fusion-bench 0.2.20__tar.gz → 0.2.21__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (947) hide show
  1. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/PKG-INFO +24 -25
  2. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/README.md +19 -24
  3. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/__init__.py +1 -0
  4. fusion_bench-0.2.21/fusion_bench/_get_started/__init__.py +3 -0
  5. fusion_bench-0.2.21/fusion_bench/_get_started/greeting_program.py +49 -0
  6. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/method/base_algorithm.py +14 -0
  7. fusion_bench-0.2.21/fusion_bench/constants/__init__.py +7 -0
  8. fusion_bench-0.2.21/fusion_bench/constants/clip_vision.py +46 -0
  9. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/constants/paths.py +4 -0
  10. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/clip_dataset.py +2 -1
  11. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/gpt2_glue.py +9 -9
  12. fusion_bench-0.2.21/fusion_bench/dataset/image_corruption/make_corruption.py +179 -0
  13. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/image_dataset.py +1 -1
  14. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/nyuv2.py +2 -2
  15. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/__init__.py +16 -3
  16. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +1 -1
  17. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/clip_task_wise_adamerging.py +11 -7
  18. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/layer_wise_adamerging.py +11 -5
  19. fusion_bench-0.2.21/fusion_bench/method/base_algorithm.py +228 -0
  20. fusion_bench-0.2.21/fusion_bench/method/bitdelta/__init__.py +4 -0
  21. fusion_bench-0.2.21/fusion_bench/method/bitdelta/bitdelta.py +156 -0
  22. fusion_bench-0.2.21/fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py +462 -0
  23. fusion_bench-0.2.21/fusion_bench/method/bitdelta/bitdelta_utils/data.py +35 -0
  24. fusion_bench-0.2.21/fusion_bench/method/bitdelta/bitdelta_utils/diff.py +129 -0
  25. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -1
  26. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/depth_upscaling/depth_upscaling.py +4 -9
  27. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py +4 -5
  28. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/doge_ta/doge_ta.py +1 -1
  29. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ensemble.py +12 -12
  30. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fisher_merging/clip_fisher_merging.py +2 -2
  31. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fisher_merging/fisher_merging.py +6 -15
  32. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +3 -10
  33. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fw_merging/fw_hard.py +1 -1
  34. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fw_merging/fw_soft.py +1 -1
  35. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/clip_layer_wise_gossip.py +4 -5
  36. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/expo.py +2 -1
  37. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/linear_interpolation.py +6 -4
  38. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/simple_average_for_llama.py +2 -3
  39. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/lm_finetune/bradley_terry_rm.py +2 -2
  40. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +9 -26
  41. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/model_recombination.py +2 -5
  42. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/hooks/__init__.py +1 -2
  43. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/utils/data.py +2 -1
  44. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/utils/prune.py +6 -1
  45. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/llama_magnitude_prune.py +1 -1
  46. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/data.py +1 -2
  47. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/clip_pwe_moe.py +12 -34
  48. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/randes/modelsoup.py +1 -3
  49. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean/clip_regmean.py +2 -2
  50. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean/gpt2_regmean.py +3 -10
  51. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean/regmean.py +2 -11
  52. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean_plusplus/__init__.py +1 -1
  53. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean_plusplus/clip_regmean_plusplus.py +24 -17
  54. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean_plusplus/regmean_plusplus.py +56 -38
  55. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/simple_average.py +5 -9
  56. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/slerp/slerp.py +5 -2
  57. fusion_bench-0.2.21/fusion_bench/method/smile_upscaling/error_accumulation.py +177 -0
  58. fusion_bench-0.2.21/fusion_bench/method/smile_upscaling/projected_energy.py +145 -0
  59. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +39 -28
  60. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/smile_upscaling/smile_upscaling.py +12 -5
  61. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/tall_mask/task_arithmetic.py +3 -11
  62. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_arithmetic/task_arithmetic.py +6 -10
  63. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ties_merging/ties_merging.py +13 -26
  64. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/we_moe/clip_we_moe.py +5 -4
  65. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/we_moe/we_moe.py +6 -6
  66. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/weighted_average/llama.py +4 -16
  67. fusion_bench-0.2.21/fusion_bench/metrics/continual_learning/__init__.py +1 -0
  68. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/continual_learning/backward_transfer.py +1 -1
  69. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/__init__.py +2 -2
  70. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/segmentation.py +1 -1
  71. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/__init__.py +10 -2
  72. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/clip_classification.py +4 -3
  73. fusion_bench-0.2.21/fusion_bench/mixins/hydra_config.py +147 -0
  74. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/lightning_fabric.py +2 -0
  75. fusion_bench-0.2.21/fusion_bench/mixins/serialization.py +365 -0
  76. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/__init__.py +2 -2
  77. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/base_pool.py +29 -9
  78. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/causal_lm/causal_lm.py +9 -0
  79. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/clip_vision/modelpool.py +1 -3
  80. fusion_bench-0.2.21/fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
  81. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +1 -1
  82. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/__init__.py +2 -1
  83. fusion_bench-0.2.21/fusion_bench/models/hf_utils.py +182 -0
  84. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/linearized/linearized_model_utils.py +4 -4
  85. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/linearized/vision_model.py +1 -1
  86. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py +4 -4
  87. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py +0 -1
  88. fusion_bench-0.2.21/fusion_bench/models/modeling_smile_gemma2/__init__.py +9 -0
  89. fusion_bench-0.2.21/fusion_bench/models/modeling_smile_gemma2/configuration_smile_gemma2.py +20 -0
  90. fusion_bench-0.2.21/fusion_bench/models/modeling_smile_gemma2/modeling_smile_gemma2.py +986 -0
  91. fusion_bench-0.2.21/fusion_bench/models/modeling_smile_gemma2/register.py +26 -0
  92. fusion_bench-0.2.21/fusion_bench/models/modeling_smile_llama/configuration_smile_llama.py +20 -0
  93. fusion_bench-0.2.21/fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py +705 -0
  94. fusion_bench-0.2.21/fusion_bench/models/modeling_smile_llama/register.py +8 -0
  95. fusion_bench-0.2.21/fusion_bench/models/modeling_smile_mistral/__init__.py +6 -0
  96. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_qwen2/__init__.py +1 -1
  97. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +6 -7
  98. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_qwen2/register.py +1 -4
  99. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/parameter_dict.py +1 -1
  100. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/sparse_we_moe.py +1 -53
  101. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/utils.py +26 -0
  102. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/we_moe.py +1 -53
  103. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/wrappers/ensemble.py +6 -4
  104. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/wrappers/layer_wise_fusion.py +1 -1
  105. fusion_bench-0.2.21/fusion_bench/models/wrappers/task_wise_fusion.py +427 -0
  106. fusion_bench-0.2.21/fusion_bench/programs/base_program.py +88 -0
  107. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/programs/fabric_fusion_program.py +24 -8
  108. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/scripts/cli.py +5 -5
  109. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/base_pool.py +4 -3
  110. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/taskpool.py +34 -18
  111. fusion_bench-0.2.21/fusion_bench/taskpool/clip_vision/utils/__init__.py +0 -0
  112. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/lm_eval_harness/taskpool.py +1 -2
  113. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/__init__.py +6 -4
  114. fusion_bench-0.2.21/fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
  115. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/__init__.py +6 -1
  116. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/devices.py +14 -4
  117. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/instantiate_utils.py +3 -1
  118. fusion_bench-0.2.21/fusion_bench/utils/modelscope.py +265 -0
  119. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/parameters.py +2 -2
  120. fusion_bench-0.2.21/fusion_bench/utils/plot/__init__.py +0 -0
  121. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/rich_utils.py +3 -0
  122. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/state_dict_arithmetic.py +25 -23
  123. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/PKG-INFO +24 -25
  124. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/SOURCES.txt +38 -7
  125. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/requires.txt +4 -0
  126. fusion_bench-0.2.21/fusion_bench_config/_get_started/clip_evaluate_single_model.yaml +21 -0
  127. fusion_bench-0.2.21/fusion_bench_config/_get_started/clip_simple_average.yaml +23 -0
  128. fusion_bench-0.2.21/fusion_bench_config/_get_started/clip_task_arithmetic.yaml +24 -0
  129. fusion_bench-0.2.21/fusion_bench_config/_get_started/greeting_program.yaml +4 -0
  130. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/loggers/csv_logger.yaml +3 -3
  131. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +3 -3
  132. fusion_bench-0.2.21/fusion_bench_config/fabric_model_fusion.yaml +47 -0
  133. fusion_bench-0.2.21/fusion_bench_config/hydra/default.yaml +12 -0
  134. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/llama_full_finetune.yaml +1 -0
  135. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/adamerging/clip.yaml +1 -1
  136. fusion_bench-0.2.21/fusion_bench_config/method/bitdelta/bitdelta.yaml +12 -0
  137. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/depth_upscaling.yaml +4 -1
  138. fusion_bench-0.2.21/fusion_bench_config/method/smile_upscaling/error_accumulation.yaml +5 -0
  139. fusion_bench-0.2.21/fusion_bench_config/method/smile_upscaling/projected_energy.yaml +2 -0
  140. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +1 -0
  141. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +1 -4
  142. fusion_bench-0.2.21/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +5 -0
  143. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +1 -1
  144. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -6
  145. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +1 -1
  146. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +1 -1
  147. fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml +11 -0
  148. fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-7B-math_and_coder.yaml +9 -0
  149. fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/mistral-7b.yaml +6 -0
  150. fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/mixtral_moe_merging.yaml +10 -0
  151. fusion_bench-0.2.20/fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml → fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +1 -3
  152. fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +10 -0
  153. fusion_bench-0.2.21/fusion_bench_config/modelpool/CausalLMPool/vicuna-7b-v1.5.yaml +8 -0
  154. {fusion_bench-0.2.20/fusion_bench_config/modelpool/SeqenceClassificationModelPool → fusion_bench-0.2.21/fusion_bench_config/modelpool/SequenceClassificationModelPool}/llama_preference700k.yaml +1 -1
  155. {fusion_bench-0.2.20/fusion_bench_config/modelpool/SeqenceClassificationModelPool → fusion_bench-0.2.21/fusion_bench_config/modelpool/SequenceClassificationModelPool}/single_reward_model.yaml +1 -1
  156. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/nyuv2_config.yaml +3 -1
  157. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/nyuv2_mtl_train.yaml +1 -0
  158. fusion_bench-0.2.21/fusion_bench_config/path/default.yaml +28 -0
  159. fusion_bench-0.2.21/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_svhn_and_mnist.yaml +24 -0
  160. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/pyproject.toml +5 -3
  161. fusion_bench-0.2.20/fusion_bench/constants/__init__.py +0 -2
  162. fusion_bench-0.2.20/fusion_bench/constants/clip_vision.py +0 -22
  163. fusion_bench-0.2.20/fusion_bench/method/base_algorithm.py +0 -45
  164. fusion_bench-0.2.20/fusion_bench/mixins/hydra_config.py +0 -49
  165. fusion_bench-0.2.20/fusion_bench/mixins/serialization.py +0 -148
  166. fusion_bench-0.2.20/fusion_bench/modelpool/seq_classification_lm/__init__.py +0 -2
  167. fusion_bench-0.2.20/fusion_bench/models/modeling_smile_mistral/__init__.py +0 -48
  168. fusion_bench-0.2.20/fusion_bench/models/wrappers/task_wise_fusion.py +0 -249
  169. fusion_bench-0.2.20/fusion_bench/programs/base_program.py +0 -9
  170. fusion_bench-0.2.20/fusion_bench/utils/modelscope.py +0 -146
  171. fusion_bench-0.2.20/fusion_bench_config/fabric_model_fusion.yaml +0 -19
  172. fusion_bench-0.2.20/fusion_bench_config/hydra/default.yaml +0 -8
  173. fusion_bench-0.2.20/fusion_bench_config/method/adamerging.yaml +0 -23
  174. fusion_bench-0.2.20/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +0 -10
  175. fusion_bench-0.2.20/fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +0 -17
  176. fusion_bench-0.2.20/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +0 -20
  177. fusion_bench-0.2.20/fusion_bench_config/modelpool/mixtral_moe_merging.yaml +0 -14
  178. fusion_bench-0.2.20/fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +0 -6
  179. fusion_bench-0.2.20/fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -22
  180. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/LICENSE +0 -0
  181. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/__main__.py +0 -0
  182. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/__init__.py +0 -0
  183. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/method/__init__.py +0 -0
  184. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +0 -0
  185. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/modelpool/__init__.py +0 -0
  186. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/modelpool/base_pool.py +0 -0
  187. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/modelpool/huggingface_clip_vision.py +0 -0
  188. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/taskpool/__init__.py +0 -0
  189. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/taskpool/base_pool.py +0 -0
  190. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/taskpool/clip_image_classification.py +0 -0
  191. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +0 -0
  192. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/constants/banner.py +0 -0
  193. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/__init__.py +0 -0
  194. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/__init__.py +0 -0
  195. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/arc.py +0 -0
  196. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/arc_agi.py +0 -0
  197. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/augmenters.py +0 -0
  198. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/messagers.py +0 -0
  199. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/np_cache.py +0 -0
  200. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/preprocess.py +0 -0
  201. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/arc_agi/representers.py +0 -0
  202. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/fer2013.py +0 -0
  203. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/gsm8k.py +0 -0
  204. {fusion_bench-0.2.20/fusion_bench/dataset/llama/utils → fusion_bench-0.2.21/fusion_bench/dataset/image_corruption}/__init__.py +0 -0
  205. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/imdb.py +0 -0
  206. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/__init__.py +0 -0
  207. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/alpaca.py +0 -0
  208. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/collate.py +0 -0
  209. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/metamathqa.py +0 -0
  210. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/openai.py +0 -0
  211. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/preference_700k.py +0 -0
  212. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/sharegpt.py +0 -0
  213. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/squad.py +0 -0
  214. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/stanford_shp.py +0 -0
  215. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/ultrachat.py +0 -0
  216. {fusion_bench-0.2.20/fusion_bench/method/knots → fusion_bench-0.2.21/fusion_bench/dataset/llama/utils}/__init__.py +0 -0
  217. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/dataset/llama/wikitext.py +0 -0
  218. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ada_svd/__init__.py +0 -0
  219. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ada_svd/clip_vision.py +0 -0
  220. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/__init__.py +0 -0
  221. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/entropy_loss.py +0 -0
  222. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +0 -0
  223. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +0 -0
  224. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/llama_adamerging.py +0 -0
  225. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/min_norm_solvers.py +0 -0
  226. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/task_wise_adamerging.py +0 -0
  227. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/adamerging/utils.py +0 -0
  228. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/analysis/__init__.py +0 -0
  229. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/analysis/task_vector_cos_similarity.py +0 -0
  230. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/analysis/task_vector_violin_plot.py +0 -0
  231. {fusion_bench-0.2.20/fusion_bench/metrics → fusion_bench-0.2.21/fusion_bench/method/bitdelta/bitdelta_utils}/__init__.py +0 -0
  232. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/classification/__init__.py +0 -0
  233. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/classification/clip_finetune.py +0 -0
  234. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/classification/continual_clip_finetune.py +0 -0
  235. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/concrete_subspace/__init__.py +0 -0
  236. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +0 -0
  237. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/concrete_subspace/clip_post_defense.py +0 -0
  238. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py +0 -0
  239. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dare/__init__.py +0 -0
  240. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dare/simple_average.py +0 -0
  241. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dare/task_arithmetic.py +0 -0
  242. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dare/ties_merging.py +0 -0
  243. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dare/utils.py +0 -0
  244. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dawe/__init__.py +0 -0
  245. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dawe/dawe_for_clip.py +0 -0
  246. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dawe/warppers/__init__.py +0 -0
  247. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dawe/warppers/dawe_model.py +0 -0
  248. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/depth_upscaling/__init__.py +0 -0
  249. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +0 -0
  250. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/doge_ta/__init__.py +0 -0
  251. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/doge_ta/layer_wise_adamerging.py +0 -0
  252. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/dummy.py +0 -0
  253. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/__init__.py +0 -0
  254. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/mixtral/__init__.py +0 -0
  255. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py +0 -0
  256. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py +0 -0
  257. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py +0 -0
  258. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/expert_sparsity/utils/calibration_data.py +1 -1
  259. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fisher_merging/__init__.py +0 -0
  260. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fw_merging/__init__.py +0 -0
  261. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/fw_merging/utils.py +0 -0
  262. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/__init__.py +0 -0
  263. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/clip_task_wise_gossip.py +0 -0
  264. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/entropy_loss.py +0 -0
  265. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +0 -0
  266. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/layer_wise_gossip.py +0 -0
  267. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/min_norm_solvers.py +0 -0
  268. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/task_wise_gossip.py +0 -0
  269. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/gossip/utils.py +0 -0
  270. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/isotropic_merging/__init__.py +0 -0
  271. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/isotropic_merging/iso.py +0 -0
  272. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/isotropic_merging/iso_utils.py +0 -0
  273. {fusion_bench-0.2.20/fusion_bench/mixins/optim → fusion_bench-0.2.21/fusion_bench/method/knots}/__init__.py +0 -0
  274. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/knots/knots_utils.py +0 -0
  275. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/__init__.py +0 -0
  276. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/llama_expo.py +0 -0
  277. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/linear/task_arithmetic_for_llama.py +0 -0
  278. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/lm_finetune/__init__.py +0 -0
  279. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/lm_finetune/causal_lm_pretrain.py +0 -0
  280. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/lm_finetune/fullfinetune_sft.py +0 -0
  281. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/lm_finetune/peftfinetune_sft.py +0 -0
  282. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/mixture_of_experts/__init__.py +0 -0
  283. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/mixture_of_experts/mixtral_merging.py +0 -0
  284. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/__init__.py +0 -0
  285. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/hooks/deepseek_v2.py +0 -0
  286. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/hooks/hook.py +0 -0
  287. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/hooks/mixtral.py +0 -0
  288. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/moe_pruner.py +0 -0
  289. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/utils/__init__.py +0 -0
  290. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/utils/layerwrapper.py +0 -0
  291. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/moe_pruner/utils/score.py +0 -0
  292. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/__init__.py +0 -0
  293. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/opcm.py +0 -0
  294. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/task_arithmetic.py +0 -0
  295. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/ties_merging.py +0 -0
  296. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/utils.py +0 -0
  297. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/opcm/weight_average.py +0 -0
  298. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/__init__.py +0 -0
  299. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/llama_random_prune.py +0 -0
  300. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/llama_sparsegpt_prune.py +0 -0
  301. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/llama_wanda_prune.py +0 -0
  302. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/magnitude_diff_pruning.py +0 -0
  303. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/prune_utils.py +0 -0
  304. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/sparsegpt_utils/__init__.py +0 -0
  305. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py +0 -0
  306. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/__init__.py +0 -0
  307. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/ablate.py +0 -0
  308. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/eval.py +0 -0
  309. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/layerwrapper.py +0 -0
  310. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/prune.py +0 -0
  311. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/prune_opt.py +0 -0
  312. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pruning/wanda_utils/sparsegpt.py +0 -0
  313. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/__init__.py +0 -0
  314. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/module.py +0 -0
  315. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/openclip_pwe_moe.py +0 -0
  316. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/phn/__init__.py +0 -0
  317. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/phn/solvers.py +0 -0
  318. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/pwe_moe/utils.py +0 -0
  319. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/randes/__init__.py +0 -0
  320. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/randes/base_algorithm.py +0 -0
  321. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/randes/task_arithmetic.py +0 -0
  322. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/rankone_moe/__init__.py +0 -0
  323. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/rankone_moe/clip_rankone_moe.py +0 -0
  324. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/rankone_moe/rankone_moe.py +0 -0
  325. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/regmean/__init__.py +0 -0
  326. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/slerp/__init__.py +0 -0
  327. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/slerp/slerp_utils.py +0 -0
  328. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/smile_upscaling/__init__.py +0 -0
  329. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/smile_upscaling/singular_projection_merging.py +0 -0
  330. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +0 -0
  331. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/sparse_we_moe/__init__.py +0 -0
  332. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +0 -0
  333. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/sparse_we_moe/sparse_we_moe.py +0 -0
  334. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/sparselo/__init__.py +0 -0
  335. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/sparselo/sparselo.py +0 -0
  336. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/surgery/__init__.py +0 -0
  337. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +0 -0
  338. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/tall_mask/__init__.py +0 -0
  339. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/tall_mask/utils.py +0 -0
  340. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_arithmetic/__init__.py +0 -0
  341. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/TSVC.py +0 -0
  342. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/TSVM.py +0 -0
  343. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/__init__.py +0 -0
  344. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +0 -0
  345. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +0 -0
  346. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/utils/__init__.py +0 -0
  347. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/task_singular_vector/utils/task_singular_interference.py +0 -0
  348. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ties_merging/__init__.py +0 -0
  349. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/ties_merging/ties_merging_utils.py +0 -0
  350. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/trust_region/__init__.py +0 -0
  351. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/trust_region/clip_task_arithmetic.py +0 -0
  352. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/trust_region/utils.py +0 -0
  353. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/we_moe/__init__.py +0 -0
  354. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/weighted_average/__init__.py +0 -0
  355. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/method/weighted_average/weighted_average.py +0 -0
  356. {fusion_bench-0.2.20/fusion_bench/models/expert_sparsity → fusion_bench-0.2.21/fusion_bench/metrics}/__init__.py +0 -0
  357. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/depth.py +0 -0
  358. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/loss.py +0 -0
  359. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/noise.py +0 -0
  360. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/nyuv2/normal.py +0 -0
  361. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/text_to_image_generation/__init__.py +0 -0
  362. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +0 -0
  363. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/text_to_image_generation/compressibility.py +0 -0
  364. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +0 -0
  365. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/fabric_training.py +0 -0
  366. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/openclip_classification.py +0 -0
  367. {fusion_bench-0.2.20/fusion_bench/models/linearized → fusion_bench-0.2.21/fusion_bench/mixins/optim}/__init__.py +0 -0
  368. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/optim/adamw_with_warmup.py +0 -0
  369. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/rich_live.py +0 -0
  370. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/mixins/simple_profiler.py +0 -0
  371. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +0 -0
  372. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/causal_lm/__init__.py +0 -0
  373. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/clip_vision/__init__.py +0 -0
  374. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/huggingface_automodel.py +0 -0
  375. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/huggingface_gpt2_classification.py +0 -0
  376. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/lazy_state_dict_pool.py +0 -0
  377. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/nyuv2_modelpool.py +0 -0
  378. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/openclip_vision/__init__.py +0 -0
  379. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/openclip_vision/modelpool.py +0 -0
  380. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/seq2seq_lm/__init__.py +0 -0
  381. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/seq2seq_lm/modelpool.py +0 -0
  382. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/modelpool/seq_classification_lm/reward_model.py +0 -0
  383. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/chat_templates/__init__.py +0 -0
  384. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/chat_templates/llama_3_Instruct.py +0 -0
  385. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/chat_templates/load_tokenizer.py +0 -0
  386. {fusion_bench-0.2.20/fusion_bench/models/llama/model_utils → fusion_bench-0.2.21/fusion_bench/models/expert_sparsity}/__init__.py +0 -0
  387. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/expert_sparsity/mixtral/__init__.py +1 -1
  388. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/expert_sparsity/mixtral/dataset.py +0 -0
  389. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/expert_sparsity/mixtral/modeling_mixtral.py +0 -0
  390. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/expert_sparsity/mixtral/wrapper.py +0 -0
  391. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/hf_clip.py +0 -0
  392. {fusion_bench-0.2.20/fusion_bench/models/nyuv2 → fusion_bench-0.2.21/fusion_bench/models/linearized}/__init__.py +0 -0
  393. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/__init__.py +0 -0
  394. {fusion_bench-0.2.20/fusion_bench/models/smile_moe → fusion_bench-0.2.21/fusion_bench/models/llama/model_utils}/__init__.py +0 -0
  395. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/model_utils/embedding.py +0 -0
  396. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/model_utils/liger_kernel.py +0 -0
  397. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/model_utils/misc.py +0 -0
  398. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/model_utils/mod.py +0 -0
  399. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/model_utils/visual.py +0 -0
  400. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/patcher.py +0 -0
  401. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/llama/tokenizer_loader.py +0 -0
  402. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/masks/__init__.py +0 -0
  403. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/masks/mask_model.py +0 -0
  404. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_deepseek_v2/__init__.py +1 -1
  405. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py +0 -0
  406. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/__init__.py +0 -0
  407. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +0 -0
  408. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/losparse_linear.py +0 -0
  409. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +0 -0
  410. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/register.py +0 -0
  411. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_losparse_llama/utils.py +0 -0
  412. {fusion_bench-0.2.20/fusion_bench/models/wrappers → fusion_bench-0.2.21/fusion_bench/models/modeling_smile_llama}/__init__.py +0 -0
  413. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +0 -0
  414. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +0 -0
  415. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_mistral/register.py +0 -0
  416. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py +0 -0
  417. {fusion_bench-0.2.20/fusion_bench/scripts → fusion_bench-0.2.21/fusion_bench/models/nyuv2}/__init__.py +0 -0
  418. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/nyuv2/aspp.py +0 -0
  419. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/nyuv2/lightning_module.py +0 -0
  420. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/nyuv2/resnet.py +0 -0
  421. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/nyuv2/resnet_dilated.py +0 -0
  422. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/open_clip/__init__.py +0 -0
  423. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/open_clip/modeling.py +0 -0
  424. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/open_clip/utils.py +0 -0
  425. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/open_clip/variables_and_paths.py +0 -0
  426. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/rankone_moe.py +0 -0
  427. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/separate_io.py +0 -0
  428. {fusion_bench-0.2.20/fusion_bench/scripts/clip → fusion_bench-0.2.21/fusion_bench/models/smile_moe}/__init__.py +0 -0
  429. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/smile_moe/linear_from_hf_config.py +0 -0
  430. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/smile_moe/linear_from_module.py +0 -0
  431. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/smile_moe/utils/__init__.py +0 -0
  432. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/smile_moe/utils/svd_utils.py +0 -0
  433. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/surgery/__init__.py +0 -0
  434. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/surgery/surgerymodelwrapper.py +0 -0
  435. {fusion_bench-0.2.20/fusion_bench/taskpool/clip_vision/utils → fusion_bench-0.2.21/fusion_bench/models/wrappers}/__init__.py +0 -0
  436. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py +0 -0
  437. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/__init__.py +0 -0
  438. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/exception.py +0 -0
  439. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/lr_scheduler/__init__.py +0 -0
  440. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/lr_scheduler/linear_warmup.py +0 -0
  441. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/lr_scheduler/utils/__init__.py +0 -0
  442. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/lr_scheduler/utils/visualization.py +0 -0
  443. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/optim/mezo.py +0 -0
  444. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/programs/__init__.py +0 -0
  445. {fusion_bench-0.2.20/fusion_bench/tasks/flan_t5_text_generation → fusion_bench-0.2.21/fusion_bench/scripts}/__init__.py +0 -0
  446. {fusion_bench-0.2.20/fusion_bench/utils/plot → fusion_bench-0.2.21/fusion_bench/scripts/clip}/__init__.py +0 -0
  447. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/scripts/clip/convert_checkpoint.py +0 -0
  448. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/scripts/imgui.py +0 -0
  449. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/scripts/nyuv2_mtl_train.py +0 -0
  450. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/scripts/webui.py +0 -0
  451. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/__init__.py +0 -0
  452. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/__init__.py +0 -0
  453. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +0 -0
  454. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py +0 -0
  455. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +0 -0
  456. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py +0 -0
  457. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/dummy.py +1 -1
  458. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/gpt2_text_classification.py +0 -0
  459. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/llama/__init__.py +0 -0
  460. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/llama/reward_model.py +0 -0
  461. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/llama/test_generation.py +0 -0
  462. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/lm_eval_harness/__init__.py +0 -0
  463. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/nyuv2_taskpool.py +0 -0
  464. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/openclip_vision/__init__.py +0 -0
  465. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/taskpool/openclip_vision/openclip_taskpool.py +0 -0
  466. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/__init__.py +0 -0
  467. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/base_task.py +0 -0
  468. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/classification.py +0 -0
  469. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/cifar10.py +0 -0
  470. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/cifar100.py +0 -0
  471. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/clip_dataset.py +0 -0
  472. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/cub_200_2011.py +0 -0
  473. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/dtd.py +0 -0
  474. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/emnist_letters.py +0 -0
  475. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/emnist_mnist.py +0 -0
  476. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/eurosat.py +0 -0
  477. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/fashion_mnist.py +0 -0
  478. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/fer2013.py +0 -0
  479. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/flower102.py +0 -0
  480. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/food101.py +0 -0
  481. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/gtsrb.py +0 -0
  482. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/imagenet.py +0 -0
  483. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/kmnist.py +0 -0
  484. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/mnist.py +0 -0
  485. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +0 -0
  486. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +0 -0
  487. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/pcam.py +0 -0
  488. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/rendered_sst2.py +0 -0
  489. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/resisc45.py +0 -0
  490. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/stanford_cars.py +0 -0
  491. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/stl10.py +0 -0
  492. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/sun397.py +0 -0
  493. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/svhn.py +0 -0
  494. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/clip_classification/tiny_imagenet.py +0 -0
  495. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +0 -0
  496. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +0 -0
  497. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +0 -0
  498. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +0 -0
  499. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +0 -0
  500. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/auto.py +0 -0
  501. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/cache_utils.py +0 -0
  502. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/data.py +0 -0
  503. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/dict.py +0 -0
  504. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/dtype.py +0 -0
  505. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/expr.py +0 -0
  506. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/fabric.py +0 -0
  507. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/functools.py +0 -0
  508. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/hydra_utils.py +0 -0
  509. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/json.py +0 -0
  510. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/lazy_imports.py +0 -0
  511. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/lazy_state_dict.py +0 -0
  512. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/misc.py +0 -0
  513. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/packages.py +0 -0
  514. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/path.py +0 -0
  515. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/plot/color_data.py +0 -0
  516. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/plot/token.py +0 -0
  517. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/plot/token_notebook.py +0 -0
  518. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/pylogger.py +0 -0
  519. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/set.py +0 -0
  520. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/strenum/__init__.py +0 -0
  521. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/strenum/_name_mangler.py +0 -0
  522. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/strenum/_version.py +0 -0
  523. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/tensorboard.py +0 -0
  524. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/timer.py +0 -0
  525. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench/utils/type.py +0 -0
  526. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/dependency_links.txt +0 -0
  527. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/entry_points.txt +0 -0
  528. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench.egg-info/top_level.txt +0 -0
  529. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/README.md +0 -0
  530. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  531. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/README.md +0 -0
  532. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL10.yaml +0 -0
  533. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL12.yaml +0 -0
  534. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL14.yaml +0 -0
  535. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL16.yaml +0 -0
  536. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL18.yaml +0 -0
  537. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/TALL20.yaml +0 -0
  538. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/cifar10.yaml +0 -0
  539. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/cifar100.yaml +0 -0
  540. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +0 -0
  541. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/dtd.yaml +0 -0
  542. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +0 -0
  543. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +0 -0
  544. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/eurosat.yaml +0 -0
  545. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +0 -0
  546. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/fer2013.yaml +0 -0
  547. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/food101.yaml +0 -0
  548. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +0 -0
  549. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/kmnist.yaml +0 -0
  550. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +0 -0
  551. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/mnist.yaml +0 -0
  552. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +0 -0
  553. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +0 -0
  554. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/pcam.yaml +0 -0
  555. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +0 -0
  556. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/resisc45.yaml +0 -0
  557. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +0 -0
  558. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/stl10.yaml +0 -0
  559. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/sun397.yaml +0 -0
  560. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/svhn.yaml +0 -0
  561. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +0 -0
  562. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +0 -0
  563. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL10.yaml +0 -0
  564. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL12.yaml +0 -0
  565. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL14.yaml +0 -0
  566. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL16.yaml +0 -0
  567. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL18.yaml +0 -0
  568. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/TALL20.yaml +0 -0
  569. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/cifar10.yaml +0 -0
  570. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/cifar100.yaml +0 -0
  571. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +0 -0
  572. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/dtd.yaml +0 -0
  573. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +0 -0
  574. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +0 -0
  575. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/eurosat.yaml +0 -0
  576. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +0 -0
  577. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/fer2013.yaml +0 -0
  578. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/food101.yaml +0 -0
  579. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +0 -0
  580. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/kmnist.yaml +0 -0
  581. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +0 -0
  582. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/mnist.yaml +0 -0
  583. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +0 -0
  584. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +0 -0
  585. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/pcam.yaml +0 -0
  586. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +0 -0
  587. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/resisc45.yaml +0 -0
  588. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +0 -0
  589. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/stl10.yaml +0 -0
  590. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/sun397.yaml +0 -0
  591. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/svhn.yaml +0 -0
  592. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +0 -0
  593. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +0 -0
  594. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/dtd.yaml +0 -0
  595. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/eurosat.yaml +0 -0
  596. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +0 -0
  597. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/mnist.yaml +0 -0
  598. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/resisc45.yaml +0 -0
  599. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +0 -0
  600. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/sun397.yaml +0 -0
  601. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/svhn.yaml +0 -0
  602. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +0 -0
  603. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +0 -0
  604. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +0 -0
  605. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/question_answering/search_qa.yaml +0 -0
  606. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/question_answering/test/search_qa.yaml +0 -0
  607. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +0 -0
  608. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/question_answering/train/search_qa.yaml +0 -0
  609. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/question_answering/val/search_qa.yaml +0 -0
  610. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/summarization/test/xsum.yaml +0 -0
  611. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/summarization/train/xsum.yaml +0 -0
  612. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/summarization/val/xsum.yaml +0 -0
  613. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/summarization/xsum.yaml +0 -0
  614. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +0 -0
  615. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +0 -0
  616. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +0 -0
  617. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +0 -0
  618. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +0 -0
  619. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +0 -0
  620. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/auto.yaml +0 -0
  621. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/llama_ddp.yaml +0 -0
  622. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/llama_fsdp.yaml +0 -0
  623. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/llama_peft_fsdp.yaml +0 -0
  624. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/loggers/mlflow_logger.yaml +0 -0
  625. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/loggers/wandb_logger.yaml +0 -0
  626. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/strategy/deepspeed.yaml +0 -0
  627. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/strategy/llama_fsdp.yaml +0 -0
  628. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +0 -0
  629. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/hydra/help/fusion_bench_help.yaml +0 -0
  630. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/hydra/job_logging/rich_logging.yaml +0 -0
  631. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/llama_magnitude_pruning.yaml +0 -0
  632. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/llama_model_fusion.yaml +0 -0
  633. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/ada_svd/clip_vision.yaml +0 -0
  634. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +0 -0
  635. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +0 -0
  636. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/adamerging/llama_sft.yaml +0 -0
  637. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +0 -0
  638. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +0 -0
  639. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/classification/clip_continual_finetune.yaml +0 -0
  640. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/classification/clip_finetune.yaml +0 -0
  641. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/clip_finetune.yaml +0 -0
  642. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +0 -0
  643. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +0 -0
  644. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +0 -0
  645. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml +0 -0
  646. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml +0 -0
  647. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml +0 -0
  648. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml +0 -0
  649. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/dare/simple_average.yaml +0 -0
  650. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/dare/task_arithmetic.yaml +0 -0
  651. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/dare/ties_merging.yaml +0 -0
  652. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/dawe/dawe_for_clip.yaml +0 -0
  653. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/doge_ta/doge_ta.yaml +0 -0
  654. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/dummy.yaml +0 -0
  655. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/ensemble/max_model_predictor.yaml +0 -0
  656. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/ensemble/simple_ensemble.yaml +0 -0
  657. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/ensemble/weighted_ensemble.yaml +0 -0
  658. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/expert_sparsity/README.md +0 -0
  659. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/expert_sparsity/mixtral.yaml +0 -0
  660. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -0
  661. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/fisher_merging/fisher_merging.yaml +0 -0
  662. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +0 -0
  663. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/fw_merging/fw_hard.yaml +0 -0
  664. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/fw_merging/fw_soft.yaml +0 -0
  665. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/gossip/layer_wise_clip.yaml +0 -0
  666. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml +0 -0
  667. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/isotropic_merging/iso_c.yaml +0 -0
  668. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/isotropic_merging/iso_cts.yaml +0 -0
  669. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/expo.yaml +0 -0
  670. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/linear_interpolation.yaml +0 -0
  671. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/llama_expo.yaml +0 -0
  672. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/llama_expo_with_dare.yaml +0 -0
  673. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/simple_average_for_llama.yaml +0 -0
  674. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -0
  675. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/weighted_average.yaml +0 -0
  676. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/linear/weighted_average_for_llama.yaml +0 -0
  677. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +0 -0
  678. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +0 -0
  679. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +0 -0
  680. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/mixtral_moe_merging.yaml +0 -0
  681. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/mixtral_moe_upscaling.yaml +0 -0
  682. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/model_recombination.yaml +0 -0
  683. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/moe_pruner/moe_pruner.yaml +0 -0
  684. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/opcm/opcm.yaml +0 -0
  685. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/opcm/task_arithmetic.yaml +0 -0
  686. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/opcm/ties_merging.yaml +0 -0
  687. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/opcm/weight_average.yaml +0 -0
  688. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +0 -0
  689. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pruning/llama_random_pruning.yaml +0 -0
  690. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml +0 -0
  691. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +0 -0
  692. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +0 -0
  693. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml +0 -0
  694. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml +0 -0
  695. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml +0 -0
  696. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/randes/superposed_model_soup.yaml +0 -0
  697. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/randes/superposed_task_arithmetic.yaml +0 -0
  698. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml +0 -0
  699. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/rankone_moe/rankone_moe.yaml +0 -0
  700. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/regmean/clip_regmean.yaml +0 -0
  701. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/regmean/gpt2_regmean.yaml +0 -0
  702. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/regmean/regmean.yaml +0 -0
  703. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml +0 -0
  704. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/simple_average.yaml +0 -0
  705. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/slerp/slerp.yaml +0 -0
  706. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +0 -0
  707. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +0 -0
  708. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +0 -0
  709. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +0 -0
  710. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +0 -0
  711. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +0 -0
  712. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/surgery/adamerging_surgery.yaml +0 -0
  713. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/tall_mask/task_arithmetic.yaml +0 -0
  714. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/task_arithmetic.yaml +0 -0
  715. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +0 -0
  716. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/ties_merging.yaml +0 -0
  717. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +0 -0
  718. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +0 -0
  719. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +0 -0
  720. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/README.md +0 -0
  721. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +0 -0
  722. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +0 -0
  723. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +0 -0
  724. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +0 -0
  725. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +0 -0
  726. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +0 -0
  727. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +0 -0
  728. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +0 -0
  729. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +0 -0
  730. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +0 -0
  731. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +0 -0
  732. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +0 -0
  733. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +0 -0
  734. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +0 -0
  735. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +0 -0
  736. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +0 -0
  737. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +0 -0
  738. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +0 -0
  739. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +0 -0
  740. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +0 -0
  741. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +0 -0
  742. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +0 -0
  743. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +0 -0
  744. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +0 -0
  745. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +0 -0
  746. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml +0 -0
  747. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml +0 -0
  748. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +0 -0
  749. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml +0 -0
  750. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml +0 -0
  751. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +0 -0
  752. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +0 -0
  753. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +0 -0
  754. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +0 -0
  755. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +0 -0
  756. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +0 -0
  757. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +0 -0
  758. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +0 -0
  759. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +0 -0
  760. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +0 -0
  761. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +0 -0
  762. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +0 -0
  763. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +0 -0
  764. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +0 -0
  765. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +0 -0
  766. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +0 -0
  767. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +0 -0
  768. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +0 -0
  769. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +0 -0
  770. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +0 -0
  771. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +0 -0
  772. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +0 -0
  773. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +0 -0
  774. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +0 -0
  775. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +0 -0
  776. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +0 -0
  777. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +0 -0
  778. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +0 -0
  779. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +0 -0
  780. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +0 -0
  781. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +0 -0
  782. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +0 -0
  783. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +0 -0
  784. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +0 -0
  785. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +0 -0
  786. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +0 -0
  787. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +0 -0
  788. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +0 -0
  789. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +0 -0
  790. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +0 -0
  791. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +0 -0
  792. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +0 -0
  793. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +0 -0
  794. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +0 -0
  795. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +0 -0
  796. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +0 -0
  797. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/download_TALL20_models.sh +0 -0
  798. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +0 -0
  799. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base.yaml +0 -0
  800. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +0 -0
  801. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +0 -0
  802. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +0 -0
  803. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +0 -0
  804. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +0 -0
  805. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +0 -0
  806. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +0 -0
  807. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +0 -0
  808. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +0 -0
  809. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +0 -0
  810. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +0 -0
  811. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +0 -0
  812. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +0 -0
  813. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +0 -0
  814. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +0 -0
  815. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +0 -0
  816. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large.yaml +0 -0
  817. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +0 -0
  818. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +0 -0
  819. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +0 -0
  820. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +0 -0
  821. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +0 -0
  822. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +0 -0
  823. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +0 -0
  824. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +0 -0
  825. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/model/flan-t5/generate_flan-t5.sh +0 -0
  826. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +0 -0
  827. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +0 -0
  828. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +0 -0
  829. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +0 -0
  830. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +0 -0
  831. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +0 -0
  832. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +0 -0
  833. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +0 -0
  834. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +0 -0
  835. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +0 -0
  836. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +0 -0
  837. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +0 -0
  838. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml +0 -0
  839. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml +0 -0
  840. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +0 -0
  841. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +0 -0
  842. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml +0 -0
  843. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml +0 -0
  844. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +0 -0
  845. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +0 -0
  846. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_cars_and_dtd.yaml +0 -0
  847. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +0 -0
  848. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +0 -0
  849. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +0 -0
  850. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
  851. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  852. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +0 -0
  853. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_cars.yaml +0 -0
  854. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_dtd.yaml +0 -0
  855. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_cars_and_dtd.yaml +0 -0
  856. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +0 -0
  857. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +0 -0
  858. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +0 -0
  859. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +0 -0
  860. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +0 -0
  861. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +0 -0
  862. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml +0 -0
  863. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +0 -0
  864. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +0 -0
  865. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +0 -0
  866. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +0 -0
  867. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +0 -0
  868. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B-Instruct.yaml +0 -0
  869. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B.yaml +0 -0
  870. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B-Instruct.yaml +0 -0
  871. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B.yaml +0 -0
  872. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml +0 -0
  873. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml +0 -0
  874. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml +0 -0
  875. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml +0 -0
  876. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml +0 -0
  877. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +0 -0
  878. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md +0 -0
  879. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml +0 -0
  880. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml +0 -0
  881. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_cars_dtd.yaml +0 -0
  882. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.yaml +0 -0
  883. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml +0 -0
  884. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml +0 -0
  885. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml +0 -0
  886. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +0 -0
  887. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +0 -0
  888. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +0 -0
  889. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +0 -0
  890. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml +0 -0
  891. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +0 -0
  892. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +0 -0
  893. {fusion_bench-0.2.20/fusion_bench_config/modelpool/SeqenceClassificationModelPool → fusion_bench-0.2.21/fusion_bench_config/modelpool/SequenceClassificationModelPool}/roberta-base_glue.yaml +0 -0
  894. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/automodelpool.yaml +0 -0
  895. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/gpt-2_glue.yaml +0 -0
  896. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/nyuv2_modelpool.yaml +0 -0
  897. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +0 -0
  898. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +0 -0
  899. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +0 -0
  900. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +0 -0
  901. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +0 -0
  902. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  903. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +0 -0
  904. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +0 -0
  905. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +0 -0
  906. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +0 -0
  907. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +0 -0
  908. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +0 -0
  909. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +0 -0
  910. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +0 -0
  911. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +0 -0
  912. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +0 -0
  913. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +0 -0
  914. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +0 -0
  915. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +0 -0
  916. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +0 -0
  917. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +0 -0
  918. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +0 -0
  919. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +0 -0
  920. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +0 -0
  921. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +0 -0
  922. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +0 -0
  923. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +0 -0
  924. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +0 -0
  925. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +0 -0
  926. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +0 -0
  927. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +0 -0
  928. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +0 -0
  929. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +0 -0
  930. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +0 -0
  931. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +0 -0
  932. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +0 -0
  933. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml +0 -0
  934. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml +0 -0
  935. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml +0 -0
  936. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml +0 -0
  937. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
  938. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  939. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/dummy.yaml +0 -0
  940. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +0 -0
  941. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/gpt-2_glue.yaml +0 -0
  942. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/nyuv2_taskpool.yaml +0 -0
  943. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/fusion_bench_config/taskpool/reward_model_evaluation.yaml +0 -0
  944. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/setup.cfg +0 -0
  945. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/tests/test_depth_upscaling.py +0 -0
  946. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/tests/test_simple_average.py +0 -0
  947. {fusion_bench-0.2.20 → fusion_bench-0.2.21}/tests/test_weighed_ensemble.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fusion_bench
3
- Version: 0.2.20
3
+ Version: 0.2.21
4
4
  Summary: A Comprehensive Benchmark of Deep Model Fusion
5
5
  Author-email: Anke Tang <tang.anke@foxmail.com>
6
6
  License: MIT License
@@ -45,13 +45,17 @@ Requires-Dist: rich
45
45
  Requires-Dist: scipy
46
46
  Requires-Dist: h5py
47
47
  Requires-Dist: pytest
48
+ Requires-Dist: transformers!=4.49
49
+ Requires-Dist: pillow!=11.2.1
48
50
  Provides-Extra: lm-eval-harness
49
51
  Requires-Dist: lm-eval; extra == "lm-eval-harness"
52
+ Requires-Dist: immutabledict; extra == "lm-eval-harness"
53
+ Requires-Dist: langdetect; extra == "lm-eval-harness"
50
54
  Dynamic: license-file
51
55
 
52
56
  <div align='center'>
53
57
 
54
- # FusionBench: A Comprehensive Benchmark/ToolKit of Deep Model Fusion
58
+ # FusionBench: A Comprehensive Benchmark/Toolkit of Deep Model Fusion
55
59
 
56
60
  [![arXiv](https://img.shields.io/badge/arXiv-2406.03280-b31b1b.svg)](http://arxiv.org/abs/2406.03280)
57
61
  [![GitHub License](https://img.shields.io/github/license/tanganke/fusion_bench)](https://github.com/tanganke/fusion_bench/blob/main/LICENSE)
@@ -75,7 +79,7 @@ Projects based on FusionBench and news from the community (descending order of d
75
79
  <details>
76
80
  <summary>The-Hai Nguyen, Dang Huu-Tien, Takeshi Suzuki, and Le-Minh Nguyen. RegMean++: Enhancing Effectiveness and Generalization of Regression Mean for Model Merging. Aug, 2025. https://www.arxiv.org/abs/2508.03121</summary>
77
81
 
78
- Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods.
82
+ Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods.
79
83
 
80
84
  <img width="1000" alt="image" src="docs/algorithms/images/regmean_vs_regmean_plusplus.png">
81
85
  </details>
@@ -89,7 +93,7 @@ Model merging has emerged as a promising approach for multi-task learning (MTL),
89
93
  <details>
90
94
  <summary>Daniel Marczak, et al. No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces. Feb 2025. https://arxiv.org/abs/2502.04959</summary>
91
95
 
92
- Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training.
96
+ Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training.
93
97
  </details>
94
98
 
95
99
  <details>
@@ -107,12 +111,12 @@ Merging multiple expert models offers a promising approach for performing multi-
107
111
  <details>
108
112
  <summary>Hongling Zheng, Li Shen, Anke Tang, Yong Luo et al. Learn From Model Beyond Fine-Tuning: A Survey. Nature Machine Intelligence. Jan, 2025. https://www.nature.com/articles/s42256-024-00961-0</summary>
109
113
 
110
- > Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at https://github.com/ruthless-man/Awesome-Learn-from-Model.
114
+ > Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at <https://github.com/ruthless-man/Awesome-Learn-from-Model>.
111
115
  </details>
112
116
 
113
117
  <details>
114
118
  <summary>Li Shen, Anke Tang, Enneng Yang et al. Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging. Oct, 2024. https://github.com/EnnengYang/Efficient-WEMoE</summary>
115
-
119
+
116
120
  <img width="1018" alt="image" src="https://github.com/user-attachments/assets/b7e1279e-87fc-4016-8867-1bff7700e271">
117
121
 
118
122
  </details>
@@ -138,7 +142,7 @@ Install from PyPI:
138
142
  pip install fusion-bench
139
143
  ```
140
144
 
141
- or install the latest version in development from github repository
145
+ or install the latest version in development from the GitHub repository
142
146
 
143
147
  ```bash
144
148
  git clone https://github.com/tanganke/fusion_bench.git
@@ -155,7 +159,6 @@ pip install -e . # install the package in editable mode
155
159
 
156
160
  [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10256836.svg)](https://doi.org/10.5281/zenodo.10256836)
157
161
 
158
-
159
162
  ```bash
160
163
  pip install "fusion-bench[lm-eval-harness]"
161
164
  ```
@@ -205,8 +208,8 @@ The project is structured as follows:
205
208
 
206
209
  ## A Unified Command Line Interface
207
210
 
208
- The `fusion_bench` command-line interface is a powerful tool for researchers and practitioners in the field of model fusion. It provides a streamlined way to experiment with various fusion algorithms, model combinations, and evaluation tasks.
209
- By leveraging Hydra's configuration management, fusion_bench offers flexibility in setting up experiments and reproducibility in results.
211
+ The `fusion_bench` command-line interface is a powerful tool for researchers and practitioners in the field of model fusion. It provides a streamlined way to experiment with various fusion algorithms, model combinations, and evaluation tasks.
212
+ By leveraging Hydra's configuration management, fusion_bench offers flexibility in setting up experiments and reproducibility in results.
210
213
  The CLI's design allows for easy extension to new fusion methods, model types, and tasks, making it a versatile platform for advancing research in model fusion techniques.
211
214
 
212
215
  Read the [CLI documentation](https://tanganke.github.io/fusion_bench/cli/fusion_bench/) for more information.
@@ -245,7 +248,7 @@ class DerivedModelFusionAlgorithm(BaseModelFusionAlgorithm):
245
248
  )
246
249
  ```
247
250
 
248
- A corresponding configuration file should be created to specify the class and hyperparameters of the algorithm.
251
+ A corresponding configuration file should be created to specify the class and hyperparameters of the algorithm.
249
252
  Here we assume the configuration file is placed at `config/method/your_algorithm_config.yaml`.
250
253
 
251
254
  > [!NOTE]
@@ -280,7 +283,7 @@ Click on [<kbd>Use this template</kbd>](https://github.com/fusion-bench/fusion-b
280
283
 
281
284
  ### FusionBench Command Generator WebUI (for v0.1.x)
282
285
 
283
- FusionBench Command Generator is a user-friendly web interface for generating FusionBench commands based on configuration files.
286
+ FusionBench Command Generator is a user-friendly web interface for generating FusionBench commands based on configuration files.
284
287
  It provides an interactive way to select and customize FusionBench configurations, making it easier to run experiments with different settings.
285
288
  [Read more here](https://tanganke.github.io/fusion_bench/cli/fusion_bench_webui/).
286
289
 
@@ -291,18 +294,14 @@ It provides an interactive way to select and customize FusionBench configuration
291
294
  If you find this benchmark useful, please consider citing our work:
292
295
 
293
296
  ```bibtex
294
- @misc{tangFusionBenchComprehensiveBenchmark2024,
295
- title = {{{FusionBench}}: {{A Comprehensive Benchmark}} of {{Deep Model Fusion}}},
296
- shorttitle = {{{FusionBench}}},
297
- author = {Tang, Anke and Shen, Li and Luo, Yong and Hu, Han and Du, Bo and Tao, Dacheng},
298
- year = {2024},
299
- month = jun,
300
- number = {arXiv:2406.03280},
301
- eprint = {2406.03280},
302
- publisher = {arXiv},
303
- url = {http://arxiv.org/abs/2406.03280},
304
- archiveprefix = {arxiv},
305
- langid = {english},
306
- keywords = {Computer Science - Artificial Intelligence,Computer Science - Computation and Language,Computer Science - Machine Learning}
297
+ @article{tang2024fusionbench,
298
+ title={Fusionbench: A comprehensive benchmark of deep model fusion},
299
+ author={Tang, Anke and Shen, Li and Luo, Yong and Hu, Han and Du, Bo and Tao, Dacheng},
300
+ journal={arXiv preprint arXiv:2406.03280},
301
+ year={2024}
307
302
  }
308
303
  ```
304
+
305
+ ## Star History
306
+
307
+ [![Star History Chart](https://api.star-history.com/svg?repos=tanganke/fusion_bench&type=Date)](https://www.star-history.com/#tanganke/fusion_bench&Date)
@@ -1,6 +1,6 @@
1
1
  <div align='center'>
2
2
 
3
- # FusionBench: A Comprehensive Benchmark/ToolKit of Deep Model Fusion
3
+ # FusionBench: A Comprehensive Benchmark/Toolkit of Deep Model Fusion
4
4
 
5
5
  [![arXiv](https://img.shields.io/badge/arXiv-2406.03280-b31b1b.svg)](http://arxiv.org/abs/2406.03280)
6
6
  [![GitHub License](https://img.shields.io/github/license/tanganke/fusion_bench)](https://github.com/tanganke/fusion_bench/blob/main/LICENSE)
@@ -24,7 +24,7 @@ Projects based on FusionBench and news from the community (descending order of d
24
24
  <details>
25
25
  <summary>The-Hai Nguyen, Dang Huu-Tien, Takeshi Suzuki, and Le-Minh Nguyen. RegMean++: Enhancing Effectiveness and Generalization of Regression Mean for Model Merging. Aug, 2025. https://www.arxiv.org/abs/2508.03121</summary>
26
26
 
27
- Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods.
27
+ Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods.
28
28
 
29
29
  <img width="1000" alt="image" src="docs/algorithms/images/regmean_vs_regmean_plusplus.png">
30
30
  </details>
@@ -38,7 +38,7 @@ Model merging has emerged as a promising approach for multi-task learning (MTL),
38
38
  <details>
39
39
  <summary>Daniel Marczak, et al. No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces. Feb 2025. https://arxiv.org/abs/2502.04959</summary>
40
40
 
41
- Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training.
41
+ Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training.
42
42
  </details>
43
43
 
44
44
  <details>
@@ -56,12 +56,12 @@ Merging multiple expert models offers a promising approach for performing multi-
56
56
  <details>
57
57
  <summary>Hongling Zheng, Li Shen, Anke Tang, Yong Luo et al. Learn From Model Beyond Fine-Tuning: A Survey. Nature Machine Intelligence. Jan, 2025. https://www.nature.com/articles/s42256-024-00961-0</summary>
58
58
 
59
- > Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at https://github.com/ruthless-man/Awesome-Learn-from-Model.
59
+ > Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at <https://github.com/ruthless-man/Awesome-Learn-from-Model>.
60
60
  </details>
61
61
 
62
62
  <details>
63
63
  <summary>Li Shen, Anke Tang, Enneng Yang et al. Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging. Oct, 2024. https://github.com/EnnengYang/Efficient-WEMoE</summary>
64
-
64
+
65
65
  <img width="1018" alt="image" src="https://github.com/user-attachments/assets/b7e1279e-87fc-4016-8867-1bff7700e271">
66
66
 
67
67
  </details>
@@ -87,7 +87,7 @@ Install from PyPI:
87
87
  pip install fusion-bench
88
88
  ```
89
89
 
90
- or install the latest version in development from github repository
90
+ or install the latest version in development from the GitHub repository
91
91
 
92
92
  ```bash
93
93
  git clone https://github.com/tanganke/fusion_bench.git
@@ -104,7 +104,6 @@ pip install -e . # install the package in editable mode
104
104
 
105
105
  [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10256836.svg)](https://doi.org/10.5281/zenodo.10256836)
106
106
 
107
-
108
107
  ```bash
109
108
  pip install "fusion-bench[lm-eval-harness]"
110
109
  ```
@@ -154,8 +153,8 @@ The project is structured as follows:
154
153
 
155
154
  ## A Unified Command Line Interface
156
155
 
157
- The `fusion_bench` command-line interface is a powerful tool for researchers and practitioners in the field of model fusion. It provides a streamlined way to experiment with various fusion algorithms, model combinations, and evaluation tasks.
158
- By leveraging Hydra's configuration management, fusion_bench offers flexibility in setting up experiments and reproducibility in results.
156
+ The `fusion_bench` command-line interface is a powerful tool for researchers and practitioners in the field of model fusion. It provides a streamlined way to experiment with various fusion algorithms, model combinations, and evaluation tasks.
157
+ By leveraging Hydra's configuration management, fusion_bench offers flexibility in setting up experiments and reproducibility in results.
159
158
  The CLI's design allows for easy extension to new fusion methods, model types, and tasks, making it a versatile platform for advancing research in model fusion techniques.
160
159
 
161
160
  Read the [CLI documentation](https://tanganke.github.io/fusion_bench/cli/fusion_bench/) for more information.
@@ -194,7 +193,7 @@ class DerivedModelFusionAlgorithm(BaseModelFusionAlgorithm):
194
193
  )
195
194
  ```
196
195
 
197
- A corresponding configuration file should be created to specify the class and hyperparameters of the algorithm.
196
+ A corresponding configuration file should be created to specify the class and hyperparameters of the algorithm.
198
197
  Here we assume the configuration file is placed at `config/method/your_algorithm_config.yaml`.
199
198
 
200
199
  > [!NOTE]
@@ -229,7 +228,7 @@ Click on [<kbd>Use this template</kbd>](https://github.com/fusion-bench/fusion-b
229
228
 
230
229
  ### FusionBench Command Generator WebUI (for v0.1.x)
231
230
 
232
- FusionBench Command Generator is a user-friendly web interface for generating FusionBench commands based on configuration files.
231
+ FusionBench Command Generator is a user-friendly web interface for generating FusionBench commands based on configuration files.
233
232
  It provides an interactive way to select and customize FusionBench configurations, making it easier to run experiments with different settings.
234
233
  [Read more here](https://tanganke.github.io/fusion_bench/cli/fusion_bench_webui/).
235
234
 
@@ -240,18 +239,14 @@ It provides an interactive way to select and customize FusionBench configuration
240
239
  If you find this benchmark useful, please consider citing our work:
241
240
 
242
241
  ```bibtex
243
- @misc{tangFusionBenchComprehensiveBenchmark2024,
244
- title = {{{FusionBench}}: {{A Comprehensive Benchmark}} of {{Deep Model Fusion}}},
245
- shorttitle = {{{FusionBench}}},
246
- author = {Tang, Anke and Shen, Li and Luo, Yong and Hu, Han and Du, Bo and Tao, Dacheng},
247
- year = {2024},
248
- month = jun,
249
- number = {arXiv:2406.03280},
250
- eprint = {2406.03280},
251
- publisher = {arXiv},
252
- url = {http://arxiv.org/abs/2406.03280},
253
- archiveprefix = {arxiv},
254
- langid = {english},
255
- keywords = {Computer Science - Artificial Intelligence,Computer Science - Computation and Language,Computer Science - Machine Learning}
242
+ @article{tang2024fusionbench,
243
+ title={Fusionbench: A comprehensive benchmark of deep model fusion},
244
+ author={Tang, Anke and Shen, Li and Luo, Yong and Hu, Han and Du, Bo and Tao, Dacheng},
245
+ journal={arXiv preprint arXiv:2406.03280},
246
+ year={2024}
256
247
  }
257
248
  ```
249
+
250
+ ## Star History
251
+
252
+ [![Star History Chart](https://api.star-history.com/svg?repos=tanganke/fusion_bench&type=Date)](https://www.star-history.com/#tanganke/fusion_bench&Date)
@@ -20,6 +20,7 @@ from . import (
20
20
  utils,
21
21
  )
22
22
  from .method import BaseAlgorithm, BaseModelFusionAlgorithm
23
+ from .mixins import auto_register_config
23
24
  from .modelpool import BaseModelPool
24
25
  from .models import separate_io
25
26
  from .taskpool import BaseTaskPool
@@ -0,0 +1,3 @@
1
+ """
2
+ Tutorial module for FusionBench
3
+ """
@@ -0,0 +1,49 @@
1
+ import logging
2
+ from typing import Optional
3
+
4
+ from omegaconf import DictConfig
5
+
6
+ from fusion_bench.programs import BaseHydraProgram
7
+
8
+ log = logging.getLogger(__name__)
9
+
10
+
11
+ class GreetingProgram(BaseHydraProgram):
12
+ """
13
+ A simple program that greets users with a custom message.
14
+ """
15
+
16
+ _config_mapping = BaseHydraProgram._config_mapping | {
17
+ "message": "message",
18
+ "name": "name",
19
+ "repeat_count": "repeat_count",
20
+ }
21
+
22
+ def __init__(
23
+ self,
24
+ message: str = "Hello",
25
+ name: str = "World",
26
+ repeat_count: int = 1,
27
+ **kwargs,
28
+ ):
29
+ self.message = message
30
+ self.name = name
31
+ self.repeat_count = repeat_count
32
+ super().__init__(**kwargs)
33
+
34
+ def run(self):
35
+ """Execute the greeting workflow."""
36
+ log.info("Starting greeting program")
37
+
38
+ # Create the greeting
39
+ greeting = f"{self.message}, {self.name}!"
40
+
41
+ # Print the greeting multiple times
42
+ for i in range(self.repeat_count):
43
+ if self.repeat_count > 1:
44
+ print(f"[{i+1}/{self.repeat_count}] {greeting}")
45
+ else:
46
+ print(greeting)
47
+
48
+ log.info("Greeting program completed")
49
+ return greeting
@@ -36,6 +36,20 @@ class ModelFusionAlgorithm(ABC):
36
36
  algorithm_config = DictConfig({})
37
37
  self.config = algorithm_config
38
38
 
39
+ def on_run_start(self):
40
+ """
41
+ Hook method called at the start of the run.
42
+ Can be overridden by subclasses to perform initialization tasks.
43
+ """
44
+ pass
45
+
46
+ def on_run_end(self):
47
+ """
48
+ Hook method called at the end of the run.
49
+ Can be overridden by subclasses to perform cleanup tasks.
50
+ """
51
+ pass
52
+
39
53
  @abstractmethod
40
54
  def run(self, modelpool):
41
55
  """
@@ -0,0 +1,7 @@
1
+ # flake8: noqa F401
2
+ import importlib.metadata
3
+
4
+ from .paths import *
5
+
6
+ # fusionbench version
7
+ FUSION_BENCH_VERSION = importlib.metadata.version("fusion-bench")
@@ -0,0 +1,46 @@
1
+ "Constants for CLIP Vision Model Merging"
2
+
3
+ TASK_NAMES_TA8 = [
4
+ "sun397",
5
+ "stanford-cars",
6
+ "resisc45",
7
+ "eurosat",
8
+ "svhn",
9
+ "gtsrb",
10
+ "mnist",
11
+ "dtd",
12
+ ]
13
+ "The 8 tasks used in the Task Arithmetic paper."
14
+ TASK_NAMES_TALL8 = TASK_NAMES_TA8
15
+ "The 8 tasks used in the Tall Mask paper"
16
+ TASK_NAMES_TALL10 = TASK_NAMES_TA8 + ["oxford_flowers102", "pcam"]
17
+ TASK_NAMES_TALL12 = TASK_NAMES_TALL10 + [
18
+ "fer2013",
19
+ "oxford-iiit-pet",
20
+ ]
21
+ TASK_NAMES_TALL14 = TASK_NAMES_TALL12 + [
22
+ "stl10",
23
+ "cifar100",
24
+ ]
25
+ "The 14 tasks used in the TALL mask paper"
26
+ TASK_NAMES_TALL16 = TASK_NAMES_TALL14 + ["cifar10", "food101"]
27
+ TASK_NAMES_TALL18 = TASK_NAMES_TALL16 + ["fashion_mnist", "emnist_letters"]
28
+ TASK_NAMES_TALL20 = TASK_NAMES_TALL18 + ["kmnist", "rendered-sst2"]
29
+ "The 20 tasks used in the TALL mask paper"
30
+ TASK_NAMES_TA8_CAP = [
31
+ "SUN397",
32
+ "Cars",
33
+ "RESISC45",
34
+ "EuroSAT",
35
+ "SVHN",
36
+ "GTSRB",
37
+ "MNIST",
38
+ "DTD",
39
+ ]
40
+ TASK_NAMES_TALL8_CAP = TASK_NAMES_TA8_CAP
41
+ TASK_NAMES_TALL10_CAP = TASK_NAMES_TALL8_CAP + ["Flowers102", "PCAM"]
42
+ TASK_NAMES_TALL12_CAP = TASK_NAMES_TALL10_CAP + ["FER2013", "OxfordIIITPet"]
43
+ TASK_NAMES_TALL14_CAP = TASK_NAMES_TALL12_CAP + ["STL10", "CIFAR100"]
44
+ TASK_NAMES_TALL16_CAP = TASK_NAMES_TALL14_CAP + ["CIFAR10", "Food101"]
45
+ TASK_NAMES_TALL18_CAP = TASK_NAMES_TALL16_CAP + ["FashionMNIST", "EMNIST"]
46
+ TASK_NAMES_TALL20_CAP = TASK_NAMES_TALL18_CAP + ["KMNIST", "RenderedSST2"]
@@ -7,10 +7,14 @@ log = logging.getLogger(__name__)
7
7
  __all__ = ["LIBRARY_PATH", "PROJECT_ROOT_PATH", "DEFAULT_CONFIG_PATH"]
8
8
 
9
9
  LIBRARY_PATH = Path(importlib.import_module("fusion_bench").__path__[0])
10
+ """Path to the library directory."""
11
+
10
12
  PROJECT_ROOT_PATH = LIBRARY_PATH.parent
13
+ """Path to the project root directory."""
11
14
 
12
15
  if (PROJECT_ROOT_PATH / "config").is_dir():
13
16
  DEFAULT_CONFIG_PATH = PROJECT_ROOT_PATH / "config"
17
+ """Path to the default config directory."""
14
18
  elif (PROJECT_ROOT_PATH / "fusion_bench_config").is_dir():
15
19
  DEFAULT_CONFIG_PATH = PROJECT_ROOT_PATH / "fusion_bench_config"
16
20
  else:
@@ -5,6 +5,7 @@ This module provides a class to convert a dataset whose object is a list of dict
5
5
  from typing import Optional, Tuple
6
6
 
7
7
  import torch
8
+ from torch.utils.data import Dataset
8
9
  from transformers import CLIPProcessor, ProcessorMixin
9
10
 
10
11
  __all__ = ["CLIPDataset"]
@@ -28,7 +29,7 @@ class CLIPDataset(torch.utils.data.Dataset):
28
29
  processor (CLIPProcessor): The CLIP processor used for image preprocessing.
29
30
  """
30
31
 
31
- def __init__(self, dataset, processor: Optional[CLIPProcessor] = None):
32
+ def __init__(self, dataset: Dataset, processor: Optional[CLIPProcessor] = None):
32
33
  self.dataset = dataset
33
34
  self.processor = processor
34
35
 
@@ -16,7 +16,7 @@ from functools import partial
16
16
  from pathlib import Path
17
17
  from typing import Literal
18
18
 
19
- from datasets import load_dataset, load_from_disk
19
+ from datasets import Dataset, load_dataset, load_from_disk
20
20
  from transformers import PreTrainedTokenizer
21
21
 
22
22
 
@@ -147,7 +147,7 @@ class TokenizedGLUE:
147
147
  return glue_dataset_loaders[name]()
148
148
 
149
149
  @cache_dataset
150
- def load_mrpc_dataset(self):
150
+ def load_mrpc_dataset(self) -> Dataset:
151
151
  """
152
152
  Load and tokenize the MRPC dataset.
153
153
 
@@ -166,7 +166,7 @@ class TokenizedGLUE:
166
166
  return dataset
167
167
 
168
168
  @cache_dataset
169
- def load_rte_dataset(self):
169
+ def load_rte_dataset(self) -> Dataset:
170
170
  """
171
171
  Load and tokenize the RTE dataset.
172
172
 
@@ -186,7 +186,7 @@ class TokenizedGLUE:
186
186
  return dataset
187
187
 
188
188
  @cache_dataset
189
- def load_wnli_dataset(self):
189
+ def load_wnli_dataset(self) -> Dataset:
190
190
  """
191
191
  Load and tokenize the WNLI dataset.
192
192
 
@@ -205,7 +205,7 @@ class TokenizedGLUE:
205
205
  return dataset
206
206
 
207
207
  @cache_dataset
208
- def load_qqp_dataset(self):
208
+ def load_qqp_dataset(self) -> Dataset:
209
209
  """
210
210
  Load and tokenize the QQP dataset.
211
211
 
@@ -224,7 +224,7 @@ class TokenizedGLUE:
224
224
  return dataset
225
225
 
226
226
  @cache_dataset
227
- def load_mnli_dataset(self):
227
+ def load_mnli_dataset(self) -> Dataset:
228
228
  """
229
229
  Load and tokenize the MNLI dataset.
230
230
 
@@ -243,7 +243,7 @@ class TokenizedGLUE:
243
243
  return dataset
244
244
 
245
245
  @cache_dataset
246
- def load_cola_dataset(self):
246
+ def load_cola_dataset(self) -> Dataset:
247
247
  """
248
248
  Load and tokenize the CoLA dataset.
249
249
 
@@ -262,7 +262,7 @@ class TokenizedGLUE:
262
262
  return dataset
263
263
 
264
264
  @cache_dataset
265
- def load_sst2_dataset(self):
265
+ def load_sst2_dataset(self) -> Dataset:
266
266
  """
267
267
  Load and tokenize the SST-2 dataset.
268
268
 
@@ -281,7 +281,7 @@ class TokenizedGLUE:
281
281
  return dataset
282
282
 
283
283
  @cache_dataset
284
- def load_qnli_dataset(self):
284
+ def load_qnli_dataset(self) -> Dataset:
285
285
  """
286
286
  Load and tokenize the QNLI dataset.
287
287