
Args:
|
|
48
|
+
trainable_only (bool): If True, only consider trainable parameters when computing
|
|
49
|
+
task vectors. If False, use all parameters.
|
|
50
|
+
max_points_per_model (int, optional): Maximum number of parameters to sample
|
|
51
|
+
per model for memory efficiency. If None or 0, uses all parameters.
|
|
52
|
+
Defaults to 1000.
|
|
53
|
+
fig_kwargs (dict, optional): Dictionary of keyword arguments to pass to
|
|
54
|
+
matplotlib.pyplot.subplots. Common options include:
|
|
55
|
+
- figsize: Tuple of (width, height) in inches
|
|
56
|
+
- dpi: Dots per inch for resolution
|
|
57
|
+
- facecolor: Figure background color
|
|
58
|
+
Defaults to None.
|
|
59
|
+
output_path (str, optional): Directory to save the violin plots. If None,
|
|
60
|
+
uses the fabric logger's log directory. Defaults to None.
|
|
61
|
+
|
|
62
|
+
Outputs:
|
|
63
|
+
- task_vector_violin.pdf: Violin plot of raw task vector value distributions
|
|
64
|
+
- task_vector_violin_abs.pdf: Violin plot of absolute task vector value distributions
|
|
65
|
+
|
|
66
|
+
Returns:
|
|
67
|
+
The pretrained model from the model pool.
|
|
68
|
+
|
|
69
|
+
Example:
|
|
70
|
+
```python
|
|
71
|
+
plotter = TaskVectorViolinPlot(
|
|
72
|
+
trainable_only=True,
|
|
73
|
+
max_points_per_model=5000,
|
|
74
|
+
fig_kwargs={'figsize': (12, 8), 'dpi': 300},
|
|
75
|
+
output_path='./analysis_plots'
|
|
76
|
+
)
|
|
77
|
+
pretrained_model = plotter.run(modelpool)
|
|
78
|
+
```
|
|
79
|
+
|
|
80
|
+
Note:
|
|
81
|
+
This visualization is particularly useful for understanding:
|
|
82
|
+
- How different tasks affect model parameters
|
|
83
|
+
- The magnitude and distribution of parameter changes
|
|
84
|
+
- Similarities and differences between task adaptations
|
|
85
|
+
"""
|
|
86
|
+
|
|
87
|
+
# config_mapping is a mapping from the attributes to the key in the configuration files
|
|
88
|
+
_config_mapping = BaseAlgorithm._config_mapping | {
|
|
89
|
+
"_output_path": "output_path",
|
|
90
|
+
}
|
|
91
|
+
|
|
92
|
+
def __init__(
|
|
93
|
+
self,
|
|
94
|
+
trainable_only: bool,
|
|
95
|
+
max_points_per_model: Optional[int] = 1000,
|
|
96
|
+
fig_kwawrgs=None,
|
|
97
|
+
output_path: Optional[str] = None,
|
|
98
|
+
**kwargs,
|
|
99
|
+
):
|
|
100
|
+
"""
|
|
101
|
+
Initialize the TaskVectorViolinPlot analyzer.
|
|
102
|
+
|
|
103
|
+
Args:
|
|
104
|
+
trainable_only (bool): Whether to consider only trainable parameters when
|
|
105
|
+
computing task vectors. Set to True to focus on learnable parameters,
|
|
106
|
+
False to include all parameters including frozen ones.
|
|
107
|
+
max_points_per_model (int, optional): Maximum number of parameter values
|
|
108
|
+
to sample per model for visualization. Useful for large models to
|
|
109
|
+
manage memory usage and plot clarity. Set to None or 0 to use all
|
|
110
|
+
parameters. Defaults to 1000.
|
|
111
|
+
fig_kwargs (dict, optional): Keyword arguments passed to matplotlib's
|
|
112
|
+
subplots function for plot customization. Examples:
|
|
113
|
+
- {'figsize': (10, 6)} for plot dimensions
|
|
114
|
+
- {'dpi': 300} for high resolution
|
|
115
|
+
- {'facecolor': 'white'} for background color
|
|
116
|
+
Defaults to None (uses matplotlib defaults).
|
|
117
|
+
output_path (str, optional): Directory path where violin plots will be saved.
|
|
118
|
+
If None, uses the fabric logger's log directory. The directory will be
|
|
119
|
+
created if it doesn't exist. Defaults to None.
|
|
120
|
+
**kwargs: Additional keyword arguments passed to parent classes.
|
|
121
|
+
|
|
122
|
+
Note:
|
|
123
|
+
The parameter name 'fig_kwawrgs' appears to be a typo for 'fig_kwargs'.
|
|
124
|
+
This should be corrected in the parameter name for consistency.
|
|
125
|
+
"""
|
|
126
|
+
super().__init__(**kwargs)
|
|
127
|
+
self._output_path = output_path
|
|
128
|
+
|
|
129
|
+
@property
|
|
130
|
+
def output_path(self):
|
|
131
|
+
if self._output_path is None:
|
|
132
|
+
return self.fabric.logger.log_dir
|
|
133
|
+
else:
|
|
134
|
+
return self._output_path
|
|
135
|
+
|
|
136
|
+
def run(self, modelpool: BaseModelPool):
|
|
137
|
+
"""
|
|
138
|
+
Execute the task vector violin plot analysis and visualization.
|
|
139
|
+
|
|
140
|
+
This method implements the core algorithm that:
|
|
141
|
+
1. Loads the pretrained base model from the model pool
|
|
142
|
+
2. Computes task vectors for each fine-tuned model (parameter differences)
|
|
143
|
+
3. Creates two violin plots showing the distribution of task vector values:
|
|
144
|
+
- Raw values plot: Shows positive and negative parameter changes
|
|
145
|
+
- Absolute values plot: Shows magnitude of parameter changes
|
|
146
|
+
4. Saves both plots as PDF files in the output directory
|
|
147
|
+
|
|
148
|
+
The visualization technique follows the approach described in:
|
|
149
|
+
"Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging"
|
|
150
|
+
|
|
151
|
+
Args:
|
|
152
|
+
modelpool (BaseModelPool): Pool containing both a pretrained model and
|
|
153
|
+
fine-tuned models. Must have `has_pretrained=True`.
|
|
154
|
+
|
|
155
|
+
Returns:
|
|
156
|
+
nn.Module: The pretrained model loaded from the model pool.
|
|
157
|
+
|
|
158
|
+
Raises:
|
|
159
|
+
AssertionError: If the model pool doesn't contain a pretrained model.
|
|
160
|
+
|
|
161
|
+
Side Effects:
|
|
162
|
+
- Creates output directory if it doesn't exist
|
|
163
|
+
- Saves 'task_vector_violin.pdf' (raw values distribution)
|
|
164
|
+
- Saves 'task_vector_violin_abs.pdf' (absolute values distribution)
|
|
165
|
+
- Prints progress information during task vector computation
|
|
166
|
+
|
|
167
|
+
Example Output Files:
|
|
168
|
+
- task_vector_violin.pdf: Shows how parameters change (+ and -)
|
|
169
|
+
- task_vector_violin_abs.pdf: Shows magnitude of parameter changes
|
|
170
|
+
"""
|
|
171
|
+
assert modelpool.has_pretrained
|
|
172
|
+
pretrained_model = modelpool.load_pretrained_model()
|
|
173
|
+
|
|
174
|
+
# Compute task vectors for each fine-tuned model
|
|
175
|
+
with torch.no_grad(), timeit_context("Computing task vectors"):
|
|
176
|
+
task_vectors: Dict[str, NDArray] = {}
|
|
177
|
+
for name, finetuned_model in tqdm(
|
|
178
|
+
modelpool.named_models(), total=len(modelpool)
|
|
179
|
+
):
|
|
180
|
+
print(f"computing task vectors for {name}")
|
|
181
|
+
task_vectors[name] = self.get_task_vector(
|
|
182
|
+
pretrained_model, finetuned_model
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
# === Create violin plot ===
|
|
186
|
+
fig, ax = plt.subplots(
|
|
187
|
+
1, 1, **self.fig_kwargs if self.fig_kwargs is not None else {}
|
|
188
|
+
)
|
|
189
|
+
fig = cast(plt.Figure, fig)
|
|
190
|
+
ax = cast(plt.Axes, ax)
|
|
191
|
+
|
|
192
|
+
# Prepare data for plotting
|
|
193
|
+
data = [values for values in task_vectors.values()]
|
|
194
|
+
labels = list(task_vectors.keys())
|
|
195
|
+
|
|
196
|
+
# Create violin plot using seaborn
|
|
197
|
+
with timeit_context("ploting"):
|
|
198
|
+
sns.violinplot(data=data, ax=ax)
|
|
199
|
+
|
|
200
|
+
# Customize plot
|
|
201
|
+
ax.set_xticklabels(labels, rotation=45, ha="right")
|
|
202
|
+
ax.set_ylabel("Task Vector Values")
|
|
203
|
+
ax.set_title("Distribution of Task Vector Values")
|
|
204
|
+
|
|
205
|
+
# Adjust layout to prevent label cutoff and save plot
|
|
206
|
+
plt.tight_layout()
|
|
207
|
+
os.makedirs(self.output_path, exist_ok=True)
|
|
208
|
+
output_file = f"{self.output_path}/task_vector_violin.pdf"
|
|
209
|
+
plt.savefig(output_file, bbox_inches="tight")
|
|
210
|
+
plt.close(fig)
|
|
211
|
+
|
|
212
|
+
# === Create violin plot (Abs values) ===
|
|
213
|
+
fig, ax = plt.subplots(
|
|
214
|
+
1, 1, **self.fig_kwargs if self.fig_kwargs is not None else {}
|
|
215
|
+
)
|
|
216
|
+
fig = cast(plt.Figure, fig)
|
|
217
|
+
ax = cast(plt.Axes, ax)
|
|
218
|
+
|
|
219
|
+
# Prepare data for plotting
|
|
220
|
+
data = [np.abs(values) for values in task_vectors.values()]
|
|
221
|
+
labels = list(task_vectors.keys())
|
|
222
|
+
|
|
223
|
+
# Create violin plot using seaborn
|
|
224
|
+
with timeit_context("ploting abs value plot"):
|
|
225
|
+
sns.violinplot(data=data, ax=ax)
|
|
226
|
+
|
|
227
|
+
# Customize plot
|
|
228
|
+
ax.set_xticklabels(labels, rotation=45, ha="right")
|
|
229
|
+
ax.set_ylabel("The Absolute Values")
|
|
230
|
+
ax.set_title("Distribution of Task Vector Absolute Values")
|
|
231
|
+
|
|
232
|
+
# Adjust layout to prevent label cutoff and save plot
|
|
233
|
+
plt.tight_layout()
|
|
234
|
+
os.makedirs(self.output_path, exist_ok=True)
|
|
235
|
+
output_file = f"{self.output_path}/task_vector_violin_abs.pdf"
|
|
236
|
+
plt.savefig(output_file, bbox_inches="tight")
|
|
237
|
+
plt.close(fig)
|
|
238
|
+
|
|
239
|
+
return pretrained_model
|
|
240
|
+
|
|
241
|
+
def get_task_vector(self, pretrained_model, finetuned_model):
|
|
242
|
+
"""
|
|
243
|
+
Compute the task vector representing parameter changes from pretraining to fine-tuning.
|
|
244
|
+
|
|
245
|
+
The task vector quantifies how model parameters have changed during task-specific
|
|
246
|
+
fine-tuning and is computed as:
|
|
247
|
+
task_vector = finetuned_params - pretrained_params
|
|
248
|
+
|
|
249
|
+
Args:
|
|
250
|
+
pretrained_model (nn.Module): The base pretrained model
|
|
251
|
+
finetuned_model (nn.Module): The fine-tuned model for a specific task
|
|
252
|
+
|
|
253
|
+
Returns:
|
|
254
|
+
np.ndarray: Flattened numpy array containing parameter differences.
|
|
255
|
+
If max_points_per_model is set, the array may be randomly downsampled
|
|
256
|
+
for memory efficiency and visualization clarity.
|
|
257
|
+
|
|
258
|
+
Processing Steps:
|
|
259
|
+
1. Extract state dictionaries from both models
|
|
260
|
+
2. Compute parameter differences (subtraction)
|
|
261
|
+
3. Flatten to 1D vector
|
|
262
|
+
4. Convert to numpy array with float32 precision
|
|
263
|
+
5. Optionally downsample if max_points_per_model is specified
|
|
264
|
+
|
|
265
|
+
Note:
|
|
266
|
+
- Uses only trainable parameters if trainable_only=True
|
|
267
|
+
- Downsampling uses random sampling without replacement
|
|
268
|
+
- Preserves the relative distribution of parameter changes
|
|
269
|
+
"""
|
|
270
|
+
task_vector = state_dict_sub(
|
|
271
|
+
self.get_state_dict(finetuned_model),
|
|
272
|
+
self.get_state_dict(pretrained_model),
|
|
273
|
+
)
|
|
274
|
+
task_vector = state_dict_to_vector(task_vector)
|
|
275
|
+
|
|
276
|
+
task_vector = task_vector.cpu().float().numpy()
|
|
277
|
+
# downsample if necessary
|
|
278
|
+
if (
|
|
279
|
+
self.max_points_per_model is not None
|
|
280
|
+
and self.max_points_per_model > 0
|
|
281
|
+
and task_vector.shape[0] > self.max_points_per_model
|
|
282
|
+
):
|
|
283
|
+
log.info(
|
|
284
|
+
f"Downsampling task vectors to {self.max_points_per_model} points."
|
|
285
|
+
)
|
|
286
|
+
indices = np.random.choice(
|
|
287
|
+
task_vector.shape[0], self.max_points_per_model, replace=False
|
|
288
|
+
)
|
|
289
|
+
task_vector = task_vector[indices].copy()
|
|
290
|
+
|
|
291
|
+
return task_vector
|
|
292
|
+
|
|
293
|
+
def get_state_dict(self, model: nn.Module):
|
|
294
|
+
"""
|
|
295
|
+
Extract the state dictionary from a model based on parameter filtering settings.
|
|
296
|
+
|
|
297
|
+
Args:
|
|
298
|
+
model (nn.Module): The PyTorch model to extract parameters from
|
|
299
|
+
|
|
300
|
+
Returns:
|
|
301
|
+
Dict[str, torch.Tensor]: State dictionary containing model parameters.
|
|
302
|
+
If trainable_only=True, returns only parameters with requires_grad=True.
|
|
303
|
+
If trainable_only=False, returns all parameters including frozen ones.
|
|
304
|
+
|
|
305
|
+
Note:
|
|
306
|
+
This method respects the trainable_only configuration to focus analysis
|
|
307
|
+
on either learnable parameters or the complete parameter set depending
|
|
308
|
+
on the research question being addressed.
|
|
309
|
+
"""
|
|
310
|
+
if self.trainable_only:
|
|
311
|
+
return trainable_state_dict(model)
|
|
312
|
+
else:
|
|
313
|
+
return model.state_dict()
|
|
@@ -6,7 +6,11 @@ import torch.nn.functional as F
|
|
|
6
6
|
from tqdm.auto import tqdm
|
|
7
7
|
|
|
8
8
|
from fusion_bench import BaseAlgorithm, BaseModelPool
|
|
9
|
-
from fusion_bench.mixins import
|
|
9
|
+
from fusion_bench.mixins import (
|
|
10
|
+
LightningFabricMixin,
|
|
11
|
+
SimpleProfilerMixin,
|
|
12
|
+
auto_register_config,
|
|
13
|
+
)
|
|
10
14
|
from fusion_bench.modelpool import CausalLMPool
|
|
11
15
|
|
|
12
16
|
from .bitdelta_utils.data import get_dataloader, get_dataset
|
|
@@ -15,23 +19,12 @@ from .bitdelta_utils.diff import compress_diff, save_diff, save_full_model
|
|
|
15
19
|
log = logging.getLogger(__name__)
|
|
16
20
|
|
|
17
21
|
|
|
22
|
+
@auto_register_config
|
|
18
23
|
class BitDeltaAlgorithm(
|
|
19
|
-
BaseAlgorithm,
|
|
20
24
|
LightningFabricMixin,
|
|
21
25
|
SimpleProfilerMixin,
|
|
26
|
+
BaseAlgorithm,
|
|
22
27
|
):
|
|
23
|
-
_config_mapping = BaseAlgorithm._config_mapping | {
|
|
24
|
-
"save_dir": "save_dir",
|
|
25
|
-
"save_full_model": "save_full_model",
|
|
26
|
-
"lr": "lr",
|
|
27
|
-
"batch_size": "batch_size",
|
|
28
|
-
"num_steps": "num_steps",
|
|
29
|
-
"dataset_name": "dataset_name",
|
|
30
|
-
"subset": "subset",
|
|
31
|
-
"split": "split",
|
|
32
|
-
"max_length": "max_length",
|
|
33
|
-
}
|
|
34
|
-
|
|
35
28
|
def __init__(
|
|
36
29
|
self,
|
|
37
30
|
save_dir: str,
|
|
@@ -46,15 +39,6 @@ class BitDeltaAlgorithm(
|
|
|
46
39
|
**kwargs,
|
|
47
40
|
):
|
|
48
41
|
super().__init__(**kwargs)
|
|
49
|
-
self.save_dir = save_dir
|
|
50
|
-
self.save_full_model = save_full_model
|
|
51
|
-
self.lr = lr
|
|
52
|
-
self.batch_size = batch_size
|
|
53
|
-
self.num_steps = num_steps
|
|
54
|
-
self.dataset_name = dataset_name
|
|
55
|
-
self.subset = subset
|
|
56
|
-
self.split = split
|
|
57
|
-
self.max_length = max_length
|
|
58
42
|
|
|
59
43
|
def run(self, modelpool: CausalLMPool):
|
|
60
44
|
if self.save_dir is None:
|