fusion-bench 0.2.20__tar.gz → 0.2.21__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/PKG-INFO +24 -25
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/README.md +19 -24
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/__init__.py +1 -0
- fusion_bench-0.2.21/fusion_bench/_get_started/__init__.py +3 -0
- fusion_bench-0.2.21/fusion_bench/_get_started/greeting_program.py +49 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/method/base_algorithm.py +14 -0
- fusion_bench-0.2.21/fusion_bench/constants/__init__.py +7 -0
- fusion_bench-0.2.21/fusion_bench/constants/clip_vision.py +46 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/constants/paths.py +4 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/clip_dataset.py +2 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/gpt2_glue.py +9 -9
- fusion_bench-0.2.21/fusion_bench/dataset/image_corruption/make_corruption.py +179 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/image_dataset.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/nyuv2.py +2 -2
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/__init__.py +16 -3
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/clip_task_wise_adamerging.py +11 -7
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/layer_wise_adamerging.py +11 -5
- fusion_bench-0.2.21/fusion_bench/method/base_algorithm.py +228 -0
- fusion_bench-0.2.21/fusion_bench/method/bitdelta/__init__.py +4 -0
- fusion_bench-0.2.21/fusion_bench/method/bitdelta/bitdelta.py +156 -0
- fusion_bench-0.2.21/fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py +462 -0
- fusion_bench-0.2.21/fusion_bench/method/bitdelta/bitdelta_utils/data.py +35 -0
- fusion_bench-0.2.21/fusion_bench/method/bitdelta/bitdelta_utils/diff.py +129 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/depth_upscaling/depth_upscaling.py +4 -9
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py +4 -5
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/doge_ta/doge_ta.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ensemble.py +12 -12
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fisher_merging/clip_fisher_merging.py +2 -2
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fisher_merging/fisher_merging.py +6 -15
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +3 -10
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fw_merging/fw_hard.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fw_merging/fw_soft.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/clip_layer_wise_gossip.py +4 -5
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/expo.py +2 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/linear_interpolation.py +6 -4
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/simple_average_for_llama.py +2 -3
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/lm_finetune/bradley_terry_rm.py +2 -2
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +9 -26
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/model_recombination.py +2 -5
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/hooks/__init__.py +1 -2
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/utils/data.py +2 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/utils/prune.py +6 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/llama_magnitude_prune.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/data.py +1 -2
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/clip_pwe_moe.py +12 -34
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/randes/modelsoup.py +1 -3
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean/clip_regmean.py +2 -2
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean/gpt2_regmean.py +3 -10
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean/regmean.py +2 -11
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean_plusplus/__init__.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean_plusplus/clip_regmean_plusplus.py +24 -17
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean_plusplus/regmean_plusplus.py +56 -38
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/simple_average.py +5 -9
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/slerp/slerp.py +5 -2
- fusion_bench-0.2.21/fusion_bench/method/smile_upscaling/error_accumulation.py +177 -0
- fusion_bench-0.2.21/fusion_bench/method/smile_upscaling/projected_energy.py +145 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +39 -28
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/smile_upscaling/smile_upscaling.py +12 -5
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/tall_mask/task_arithmetic.py +3 -11
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_arithmetic/task_arithmetic.py +6 -10
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ties_merging/ties_merging.py +13 -26
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/we_moe/clip_we_moe.py +5 -4
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/we_moe/we_moe.py +6 -6
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/weighted_average/llama.py +4 -16
- fusion_bench-0.2.21/fusion_bench/metrics/continual_learning/__init__.py +1 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/continual_learning/backward_transfer.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/__init__.py +2 -2
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/segmentation.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/__init__.py +10 -2
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/clip_classification.py +4 -3
- fusion_bench-0.2.21/fusion_bench/mixins/hydra_config.py +147 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/lightning_fabric.py +2 -0
- fusion_bench-0.2.21/fusion_bench/mixins/serialization.py +365 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/__init__.py +2 -2
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/base_pool.py +29 -9
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/causal_lm/causal_lm.py +9 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/clip_vision/modelpool.py +1 -3
- fusion_bench-0.2.21/fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/__init__.py +2 -1
- fusion_bench-0.2.21/fusion_bench/models/hf_utils.py +182 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/linearized/linearized_model_utils.py +4 -4
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/linearized/vision_model.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py +4 -4
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py +0 -1
- fusion_bench-0.2.21/fusion_bench/models/modeling_smile_gemma2/__init__.py +9 -0
- fusion_bench-0.2.21/fusion_bench/models/modeling_smile_gemma2/configuration_smile_gemma2.py +20 -0
- fusion_bench-0.2.21/fusion_bench/models/modeling_smile_gemma2/modeling_smile_gemma2.py +986 -0
- fusion_bench-0.2.21/fusion_bench/models/modeling_smile_gemma2/register.py +26 -0
- fusion_bench-0.2.21/fusion_bench/models/modeling_smile_llama/configuration_smile_llama.py +20 -0
- fusion_bench-0.2.21/fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py +705 -0
- fusion_bench-0.2.21/fusion_bench/models/modeling_smile_llama/register.py +8 -0
- fusion_bench-0.2.21/fusion_bench/models/modeling_smile_mistral/__init__.py +6 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_qwen2/__init__.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +6 -7
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_qwen2/register.py +1 -4
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/parameter_dict.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/sparse_we_moe.py +1 -53
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/utils.py +26 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/we_moe.py +1 -53
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/wrappers/ensemble.py +6 -4
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/wrappers/layer_wise_fusion.py +1 -1
- fusion_bench-0.2.21/fusion_bench/models/wrappers/task_wise_fusion.py +427 -0
- fusion_bench-0.2.21/fusion_bench/programs/base_program.py +88 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/programs/fabric_fusion_program.py +24 -8
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/scripts/cli.py +5 -5
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/base_pool.py +4 -3
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/taskpool.py +34 -18
- fusion_bench-0.2.21/fusion_bench/taskpool/clip_vision/utils/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/lm_eval_harness/taskpool.py +1 -2
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/__init__.py +6 -4
- fusion_bench-0.2.21/fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/__init__.py +6 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/devices.py +14 -4
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/instantiate_utils.py +3 -1
- fusion_bench-0.2.21/fusion_bench/utils/modelscope.py +265 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/parameters.py +2 -2
- fusion_bench-0.2.21/fusion_bench/utils/plot/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/rich_utils.py +3 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/state_dict_arithmetic.py +25 -23
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/PKG-INFO +24 -25
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/SOURCES.txt +38 -7
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/requires.txt +4 -0
- fusion_bench-0.2.21/fusion_bench_config/_get_started/clip_evaluate_single_model.yaml +21 -0
- fusion_bench-0.2.21/fusion_bench_config/_get_started/clip_simple_average.yaml +23 -0
- fusion_bench-0.2.21/fusion_bench_config/_get_started/clip_task_arithmetic.yaml +24 -0
- fusion_bench-0.2.21/fusion_bench_config/_get_started/greeting_program.yaml +4 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/loggers/csv_logger.yaml +3 -3
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +3 -3
- fusion_bench-0.2.21/fusion_bench_config/fabric_model_fusion.yaml +47 -0
- fusion_bench-0.2.21/fusion_bench_config/hydra/default.yaml +12 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/llama_full_finetune.yaml +1 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/adamerging/clip.yaml +1 -1
- fusion_bench-0.2.21/fusion_bench_config/method/bitdelta/bitdelta.yaml +12 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/depth_upscaling.yaml +4 -1
- fusion_bench-0.2.21/fusion_bench_config/method/smile_upscaling/error_accumulation.yaml +5 -0
- fusion_bench-0.2.21/fusion_bench_config/method/smile_upscaling/projected_energy.yaml +2 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +1 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +1 -4
- fusion_bench-0.2.21/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +5 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -6
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +1 -1
- fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml +11 -0
- fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-7B-math_and_coder.yaml +9 -0
- fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/mistral-7b.yaml +6 -0
- fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/mixtral_moe_merging.yaml +10 -0
- fusion_bench-0.2.20/fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml → fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +1 -3
- fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +10 -0
- fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/vicuna-7b-v1.5.yaml +8 -0
- {fusion_bench-0.2.20/fusion_bench_config/modelpool/SeqenceClassificationModelPool → fusion_bench-0.2.21/fusion_bench_config/modelpool/SequenceClassificationModelPool}/llama_preference700k.yaml +1 -1
- {fusion_bench-0.2.20/fusion_bench_config/modelpool/SeqenceClassificationModelPool → fusion_bench-0.2.21/fusion_bench_config/modelpool/SequenceClassificationModelPool}/single_reward_model.yaml +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/nyuv2_config.yaml +3 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/nyuv2_mtl_train.yaml +1 -0
- fusion_bench-0.2.21/fusion_bench_config/path/default.yaml +28 -0
- fusion_bench-0.2.21/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_svhn_and_mnist.yaml +24 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/pyproject.toml +5 -3
- fusion_bench-0.2.20/fusion_bench/constants/__init__.py +0 -2
- fusion_bench-0.2.20/fusion_bench/constants/clip_vision.py +0 -22
- fusion_bench-0.2.20/fusion_bench/method/base_algorithm.py +0 -45
- fusion_bench-0.2.20/fusion_bench/mixins/hydra_config.py +0 -49
- fusion_bench-0.2.20/fusion_bench/mixins/serialization.py +0 -148
- fusion_bench-0.2.20/fusion_bench/modelpool/seq_classification_lm/__init__.py +0 -2
- fusion_bench-0.2.20/fusion_bench/models/modeling_smile_mistral/__init__.py +0 -48
- fusion_bench-0.2.20/fusion_bench/models/wrappers/task_wise_fusion.py +0 -249
- fusion_bench-0.2.20/fusion_bench/programs/base_program.py +0 -9
- fusion_bench-0.2.20/fusion_bench/utils/modelscope.py +0 -146
- fusion_bench-0.2.20/fusion_bench_config/fabric_model_fusion.yaml +0 -19
- fusion_bench-0.2.20/fusion_bench_config/hydra/default.yaml +0 -8
- fusion_bench-0.2.20/fusion_bench_config/method/adamerging.yaml +0 -23
- fusion_bench-0.2.20/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +0 -10
- fusion_bench-0.2.20/fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +0 -17
- fusion_bench-0.2.20/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +0 -20
- fusion_bench-0.2.20/fusion_bench_config/modelpool/mixtral_moe_merging.yaml +0 -14
- fusion_bench-0.2.20/fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +0 -6
- fusion_bench-0.2.20/fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -22
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/LICENSE +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/__main__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/method/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/modelpool/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/modelpool/base_pool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/modelpool/huggingface_clip_vision.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/taskpool/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/taskpool/base_pool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/taskpool/clip_image_classification.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/constants/banner.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/arc.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/arc_agi.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/augmenters.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/messagers.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/np_cache.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/preprocess.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/representers.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/fer2013.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/gsm8k.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/dataset/llama/utils → fusion_bench-0.2.21/fusion_bench/dataset/image_corruption}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/imdb.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/alpaca.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/collate.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/metamathqa.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/openai.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/preference_700k.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/sharegpt.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/squad.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/stanford_shp.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/ultrachat.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/method/knots → fusion_bench-0.2.21/fusion_bench/dataset/llama/utils}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/wikitext.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ada_svd/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ada_svd/clip_vision.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/entropy_loss.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/llama_adamerging.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/min_norm_solvers.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/task_wise_adamerging.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/analysis/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/analysis/task_vector_cos_similarity.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/analysis/task_vector_violin_plot.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/metrics → fusion_bench-0.2.21/fusion_bench/method/bitdelta/bitdelta_utils}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/classification/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/classification/clip_finetune.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/classification/continual_clip_finetune.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/concrete_subspace/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/concrete_subspace/clip_post_defense.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dare/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dare/simple_average.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dare/task_arithmetic.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dare/ties_merging.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dare/utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dawe/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dawe/dawe_for_clip.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dawe/warppers/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dawe/warppers/dawe_model.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/depth_upscaling/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/doge_ta/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/doge_ta/layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dummy.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/mixtral/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/utils/calibration_data.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fisher_merging/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fw_merging/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fw_merging/utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/clip_task_wise_gossip.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/entropy_loss.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/min_norm_solvers.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/task_wise_gossip.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/isotropic_merging/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/isotropic_merging/iso.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/isotropic_merging/iso_utils.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/mixins/optim → fusion_bench-0.2.21/fusion_bench/method/knots}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/knots/knots_utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/llama_expo.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/task_arithmetic_for_llama.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/lm_finetune/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/lm_finetune/causal_lm_pretrain.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/lm_finetune/fullfinetune_sft.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/lm_finetune/peftfinetune_sft.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/mixture_of_experts/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/mixture_of_experts/mixtral_merging.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/hooks/deepseek_v2.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/hooks/hook.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/hooks/mixtral.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/moe_pruner.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/utils/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/utils/layerwrapper.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/utils/score.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/opcm.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/task_arithmetic.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/ties_merging.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/weight_average.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/llama_random_prune.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/llama_sparsegpt_prune.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/llama_wanda_prune.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/magnitude_diff_pruning.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/prune_utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/sparsegpt_utils/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/ablate.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/eval.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/layerwrapper.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/prune.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/prune_opt.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/sparsegpt.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/module.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/openclip_pwe_moe.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/phn/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/phn/solvers.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/randes/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/randes/base_algorithm.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/randes/task_arithmetic.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/rankone_moe/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/rankone_moe/clip_rankone_moe.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/rankone_moe/rankone_moe.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/slerp/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/slerp/slerp_utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/smile_upscaling/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/smile_upscaling/singular_projection_merging.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/sparse_we_moe/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/sparse_we_moe/sparse_we_moe.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/sparselo/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/sparselo/sparselo.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/surgery/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/tall_mask/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/tall_mask/utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_arithmetic/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/TSVC.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/TSVM.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/utils/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/utils/task_singular_interference.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ties_merging/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ties_merging/ties_merging_utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/trust_region/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/trust_region/clip_task_arithmetic.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/trust_region/utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/we_moe/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/weighted_average/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/weighted_average/weighted_average.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/models/expert_sparsity → fusion_bench-0.2.21/fusion_bench/metrics}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/depth.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/loss.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/noise.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/normal.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/text_to_image_generation/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/text_to_image_generation/compressibility.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/fabric_training.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/openclip_classification.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/models/linearized → fusion_bench-0.2.21/fusion_bench/mixins/optim}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/optim/adamw_with_warmup.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/rich_live.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/simple_profiler.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/causal_lm/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/clip_vision/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/huggingface_automodel.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/huggingface_gpt2_classification.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/lazy_state_dict_pool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/nyuv2_modelpool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/openclip_vision/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/openclip_vision/modelpool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/seq2seq_lm/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/seq2seq_lm/modelpool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/seq_classification_lm/reward_model.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/chat_templates/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/chat_templates/llama_3_Instruct.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/chat_templates/load_tokenizer.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/models/llama/model_utils → fusion_bench-0.2.21/fusion_bench/models/expert_sparsity}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/expert_sparsity/mixtral/__init__.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/expert_sparsity/mixtral/dataset.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/expert_sparsity/mixtral/modeling_mixtral.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/expert_sparsity/mixtral/wrapper.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/hf_clip.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/models/nyuv2 → fusion_bench-0.2.21/fusion_bench/models/linearized}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/__init__.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/models/smile_moe → fusion_bench-0.2.21/fusion_bench/models/llama/model_utils}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/model_utils/embedding.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/model_utils/liger_kernel.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/model_utils/misc.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/model_utils/mod.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/model_utils/visual.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/patcher.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/tokenizer_loader.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/masks/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/masks/mask_model.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_deepseek_v2/__init__.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/losparse_linear.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/register.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/utils.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/models/wrappers → fusion_bench-0.2.21/fusion_bench/models/modeling_smile_llama}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_mistral/register.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/scripts → fusion_bench-0.2.21/fusion_bench/models/nyuv2}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/nyuv2/aspp.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/nyuv2/lightning_module.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/nyuv2/resnet.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/nyuv2/resnet_dilated.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/open_clip/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/open_clip/modeling.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/open_clip/utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/open_clip/variables_and_paths.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/rankone_moe.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/separate_io.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/scripts/clip → fusion_bench-0.2.21/fusion_bench/models/smile_moe}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/smile_moe/linear_from_hf_config.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/smile_moe/linear_from_module.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/smile_moe/utils/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/smile_moe/utils/svd_utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/surgery/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/surgery/surgerymodelwrapper.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/taskpool/clip_vision/utils → fusion_bench-0.2.21/fusion_bench/models/wrappers}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/exception.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/lr_scheduler/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/lr_scheduler/linear_warmup.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/lr_scheduler/utils/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/lr_scheduler/utils/visualization.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/mezo.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/programs/__init__.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/tasks/flan_t5_text_generation → fusion_bench-0.2.21/fusion_bench/scripts}/__init__.py +0 -0
- {fusion_bench-0.2.20/fusion_bench/utils/plot → fusion_bench-0.2.21/fusion_bench/scripts/clip}/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/scripts/clip/convert_checkpoint.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/scripts/imgui.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/scripts/nyuv2_mtl_train.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/scripts/webui.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/dummy.py +1 -1
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/gpt2_text_classification.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/llama/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/llama/reward_model.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/llama/test_generation.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/lm_eval_harness/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/nyuv2_taskpool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/openclip_vision/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/openclip_vision/openclip_taskpool.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/base_task.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/classification.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/cifar10.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/cifar100.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/clip_dataset.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/cub_200_2011.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/dtd.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/emnist_letters.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/emnist_mnist.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/eurosat.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/fashion_mnist.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/fer2013.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/flower102.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/food101.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/gtsrb.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/imagenet.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/kmnist.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/mnist.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/pcam.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/rendered_sst2.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/resisc45.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/stanford_cars.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/stl10.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/sun397.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/svhn.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/tiny_imagenet.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/auto.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/cache_utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/data.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/dict.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/dtype.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/expr.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/fabric.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/functools.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/hydra_utils.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/json.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/lazy_imports.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/lazy_state_dict.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/misc.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/packages.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/path.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/plot/color_data.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/plot/token.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/plot/token_notebook.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/pylogger.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/set.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/strenum/__init__.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/strenum/_name_mangler.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/strenum/_version.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/tensorboard.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/timer.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/type.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/dependency_links.txt +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/entry_points.txt +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/top_level.txt +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/README.md +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/README.md +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL12.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL18.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL20.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/cifar10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/cifar100.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/eurosat.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/fer2013.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/food101.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/kmnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/pcam.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/resisc45.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/stl10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/sun397.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/svhn.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL12.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL18.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL20.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/cifar10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/cifar100.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/eurosat.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/fer2013.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/food101.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/kmnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/pcam.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/resisc45.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/stl10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/sun397.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/svhn.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/eurosat.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/resisc45.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/sun397.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/svhn.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/question_answering/search_qa.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/question_answering/test/search_qa.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/question_answering/train/search_qa.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/question_answering/val/search_qa.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/summarization/test/xsum.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/summarization/train/xsum.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/summarization/val/xsum.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/summarization/xsum.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/auto.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/llama_ddp.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/llama_fsdp.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/llama_peft_fsdp.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/loggers/mlflow_logger.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/loggers/wandb_logger.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/strategy/deepspeed.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/strategy/llama_fsdp.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/hydra/help/fusion_bench_help.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/hydra/job_logging/rich_logging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/llama_magnitude_pruning.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/llama_model_fusion.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/ada_svd/clip_vision.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/adamerging/llama_sft.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/classification/clip_continual_finetune.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/classification/clip_finetune.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/clip_finetune.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/dare/simple_average.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/dare/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/dare/ties_merging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/dawe/dawe_for_clip.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/doge_ta/doge_ta.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/dummy.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/ensemble/max_model_predictor.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/ensemble/simple_ensemble.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/ensemble/weighted_ensemble.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/expert_sparsity/README.md +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/expert_sparsity/mixtral.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/fisher_merging/fisher_merging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/fw_merging/fw_hard.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/fw_merging/fw_soft.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/gossip/layer_wise_clip.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/isotropic_merging/iso_c.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/isotropic_merging/iso_cts.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/expo.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/linear_interpolation.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/llama_expo.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/llama_expo_with_dare.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/simple_average_for_llama.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/weighted_average.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/weighted_average_for_llama.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/mixtral_moe_merging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/mixtral_moe_upscaling.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/model_recombination.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/moe_pruner/moe_pruner.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/opcm/opcm.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/opcm/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/opcm/ties_merging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/opcm/weight_average.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pruning/llama_random_pruning.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/randes/superposed_model_soup.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/randes/superposed_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/rankone_moe/rankone_moe.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/regmean/clip_regmean.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/regmean/gpt2_regmean.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/regmean/regmean.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/simple_average.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/slerp/slerp.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/surgery/adamerging_surgery.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/tall_mask/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/ties_merging.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/README.md +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/download_TALL20_models.sh +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/generate_flan-t5.sh +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_cars_and_dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_cars.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_cars_and_dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B-Instruct.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B-Instruct.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_cars_dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +0 -0
- {fusion_bench-0.2.20/fusion_bench_config/modelpool/SeqenceClassificationModelPool → fusion_bench-0.2.21/fusion_bench_config/modelpool/SequenceClassificationModelPool}/roberta-base_glue.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/automodelpool.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/gpt-2_glue.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/nyuv2_modelpool.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/dummy.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/gpt-2_glue.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/nyuv2_taskpool.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/reward_model_evaluation.yaml +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/setup.cfg +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/tests/test_depth_upscaling.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/tests/test_simple_average.py +0 -0
- {fusion_bench-0.2.20 → fusion_bench-0.2.21}/tests/test_weighed_ensemble.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: fusion_bench
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.21
|
|
4
4
|
Summary: A Comprehensive Benchmark of Deep Model Fusion
|
|
5
5
|
Author-email: Anke Tang <tang.anke@foxmail.com>
|
|
6
6
|
License: MIT License
|
|
@@ -45,13 +45,17 @@ Requires-Dist: rich
|
|
|
45
45
|
Requires-Dist: scipy
|
|
46
46
|
Requires-Dist: h5py
|
|
47
47
|
Requires-Dist: pytest
|
|
48
|
+
Requires-Dist: transformers!=4.49
|
|
49
|
+
Requires-Dist: pillow!=11.2.1
|
|
48
50
|
Provides-Extra: lm-eval-harness
|
|
49
51
|
Requires-Dist: lm-eval; extra == "lm-eval-harness"
|
|
52
|
+
Requires-Dist: immutabledict; extra == "lm-eval-harness"
|
|
53
|
+
Requires-Dist: langdetect; extra == "lm-eval-harness"
|
|
50
54
|
Dynamic: license-file
|
|
51
55
|
|
|
52
56
|
<div align='center'>
|
|
53
57
|
|
|
54
|
-
# FusionBench: A Comprehensive Benchmark/
|
|
58
|
+
# FusionBench: A Comprehensive Benchmark/Toolkit of Deep Model Fusion
|
|
55
59
|
|
|
56
60
|
[](http://arxiv.org/abs/2406.03280)
|
|
57
61
|
[](https://github.com/tanganke/fusion_bench/blob/main/LICENSE)
|
|
@@ -75,7 +79,7 @@ Projects based on FusionBench and news from the community (descending order of d
|
|
|
75
79
|
<details>
|
|
76
80
|
<summary>The-Hai Nguyen, Dang Huu-Tien, Takeshi Suzuki, and Le-Minh Nguyen. RegMean++: Enhancing Effectiveness and Generalization of Regression Mean for Model Merging. Aug, 2025. https://www.arxiv.org/abs/2508.03121</summary>
|
|
77
81
|
|
|
78
|
-
Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods.
|
|
82
|
+
Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods.
|
|
79
83
|
|
|
80
84
|
<img width="1000" alt="image" src="docs/algorithms/images/regmean_vs_regmean_plusplus.png">
|
|
81
85
|
</details>
|
|
@@ -89,7 +93,7 @@ Model merging has emerged as a promising approach for multi-task learning (MTL),
|
|
|
89
93
|
<details>
|
|
90
94
|
<summary>Daniel Marczak, et al. No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces. Feb 2025. https://arxiv.org/abs/2502.04959</summary>
|
|
91
95
|
|
|
92
|
-
Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training.
|
|
96
|
+
Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training.
|
|
93
97
|
</details>
|
|
94
98
|
|
|
95
99
|
<details>
|
|
@@ -107,12 +111,12 @@ Merging multiple expert models offers a promising approach for performing multi-
|
|
|
107
111
|
<details>
|
|
108
112
|
<summary>Hongling Zheng, Li Shen, Anke Tang, Yong Luo et al. Learn From Model Beyond Fine-Tuning: A Survey. Nature Machine Intelligence. Jan, 2025. https://www.nature.com/articles/s42256-024-00961-0</summary>
|
|
109
113
|
|
|
110
|
-
> Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at https://github.com/ruthless-man/Awesome-Learn-from-Model
|
|
114
|
+
> Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at <https://github.com/ruthless-man/Awesome-Learn-from-Model>.
|
|
111
115
|
</details>
|
|
112
116
|
|
|
113
117
|
<details>
|
|
114
118
|
<summary>Li Shen, Anke Tang, Enneng Yang et al. Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging. Oct, 2024. https://github.com/EnnengYang/Efficient-WEMoE</summary>
|
|
115
|
-
|
|
119
|
+
|
|
116
120
|
<img width="1018" alt="image" src="https://github.com/user-attachments/assets/b7e1279e-87fc-4016-8867-1bff7700e271">
|
|
117
121
|
|
|
118
122
|
</details>
|
|
@@ -138,7 +142,7 @@ Install from PyPI:
|
|
|
138
142
|
pip install fusion-bench
|
|
139
143
|
```
|
|
140
144
|
|
|
141
|
-
or install the latest version in development from
|
|
145
|
+
or install the latest version in development from the GitHub repository
|
|
142
146
|
|
|
143
147
|
```bash
|
|
144
148
|
git clone https://github.com/tanganke/fusion_bench.git
|
|
@@ -155,7 +159,6 @@ pip install -e . # install the package in editable mode
|
|
|
155
159
|
|
|
156
160
|
[](https://doi.org/10.5281/zenodo.10256836)
|
|
157
161
|
|
|
158
|
-
|
|
159
162
|
```bash
|
|
160
163
|
pip install "fusion-bench[lm-eval-harness]"
|
|
161
164
|
```
|
|
@@ -205,8 +208,8 @@ The project is structured as follows:
|
|
|
205
208
|
|
|
206
209
|
## A Unified Command Line Interface
|
|
207
210
|
|
|
208
|
-
The `fusion_bench` command-line interface is a powerful tool for researchers and practitioners in the field of model fusion. It provides a streamlined way to experiment with various fusion algorithms, model combinations, and evaluation tasks.
|
|
209
|
-
By leveraging Hydra's configuration management, fusion_bench offers flexibility in setting up experiments and reproducibility in results.
|
|
211
|
+
The `fusion_bench` command-line interface is a powerful tool for researchers and practitioners in the field of model fusion. It provides a streamlined way to experiment with various fusion algorithms, model combinations, and evaluation tasks.
|
|
212
|
+
By leveraging Hydra's configuration management, fusion_bench offers flexibility in setting up experiments and reproducibility in results.
|
|
210
213
|
The CLI's design allows for easy extension to new fusion methods, model types, and tasks, making it a versatile platform for advancing research in model fusion techniques.
|
|
211
214
|
|
|
212
215
|
Read the [CLI documentation](https://tanganke.github.io/fusion_bench/cli/fusion_bench/) for more information.
|
|
@@ -245,7 +248,7 @@ class DerivedModelFusionAlgorithm(BaseModelFusionAlgorithm):
|
|
|
245
248
|
)
|
|
246
249
|
```
|
|
247
250
|
|
|
248
|
-
A corresponding configuration file should be created to specify the class and hyperparameters of the algorithm.
|
|
251
|
+
A corresponding configuration file should be created to specify the class and hyperparameters of the algorithm.
|
|
249
252
|
Here we assume the configuration file is placed at `config/method/your_algorithm_config.yaml`.
|
|
250
253
|
|
|
251
254
|
> [!NOTE]
|
|
@@ -280,7 +283,7 @@ Click on [<kbd>Use this template</kbd>](https://github.com/fusion-bench/fusion-b
|
|
|
280
283
|
|
|
281
284
|
### FusionBench Command Generator WebUI (for v0.1.x)
|
|
282
285
|
|
|
283
|
-
FusionBench Command Generator is a user-friendly web interface for generating FusionBench commands based on configuration files.
|
|
286
|
+
FusionBench Command Generator is a user-friendly web interface for generating FusionBench commands based on configuration files.
|
|
284
287
|
It provides an interactive way to select and customize FusionBench configurations, making it easier to run experiments with different settings.
|
|
285
288
|
[Read more here](https://tanganke.github.io/fusion_bench/cli/fusion_bench_webui/).
|
|
286
289
|
|
|
@@ -291,18 +294,14 @@ It provides an interactive way to select and customize FusionBench configuration
|
|
|
291
294
|
If you find this benchmark useful, please consider citing our work:
|
|
292
295
|
|
|
293
296
|
```bibtex
|
|
294
|
-
@
|
|
295
|
-
title
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
year
|
|
299
|
-
month = jun,
|
|
300
|
-
number = {arXiv:2406.03280},
|
|
301
|
-
eprint = {2406.03280},
|
|
302
|
-
publisher = {arXiv},
|
|
303
|
-
url = {http://arxiv.org/abs/2406.03280},
|
|
304
|
-
archiveprefix = {arxiv},
|
|
305
|
-
langid = {english},
|
|
306
|
-
keywords = {Computer Science - Artificial Intelligence,Computer Science - Computation and Language,Computer Science - Machine Learning}
|
|
297
|
+
@article{tang2024fusionbench,
|
|
298
|
+
title={Fusionbench: A comprehensive benchmark of deep model fusion},
|
|
299
|
+
author={Tang, Anke and Shen, Li and Luo, Yong and Hu, Han and Du, Bo and Tao, Dacheng},
|
|
300
|
+
journal={arXiv preprint arXiv:2406.03280},
|
|
301
|
+
year={2024}
|
|
307
302
|
}
|
|
308
303
|
```
|
|
304
|
+
|
|
305
|
+
## Star History
|
|
306
|
+
|
|
307
|
+
[](https://www.star-history.com/#tanganke/fusion_bench&Date)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
<div align='center'>
|
|
2
2
|
|
|
3
|
-
# FusionBench: A Comprehensive Benchmark/
|
|
3
|
+
# FusionBench: A Comprehensive Benchmark/Toolkit of Deep Model Fusion
|
|
4
4
|
|
|
5
5
|
[](http://arxiv.org/abs/2406.03280)
|
|
6
6
|
[](https://github.com/tanganke/fusion_bench/blob/main/LICENSE)
|
|
@@ -24,7 +24,7 @@ Projects based on FusionBench and news from the community (descending order of d
|
|
|
24
24
|
<details>
|
|
25
25
|
<summary>The-Hai Nguyen, Dang Huu-Tien, Takeshi Suzuki, and Le-Minh Nguyen. RegMean++: Enhancing Effectiveness and Generalization of Regression Mean for Model Merging. Aug, 2025. https://www.arxiv.org/abs/2508.03121</summary>
|
|
26
26
|
|
|
27
|
-
Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods.
|
|
27
|
+
Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods.
|
|
28
28
|
|
|
29
29
|
<img width="1000" alt="image" src="docs/algorithms/images/regmean_vs_regmean_plusplus.png">
|
|
30
30
|
</details>
|
|
@@ -38,7 +38,7 @@ Model merging has emerged as a promising approach for multi-task learning (MTL),
|
|
|
38
38
|
<details>
|
|
39
39
|
<summary>Daniel Marczak, et al. No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces. Feb 2025. https://arxiv.org/abs/2502.04959</summary>
|
|
40
40
|
|
|
41
|
-
Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training.
|
|
41
|
+
Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training.
|
|
42
42
|
</details>
|
|
43
43
|
|
|
44
44
|
<details>
|
|
@@ -56,12 +56,12 @@ Merging multiple expert models offers a promising approach for performing multi-
|
|
|
56
56
|
<details>
|
|
57
57
|
<summary>Hongling Zheng, Li Shen, Anke Tang, Yong Luo et al. Learn From Model Beyond Fine-Tuning: A Survey. Nature Machine Intelligence. Jan, 2025. https://www.nature.com/articles/s42256-024-00961-0</summary>
|
|
58
58
|
|
|
59
|
-
> Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at https://github.com/ruthless-man/Awesome-Learn-from-Model
|
|
59
|
+
> Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at <https://github.com/ruthless-man/Awesome-Learn-from-Model>.
|
|
60
60
|
</details>
|
|
61
61
|
|
|
62
62
|
<details>
|
|
63
63
|
<summary>Li Shen, Anke Tang, Enneng Yang et al. Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging. Oct, 2024. https://github.com/EnnengYang/Efficient-WEMoE</summary>
|
|
64
|
-
|
|
64
|
+
|
|
65
65
|
<img width="1018" alt="image" src="https://github.com/user-attachments/assets/b7e1279e-87fc-4016-8867-1bff7700e271">
|
|
66
66
|
|
|
67
67
|
</details>
|
|
@@ -87,7 +87,7 @@ Install from PyPI:
|
|
|
87
87
|
pip install fusion-bench
|
|
88
88
|
```
|
|
89
89
|
|
|
90
|
-
or install the latest version in development from
|
|
90
|
+
or install the latest version in development from the GitHub repository
|
|
91
91
|
|
|
92
92
|
```bash
|
|
93
93
|
git clone https://github.com/tanganke/fusion_bench.git
|
|
@@ -104,7 +104,6 @@ pip install -e . # install the package in editable mode
|
|
|
104
104
|
|
|
105
105
|
[](https://doi.org/10.5281/zenodo.10256836)
|
|
106
106
|
|
|
107
|
-
|
|
108
107
|
```bash
|
|
109
108
|
pip install "fusion-bench[lm-eval-harness]"
|
|
110
109
|
```
|
|
@@ -154,8 +153,8 @@ The project is structured as follows:
|
|
|
154
153
|
|
|
155
154
|
## A Unified Command Line Interface
|
|
156
155
|
|
|
157
|
-
The `fusion_bench` command-line interface is a powerful tool for researchers and practitioners in the field of model fusion. It provides a streamlined way to experiment with various fusion algorithms, model combinations, and evaluation tasks.
|
|
158
|
-
By leveraging Hydra's configuration management, fusion_bench offers flexibility in setting up experiments and reproducibility in results.
|
|
156
|
+
The `fusion_bench` command-line interface is a powerful tool for researchers and practitioners in the field of model fusion. It provides a streamlined way to experiment with various fusion algorithms, model combinations, and evaluation tasks.
|
|
157
|
+
By leveraging Hydra's configuration management, fusion_bench offers flexibility in setting up experiments and reproducibility in results.
|
|
159
158
|
The CLI's design allows for easy extension to new fusion methods, model types, and tasks, making it a versatile platform for advancing research in model fusion techniques.
|
|
160
159
|
|
|
161
160
|
Read the [CLI documentation](https://tanganke.github.io/fusion_bench/cli/fusion_bench/) for more information.
|
|
@@ -194,7 +193,7 @@ class DerivedModelFusionAlgorithm(BaseModelFusionAlgorithm):
|
|
|
194
193
|
)
|
|
195
194
|
```
|
|
196
195
|
|
|
197
|
-
A corresponding configuration file should be created to specify the class and hyperparameters of the algorithm.
|
|
196
|
+
A corresponding configuration file should be created to specify the class and hyperparameters of the algorithm.
|
|
198
197
|
Here we assume the configuration file is placed at `config/method/your_algorithm_config.yaml`.
|
|
199
198
|
|
|
200
199
|
> [!NOTE]
|
|
@@ -229,7 +228,7 @@ Click on [<kbd>Use this template</kbd>](https://github.com/fusion-bench/fusion-b
|
|
|
229
228
|
|
|
230
229
|
### FusionBench Command Generator WebUI (for v0.1.x)
|
|
231
230
|
|
|
232
|
-
FusionBench Command Generator is a user-friendly web interface for generating FusionBench commands based on configuration files.
|
|
231
|
+
FusionBench Command Generator is a user-friendly web interface for generating FusionBench commands based on configuration files.
|
|
233
232
|
It provides an interactive way to select and customize FusionBench configurations, making it easier to run experiments with different settings.
|
|
234
233
|
[Read more here](https://tanganke.github.io/fusion_bench/cli/fusion_bench_webui/).
|
|
235
234
|
|
|
@@ -240,18 +239,14 @@ It provides an interactive way to select and customize FusionBench configuration
|
|
|
240
239
|
If you find this benchmark useful, please consider citing our work:
|
|
241
240
|
|
|
242
241
|
```bibtex
|
|
243
|
-
@
|
|
244
|
-
title
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
year
|
|
248
|
-
month = jun,
|
|
249
|
-
number = {arXiv:2406.03280},
|
|
250
|
-
eprint = {2406.03280},
|
|
251
|
-
publisher = {arXiv},
|
|
252
|
-
url = {http://arxiv.org/abs/2406.03280},
|
|
253
|
-
archiveprefix = {arxiv},
|
|
254
|
-
langid = {english},
|
|
255
|
-
keywords = {Computer Science - Artificial Intelligence,Computer Science - Computation and Language,Computer Science - Machine Learning}
|
|
242
|
+
@article{tang2024fusionbench,
|
|
243
|
+
title={Fusionbench: A comprehensive benchmark of deep model fusion},
|
|
244
|
+
author={Tang, Anke and Shen, Li and Luo, Yong and Hu, Han and Du, Bo and Tao, Dacheng},
|
|
245
|
+
journal={arXiv preprint arXiv:2406.03280},
|
|
246
|
+
year={2024}
|
|
256
247
|
}
|
|
257
248
|
```
|
|
249
|
+
|
|
250
|
+
## Star History
|
|
251
|
+
|
|
252
|
+
[](https://www.star-history.com/#tanganke/fusion_bench&Date)
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
from omegaconf import DictConfig
|
|
5
|
+
|
|
6
|
+
from fusion_bench.programs import BaseHydraProgram
|
|
7
|
+
|
|
8
|
+
log = logging.getLogger(__name__)
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class GreetingProgram(BaseHydraProgram):
|
|
12
|
+
"""
|
|
13
|
+
A simple program that greets users with a custom message.
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
_config_mapping = BaseHydraProgram._config_mapping | {
|
|
17
|
+
"message": "message",
|
|
18
|
+
"name": "name",
|
|
19
|
+
"repeat_count": "repeat_count",
|
|
20
|
+
}
|
|
21
|
+
|
|
22
|
+
def __init__(
|
|
23
|
+
self,
|
|
24
|
+
message: str = "Hello",
|
|
25
|
+
name: str = "World",
|
|
26
|
+
repeat_count: int = 1,
|
|
27
|
+
**kwargs,
|
|
28
|
+
):
|
|
29
|
+
self.message = message
|
|
30
|
+
self.name = name
|
|
31
|
+
self.repeat_count = repeat_count
|
|
32
|
+
super().__init__(**kwargs)
|
|
33
|
+
|
|
34
|
+
def run(self):
|
|
35
|
+
"""Execute the greeting workflow."""
|
|
36
|
+
log.info("Starting greeting program")
|
|
37
|
+
|
|
38
|
+
# Create the greeting
|
|
39
|
+
greeting = f"{self.message}, {self.name}!"
|
|
40
|
+
|
|
41
|
+
# Print the greeting multiple times
|
|
42
|
+
for i in range(self.repeat_count):
|
|
43
|
+
if self.repeat_count > 1:
|
|
44
|
+
print(f"[{i+1}/{self.repeat_count}] {greeting}")
|
|
45
|
+
else:
|
|
46
|
+
print(greeting)
|
|
47
|
+
|
|
48
|
+
log.info("Greeting program completed")
|
|
49
|
+
return greeting
|
|
@@ -36,6 +36,20 @@ class ModelFusionAlgorithm(ABC):
|
|
|
36
36
|
algorithm_config = DictConfig({})
|
|
37
37
|
self.config = algorithm_config
|
|
38
38
|
|
|
39
|
+
def on_run_start(self):
|
|
40
|
+
"""
|
|
41
|
+
Hook method called at the start of the run.
|
|
42
|
+
Can be overridden by subclasses to perform initialization tasks.
|
|
43
|
+
"""
|
|
44
|
+
pass
|
|
45
|
+
|
|
46
|
+
def on_run_end(self):
|
|
47
|
+
"""
|
|
48
|
+
Hook method called at the end of the run.
|
|
49
|
+
Can be overridden by subclasses to perform cleanup tasks.
|
|
50
|
+
"""
|
|
51
|
+
pass
|
|
52
|
+
|
|
39
53
|
@abstractmethod
|
|
40
54
|
def run(self, modelpool):
|
|
41
55
|
"""
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
"Constants for CLIP Vision Model Merging"
|
|
2
|
+
|
|
3
|
+
TASK_NAMES_TA8 = [
|
|
4
|
+
"sun397",
|
|
5
|
+
"stanford-cars",
|
|
6
|
+
"resisc45",
|
|
7
|
+
"eurosat",
|
|
8
|
+
"svhn",
|
|
9
|
+
"gtsrb",
|
|
10
|
+
"mnist",
|
|
11
|
+
"dtd",
|
|
12
|
+
]
|
|
13
|
+
"The 8 tasks used in the Task Arithmetic paper."
|
|
14
|
+
TASK_NAMES_TALL8 = TASK_NAMES_TA8
|
|
15
|
+
"The 8 tasks used in the Tall Mask paper"
|
|
16
|
+
TASK_NAMES_TALL10 = TASK_NAMES_TA8 + ["oxford_flowers102", "pcam"]
|
|
17
|
+
TASK_NAMES_TALL12 = TASK_NAMES_TALL10 + [
|
|
18
|
+
"fer2013",
|
|
19
|
+
"oxford-iiit-pet",
|
|
20
|
+
]
|
|
21
|
+
TASK_NAMES_TALL14 = TASK_NAMES_TALL12 + [
|
|
22
|
+
"stl10",
|
|
23
|
+
"cifar100",
|
|
24
|
+
]
|
|
25
|
+
"The 14 tasks used in the TALL mask paper"
|
|
26
|
+
TASK_NAMES_TALL16 = TASK_NAMES_TALL14 + ["cifar10", "food101"]
|
|
27
|
+
TASK_NAMES_TALL18 = TASK_NAMES_TALL16 + ["fashion_mnist", "emnist_letters"]
|
|
28
|
+
TASK_NAMES_TALL20 = TASK_NAMES_TALL18 + ["kmnist", "rendered-sst2"]
|
|
29
|
+
"The 20 tasks used in the TALL mask paper"
|
|
30
|
+
TASK_NAMES_TA8_CAP = [
|
|
31
|
+
"SUN397",
|
|
32
|
+
"Cars",
|
|
33
|
+
"RESISC45",
|
|
34
|
+
"EuroSAT",
|
|
35
|
+
"SVHN",
|
|
36
|
+
"GTSRB",
|
|
37
|
+
"MNIST",
|
|
38
|
+
"DTD",
|
|
39
|
+
]
|
|
40
|
+
TASK_NAMES_TALL8_CAP = TASK_NAMES_TA8_CAP
|
|
41
|
+
TASK_NAMES_TALL10_CAP = TASK_NAMES_TALL8_CAP + ["Flowers102", "PCAM"]
|
|
42
|
+
TASK_NAMES_TALL12_CAP = TASK_NAMES_TALL10_CAP + ["FER2013", "OxfordIIITPet"]
|
|
43
|
+
TASK_NAMES_TALL14_CAP = TASK_NAMES_TALL12_CAP + ["STL10", "CIFAR100"]
|
|
44
|
+
TASK_NAMES_TALL16_CAP = TASK_NAMES_TALL14_CAP + ["CIFAR10", "Food101"]
|
|
45
|
+
TASK_NAMES_TALL18_CAP = TASK_NAMES_TALL16_CAP + ["FashionMNIST", "EMNIST"]
|
|
46
|
+
TASK_NAMES_TALL20_CAP = TASK_NAMES_TALL18_CAP + ["KMNIST", "RenderedSST2"]
|
|
@@ -7,10 +7,14 @@ log = logging.getLogger(__name__)
|
|
|
7
7
|
__all__ = ["LIBRARY_PATH", "PROJECT_ROOT_PATH", "DEFAULT_CONFIG_PATH"]
|
|
8
8
|
|
|
9
9
|
LIBRARY_PATH = Path(importlib.import_module("fusion_bench").__path__[0])
|
|
10
|
+
"""Path to the library directory."""
|
|
11
|
+
|
|
10
12
|
PROJECT_ROOT_PATH = LIBRARY_PATH.parent
|
|
13
|
+
"""Path to the project root directory."""
|
|
11
14
|
|
|
12
15
|
if (PROJECT_ROOT_PATH / "config").is_dir():
|
|
13
16
|
DEFAULT_CONFIG_PATH = PROJECT_ROOT_PATH / "config"
|
|
17
|
+
"""Path to the default config directory."""
|
|
14
18
|
elif (PROJECT_ROOT_PATH / "fusion_bench_config").is_dir():
|
|
15
19
|
DEFAULT_CONFIG_PATH = PROJECT_ROOT_PATH / "fusion_bench_config"
|
|
16
20
|
else:
|
|
@@ -5,6 +5,7 @@ This module provides a class to convert a dataset whose object is a list of dict
|
|
|
5
5
|
from typing import Optional, Tuple
|
|
6
6
|
|
|
7
7
|
import torch
|
|
8
|
+
from torch.utils.data import Dataset
|
|
8
9
|
from transformers import CLIPProcessor, ProcessorMixin
|
|
9
10
|
|
|
10
11
|
__all__ = ["CLIPDataset"]
|
|
@@ -28,7 +29,7 @@ class CLIPDataset(torch.utils.data.Dataset):
|
|
|
28
29
|
processor (CLIPProcessor): The CLIP processor used for image preprocessing.
|
|
29
30
|
"""
|
|
30
31
|
|
|
31
|
-
def __init__(self, dataset, processor: Optional[CLIPProcessor] = None):
|
|
32
|
+
def __init__(self, dataset: Dataset, processor: Optional[CLIPProcessor] = None):
|
|
32
33
|
self.dataset = dataset
|
|
33
34
|
self.processor = processor
|
|
34
35
|
|
|
@@ -16,7 +16,7 @@ from functools import partial
|
|
|
16
16
|
from pathlib import Path
|
|
17
17
|
from typing import Literal
|
|
18
18
|
|
|
19
|
-
from datasets import load_dataset, load_from_disk
|
|
19
|
+
from datasets import Dataset, load_dataset, load_from_disk
|
|
20
20
|
from transformers import PreTrainedTokenizer
|
|
21
21
|
|
|
22
22
|
|
|
@@ -147,7 +147,7 @@ class TokenizedGLUE:
|
|
|
147
147
|
return glue_dataset_loaders[name]()
|
|
148
148
|
|
|
149
149
|
@cache_dataset
|
|
150
|
-
def load_mrpc_dataset(self):
|
|
150
|
+
def load_mrpc_dataset(self) -> Dataset:
|
|
151
151
|
"""
|
|
152
152
|
Load and tokenize the MRPC dataset.
|
|
153
153
|
|
|
@@ -166,7 +166,7 @@ class TokenizedGLUE:
|
|
|
166
166
|
return dataset
|
|
167
167
|
|
|
168
168
|
@cache_dataset
|
|
169
|
-
def load_rte_dataset(self):
|
|
169
|
+
def load_rte_dataset(self) -> Dataset:
|
|
170
170
|
"""
|
|
171
171
|
Load and tokenize the RTE dataset.
|
|
172
172
|
|
|
@@ -186,7 +186,7 @@ class TokenizedGLUE:
|
|
|
186
186
|
return dataset
|
|
187
187
|
|
|
188
188
|
@cache_dataset
|
|
189
|
-
def load_wnli_dataset(self):
|
|
189
|
+
def load_wnli_dataset(self) -> Dataset:
|
|
190
190
|
"""
|
|
191
191
|
Load and tokenize the WNLI dataset.
|
|
192
192
|
|
|
@@ -205,7 +205,7 @@ class TokenizedGLUE:
|
|
|
205
205
|
return dataset
|
|
206
206
|
|
|
207
207
|
@cache_dataset
|
|
208
|
-
def load_qqp_dataset(self):
|
|
208
|
+
def load_qqp_dataset(self) -> Dataset:
|
|
209
209
|
"""
|
|
210
210
|
Load and tokenize the QQP dataset.
|
|
211
211
|
|
|
@@ -224,7 +224,7 @@ class TokenizedGLUE:
|
|
|
224
224
|
return dataset
|
|
225
225
|
|
|
226
226
|
@cache_dataset
|
|
227
|
-
def load_mnli_dataset(self):
|
|
227
|
+
def load_mnli_dataset(self) -> Dataset:
|
|
228
228
|
"""
|
|
229
229
|
Load and tokenize the MNLI dataset.
|
|
230
230
|
|
|
@@ -243,7 +243,7 @@ class TokenizedGLUE:
|
|
|
243
243
|
return dataset
|
|
244
244
|
|
|
245
245
|
@cache_dataset
|
|
246
|
-
def load_cola_dataset(self):
|
|
246
|
+
def load_cola_dataset(self) -> Dataset:
|
|
247
247
|
"""
|
|
248
248
|
Load and tokenize the CoLA dataset.
|
|
249
249
|
|
|
@@ -262,7 +262,7 @@ class TokenizedGLUE:
|
|
|
262
262
|
return dataset
|
|
263
263
|
|
|
264
264
|
@cache_dataset
|
|
265
|
-
def load_sst2_dataset(self):
|
|
265
|
+
def load_sst2_dataset(self) -> Dataset:
|
|
266
266
|
"""
|
|
267
267
|
Load and tokenize the SST-2 dataset.
|
|
268
268
|
|
|
@@ -281,7 +281,7 @@ class TokenizedGLUE:
|
|
|
281
281
|
return dataset
|
|
282
282
|
|
|
283
283
|
@cache_dataset
|
|
284
|
-
def load_qnli_dataset(self):
|
|
284
|
+
def load_qnli_dataset(self) -> Dataset:
|
|
285
285
|
"""
|
|
286
286
|
Load and tokenize the QNLI dataset.
|
|
287
287
|
|