fusion-bench 0.2.16__tar.gz → 0.2.18__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/PKG-INFO +3 -1
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/README.md +2 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/__init__.py +11 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +1 -1
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +1 -1
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/base_algorithm.py +1 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/dawe/dawe_for_clip.py +1 -1
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +3 -2
- fusion_bench-0.2.18/fusion_bench/method/expert_sparsity/__init__.py +10 -0
- fusion_bench-0.2.18/fusion_bench/method/expert_sparsity/mixtral/__init__.py +23 -0
- fusion_bench-0.2.18/fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py +175 -0
- fusion_bench-0.2.18/fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py +159 -0
- fusion_bench-0.2.18/fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py +173 -0
- fusion_bench-0.2.18/fusion_bench/method/expert_sparsity/utils/calibration_data.py +153 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +1 -1
- fusion_bench-0.2.18/fusion_bench/method/knots/knots_utils.py +23 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pwe_moe/module.py +2 -7
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/simple_average.py +3 -2
- fusion_bench-0.2.18/fusion_bench/method/task_singular_vector/TSVM.py +296 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +52 -20
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/task_singular_vector/utils/__init__.py +1 -0
- fusion_bench-0.2.18/fusion_bench/method/task_singular_vector/utils/task_singular_interference.py +41 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/mixins/hydra_config.py +1 -1
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/mixins/lightning_fabric.py +25 -1
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/mixins/serialization.py +18 -2
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/base_pool.py +1 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/causal_lm/causal_lm.py +8 -5
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/clip_vision/modelpool.py +21 -13
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/__init__.py +1 -0
- fusion_bench-0.2.18/fusion_bench/models/expert_sparsity/mixtral/__init__.py +15 -0
- fusion_bench-0.2.18/fusion_bench/models/expert_sparsity/mixtral/dataset.py +40 -0
- fusion_bench-0.2.18/fusion_bench/models/expert_sparsity/mixtral/modeling_mixtral.py +207 -0
- fusion_bench-0.2.18/fusion_bench/models/expert_sparsity/mixtral/wrapper.py +268 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/parameter_dict.py +6 -1
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/programs/fabric_fusion_program.py +21 -13
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/base_pool.py +1 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/dummy.py +6 -4
- fusion_bench-0.2.18/fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/__init__.py +4 -3
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/dtype.py +2 -1
- fusion_bench-0.2.18/fusion_bench/utils/fabric.py +24 -0
- fusion_bench-0.2.16/fusion_bench/utils/instantiate.py → fusion_bench-0.2.18/fusion_bench/utils/instantiate_utils.py +3 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/lazy_state_dict.py +80 -10
- fusion_bench-0.2.18/fusion_bench/utils/plot/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/pylogger.py +30 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench.egg-info/PKG-INFO +3 -1
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench.egg-info/SOURCES.txt +22 -1
- fusion_bench-0.2.18/fusion_bench_config/fabric/loggers/mlflow_logger.yaml +2 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric_model_fusion.yaml +2 -2
- fusion_bench-0.2.18/fusion_bench_config/method/expert_sparsity/README.md +6 -0
- fusion_bench-0.2.18/fusion_bench_config/method/expert_sparsity/mixtral.yaml +17 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -1
- fusion_bench-0.2.18/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_cars_and_dtd.yaml +16 -0
- fusion_bench-0.2.18/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_cars.yaml +16 -0
- fusion_bench-0.2.18/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_dtd.yaml +16 -0
- fusion_bench-0.2.18/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_cars_and_dtd.yaml +19 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml +0 -1
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/pyproject.toml +1 -1
- fusion_bench-0.2.16/fusion_bench/method/task_singular_vector/TSVM.py +0 -83
- fusion_bench-0.2.16/fusion_bench/utils/fabric.py +0 -17
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/LICENSE +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/__main__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/method/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/method/base_algorithm.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/modelpool/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/modelpool/base_pool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/modelpool/huggingface_clip_vision.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/taskpool/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/taskpool/base_pool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/taskpool/clip_image_classification.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/constants/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/constants/clip_vision.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/constants/paths.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/arc_agi/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/arc_agi/arc.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/arc_agi/arc_agi.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/arc_agi/augmenters.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/arc_agi/messagers.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/arc_agi/np_cache.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/arc_agi/preprocess.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/arc_agi/representers.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/clip_dataset.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/fer2013.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/gpt2_glue.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/gsm8k.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/image_dataset.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/imdb.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/alpaca.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/collate.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/metamathqa.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/openai.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/preference_700k.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/sharegpt.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/squad.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/stanford_shp.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/ultrachat.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/utils/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/llama/wikitext.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/dataset/nyuv2.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/ada_svd/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/ada_svd/clip_vision.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/clip_task_wise_adamerging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/entropy_loss.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/llama_adamerging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/min_norm_solvers.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/task_wise_adamerging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/adamerging/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/analysis/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/analysis/task_vector_cos_similarity.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/analysis/task_vector_violin_plot.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/classification/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/classification/clip_finetune.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/classification/continual_clip_finetune.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/concrete_subspace/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/concrete_subspace/clip_post_defense.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/dare/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/dare/simple_average.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/dare/task_arithmetic.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/dare/ties_merging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/dare/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/dawe/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/dawe/warppers/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/dawe/warppers/dawe_model.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/depth_upscaling/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/depth_upscaling/depth_upscaling.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/doge_ta/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/doge_ta/doge_ta.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/doge_ta/layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/dummy.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/ensemble.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/fisher_merging/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/fisher_merging/fisher_merging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/fw_merging/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/fw_merging/fw_hard.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/fw_merging/fw_soft.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/fw_merging/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/gossip/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/gossip/clip_layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/gossip/clip_task_wise_gossip.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/gossip/entropy_loss.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/gossip/layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/gossip/min_norm_solvers.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/gossip/task_wise_gossip.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/gossip/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/isotropic_merging/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/isotropic_merging/iso.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/isotropic_merging/iso_utils.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/metrics → fusion_bench-0.2.18/fusion_bench/method/knots}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/linear/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/linear/expo.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/linear/linear_interpolation.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/linear/llama_expo.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/linear/simple_average_for_llama.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/linear/task_arithmetic_for_llama.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/lm_finetune/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/lm_finetune/bradley_terry_rm.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/lm_finetune/causal_lm_pretrain.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/lm_finetune/fullfinetune_sft.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/lm_finetune/peftfinetune_sft.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/mixture_of_experts/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/mixture_of_experts/mixtral_merging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/model_recombination.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/hooks/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/hooks/deepseek_v2.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/hooks/hook.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/hooks/mixtral.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/moe_pruner.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/utils/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/utils/data.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/utils/layerwrapper.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/utils/prune.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/moe_pruner/utils/score.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/opcm/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/opcm/opcm.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/opcm/task_arithmetic.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/opcm/ties_merging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/opcm/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/opcm/weight_average.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/llama_magnitude_prune.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/llama_random_prune.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/llama_sparsegpt_prune.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/llama_wanda_prune.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/magnitude_diff_pruning.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/prune_utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/sparsegpt_utils/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/wanda_utils/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/wanda_utils/ablate.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/wanda_utils/data.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/wanda_utils/eval.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/wanda_utils/layerwrapper.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/wanda_utils/prune.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/wanda_utils/prune_opt.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pruning/wanda_utils/sparsegpt.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pwe_moe/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pwe_moe/clip_pwe_moe.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pwe_moe/openclip_pwe_moe.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pwe_moe/phn/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pwe_moe/phn/solvers.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/pwe_moe/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/randes/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/randes/base_algorithm.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/randes/modelsoup.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/randes/task_arithmetic.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/rankone_moe/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/rankone_moe/clip_rankone_moe.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/rankone_moe/rankone_moe.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/regmean/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/regmean/clip_regmean.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/regmean/gpt2_regmean.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/regmean/regmean.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/slerp/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/slerp/slerp.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/slerp/slerp_utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/smile_upscaling/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/smile_upscaling/singular_projection_merging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/smile_upscaling/smile_upscaling.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/sparse_we_moe/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/sparse_we_moe/sparse_we_moe.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/sparselo/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/sparselo/sparselo.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/surgery/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/tall_mask/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/tall_mask/task_arithmetic.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/tall_mask/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/task_arithmetic/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/task_arithmetic/task_arithmetic.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/task_singular_vector/TSVC.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/task_singular_vector/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/ties_merging/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/ties_merging/ties_merging.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/ties_merging/ties_merging_utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/trust_region/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/trust_region/clip_task_arithmetic.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/trust_region/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/we_moe/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/we_moe/clip_we_moe.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/we_moe/we_moe.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/weighted_average/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/weighted_average/llama.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/method/weighted_average/weighted_average.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/mixins/optim → fusion_bench-0.2.18/fusion_bench/metrics}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/continual_learning/backward_transfer.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/nyuv2/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/nyuv2/depth.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/nyuv2/loss.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/nyuv2/noise.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/nyuv2/normal.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/nyuv2/segmentation.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/text_to_image_generation/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/text_to_image_generation/compressibility.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/mixins/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/mixins/clip_classification.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/mixins/fabric_training.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/mixins/openclip_classification.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/models/linearized → fusion_bench-0.2.18/fusion_bench/mixins/optim}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/mixins/optim/adamw_with_warmup.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/mixins/rich_live.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/mixins/simple_profiler.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/causal_lm/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/clip_vision/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/huggingface_automodel.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/huggingface_gpt2_classification.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/lazy_state_dict_pool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/nyuv2_modelpool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/openclip_vision/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/openclip_vision/modelpool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/seq2seq_lm/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/seq2seq_lm/modelpool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/seq_classification_lm/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/seq_classification_lm/reward_model.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/chat_templates/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/chat_templates/llama_3_Instruct.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/chat_templates/load_tokenizer.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/models/llama/model_utils → fusion_bench-0.2.18/fusion_bench/models/expert_sparsity}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/hf_clip.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/models/nyuv2 → fusion_bench-0.2.18/fusion_bench/models/linearized}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/linearized/linearized_model_utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/linearized/vision_model.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/llama/__init__.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/models/smile_moe → fusion_bench-0.2.18/fusion_bench/models/llama/model_utils}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/llama/model_utils/embedding.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/llama/model_utils/liger_kernel.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/llama/model_utils/misc.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/llama/model_utils/mod.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/llama/model_utils/visual.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/llama/patcher.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/llama/tokenizer_loader.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/masks/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/masks/mask_model.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_deepseek_v2/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_losparse_llama/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_losparse_llama/losparse_linear.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_losparse_llama/register.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_losparse_llama/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_smile_mistral/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_smile_mistral/register.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_smile_qwen2/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/modeling_smile_qwen2/register.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/models/wrappers → fusion_bench-0.2.18/fusion_bench/models/nyuv2}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/nyuv2/aspp.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/nyuv2/lightning_module.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/nyuv2/resnet.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/nyuv2/resnet_dilated.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/open_clip/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/open_clip/modeling.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/open_clip/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/open_clip/variables_and_paths.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/rankone_moe.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/separate_io.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/scripts → fusion_bench-0.2.18/fusion_bench/models/smile_moe}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/smile_moe/linear_from_hf_config.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/smile_moe/linear_from_module.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/smile_moe/utils/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/smile_moe/utils/svd_utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/sparse_we_moe.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/surgery/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/surgery/surgerymodelwrapper.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/we_moe.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/scripts/clip → fusion_bench-0.2.18/fusion_bench/models/wrappers}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/wrappers/ensemble.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/wrappers/layer_wise_fusion.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/models/wrappers/task_wise_fusion.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/optim/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/optim/exception.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/optim/lr_scheduler/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/optim/lr_scheduler/linear_warmup.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/optim/lr_scheduler/utils/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/optim/lr_scheduler/utils/visualization.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/optim/mezo.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/programs/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/programs/base_program.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/taskpool/clip_vision/utils → fusion_bench-0.2.18/fusion_bench/scripts}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/scripts/cli.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/tasks/flan_t5_text_generation → fusion_bench-0.2.18/fusion_bench/scripts/clip}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/scripts/clip/convert_checkpoint.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/scripts/imgui.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/scripts/nyuv2_mtl_train.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/scripts/webui.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/clip_vision/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/clip_vision/taskpool.py +0 -0
- {fusion_bench-0.2.16/fusion_bench/utils/plot → fusion_bench-0.2.18/fusion_bench/taskpool/clip_vision/utils}/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/gpt2_text_classification.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/llama/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/llama/reward_model.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/llama/test_generation.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/lm_eval_harness/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/lm_eval_harness/taskpool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/nyuv2_taskpool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/openclip_vision/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/taskpool/openclip_vision/openclip_taskpool.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/base_task.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/classification.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/cifar10.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/cifar100.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/clip_dataset.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/cub_200_2011.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/dtd.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/emnist_letters.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/emnist_mnist.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/eurosat.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/fashion_mnist.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/fer2013.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/flower102.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/food101.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/gtsrb.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/imagenet.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/kmnist.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/mnist.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/pcam.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/rendered_sst2.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/resisc45.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/stanford_cars.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/stl10.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/sun397.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/svhn.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/clip_classification/tiny_imagenet.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/auto.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/cache_utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/data.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/devices.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/dict.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/expr.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/functools.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/hydra_utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/json.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/lazy_imports.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/misc.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/packages.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/parameters.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/path.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/plot/color_data.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/plot/token.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/plot/token_notebook.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/rich_utils.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/set.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/state_dict_arithmetic.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/strenum/__init__.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/strenum/_name_mangler.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/strenum/_version.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/tensorboard.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/timer.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench/utils/type.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench.egg-info/dependency_links.txt +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench.egg-info/entry_points.txt +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench.egg-info/requires.txt +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench.egg-info/top_level.txt +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/README.md +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/README.md +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/TALL10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/TALL12.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/TALL14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/TALL16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/TALL18.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/TALL20.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/cifar10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/cifar100.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/dtd.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/eurosat.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/fer2013.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/food101.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/kmnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/pcam.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/resisc45.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/stl10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/sun397.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/svhn.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/TALL10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/TALL12.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/TALL14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/TALL16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/TALL18.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/TALL20.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/cifar10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/cifar100.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/dtd.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/eurosat.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/fer2013.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/food101.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/kmnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/pcam.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/resisc45.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/stl10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/sun397.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/svhn.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/val/dtd.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/val/eurosat.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/val/mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/val/resisc45.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/val/sun397.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/val/svhn.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/question_answering/search_qa.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/question_answering/test/search_qa.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/question_answering/train/search_qa.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/question_answering/val/search_qa.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/summarization/test/xsum.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/summarization/train/xsum.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/summarization/val/xsum.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/summarization/xsum.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric/auto.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric/llama_ddp.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric/llama_fsdp.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric/llama_peft_fsdp.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric/loggers/csv_logger.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric/loggers/wandb_logger.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric/strategy/deepspeed.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric/strategy/llama_fsdp.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/hydra/default.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/hydra/help/fusion_bench_help.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/hydra/job_logging/rich_logging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/llama_full_finetune.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/llama_magnitude_pruning.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/llama_model_fusion.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/ada_svd/clip_vision.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/adamerging/clip.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/adamerging/llama_sft.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/adamerging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/classification/clip_continual_finetune.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/classification/clip_finetune.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/clip_finetune.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/dare/simple_average.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/dare/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/dare/ties_merging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/dawe/dawe_for_clip.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/depth_upscaling.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/doge_ta/doge_ta.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/dummy.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/ensemble/max_model_predictor.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/ensemble/simple_ensemble.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/ensemble/weighted_ensemble.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/fisher_merging/fisher_merging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/fw_merging/fw_hard.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/fw_merging/fw_soft.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/gossip/layer_wise_clip.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/isotropic_merging/iso_c.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/isotropic_merging/iso_cts.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/linear/expo.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/linear/linear_interpolation.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/linear/llama_expo.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/linear/llama_expo_with_dare.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/linear/simple_average_for_llama.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/linear/weighted_average.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/linear/weighted_average_for_llama.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/mixtral_moe_merging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/mixtral_moe_upscaling.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/model_recombination.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/moe_pruner/moe_pruner.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/opcm/opcm.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/opcm/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/opcm/ties_merging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/opcm/weight_average.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/pruning/llama_random_pruning.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/randes/superposed_model_soup.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/randes/superposed_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/rankone_moe/rankone_moe.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/regmean/clip_regmean.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/regmean/gpt2_regmean.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/regmean/regmean.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/simple_average.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/slerp/slerp.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/surgery/adamerging_surgery.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/tall_mask/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/ties_merging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/README.md +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/download_TALL20_models.sh +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-large.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/model/flan-t5/generate_flan-t5.sh +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B-Instruct.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B-Instruct.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_cars_dtd.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/roberta-base_glue.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/automodelpool.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/gpt-2_glue.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/mixtral_moe_merging.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/nyuv2_modelpool.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/nyuv2_config.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/nyuv2_mtl_train.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/dummy.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/gpt-2_glue.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/nyuv2_taskpool.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/fusion_bench_config/taskpool/reward_model_evaluation.yaml +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/setup.cfg +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/tests/test_depth_upscaling.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/tests/test_simple_average.py +0 -0
- {fusion_bench-0.2.16 → fusion_bench-0.2.18}/tests/test_weighed_ensemble.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: fusion_bench
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.18
|
|
4
4
|
Summary: A Comprehensive Benchmark of Deep Model Fusion
|
|
5
5
|
Author-email: Anke Tang <tang.anke@foxmail.com>
|
|
6
6
|
License: MIT License
|
|
@@ -171,6 +171,8 @@ It can be used to improve the performance and robustness of model or to combine
|
|
|
171
171
|
For a more detailed introduction to deep model fusion, you can refer to [W. Li, 2023, 'Deep Model Fusion: A Survey'](https://arxiv.org/abs/2309.15698). We also provide a brief overview of deep model fusion in [our documentation](https://tanganke.github.io/fusion_bench/).
|
|
172
172
|
In this benchmark, we evaluate the performance of different fusion methods on a variety of datasets and tasks.
|
|
173
173
|
|
|
174
|
+
A comprehensive list of papers about model merging can be found at [this repository](https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications), and [the arXiv paper](https://arxiv.org/abs/2408.07666) is also available.
|
|
175
|
+
|
|
174
176
|
## Project Structure
|
|
175
177
|
|
|
176
178
|
The project is structured as follows:
|
|
@@ -120,6 +120,8 @@ It can be used to improve the performance and robustness of model or to combine
|
|
|
120
120
|
For a more detailed introduction to deep model fusion, you can refer to [W. Li, 2023, 'Deep Model Fusion: A Survey'](https://arxiv.org/abs/2309.15698). We also provide a brief overview of deep model fusion in [our documentation](https://tanganke.github.io/fusion_bench/).
|
|
121
121
|
In this benchmark, we evaluate the performance of different fusion methods on a variety of datasets and tasks.
|
|
122
122
|
|
|
123
|
+
A comprehensive list of papers about model merging can be found at [this repository](https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications), and [the arXiv paper](https://arxiv.org/abs/2408.07666) is also available.
|
|
124
|
+
|
|
123
125
|
## Project Structure
|
|
124
126
|
|
|
125
127
|
The project is structured as follows:
|
|
@@ -111,6 +111,12 @@ _import_structure = {
|
|
|
111
111
|
"SparseLoForLlama",
|
|
112
112
|
"PCPSparseLoForLlama",
|
|
113
113
|
],
|
|
114
|
+
# MoE expert pruning
|
|
115
|
+
"expert_sparsity": [
|
|
116
|
+
"DynamicSkippingPruningForMixtral",
|
|
117
|
+
"LayerWisePruningForMixtral",
|
|
118
|
+
"ProgressivePruningForMixtral",
|
|
119
|
+
],
|
|
114
120
|
}
|
|
115
121
|
|
|
116
122
|
|
|
@@ -142,6 +148,11 @@ if TYPE_CHECKING:
|
|
|
142
148
|
SimpleEnsembleAlgorithm,
|
|
143
149
|
WeightedEnsembleAlgorithm,
|
|
144
150
|
)
|
|
151
|
+
from .expert_sparsity import (
|
|
152
|
+
DynamicSkippingPruningForMixtral,
|
|
153
|
+
LayerWisePruningForMixtral,
|
|
154
|
+
ProgressivePruningForMixtral,
|
|
155
|
+
)
|
|
145
156
|
from .fisher_merging import FisherMergingForCLIPVisionModel
|
|
146
157
|
from .fw_merging import FrankWolfeHardAlgorithm, FrankWolfeSoftAlgorithm
|
|
147
158
|
from .gossip import (
|
|
@@ -29,7 +29,7 @@ from fusion_bench.models.wrappers.layer_wise_fusion import (
|
|
|
29
29
|
get_layer_wise_weights,
|
|
30
30
|
)
|
|
31
31
|
from fusion_bench.utils.data import InfiniteDataLoader, load_tensor_from_file
|
|
32
|
-
from fusion_bench.utils.
|
|
32
|
+
from fusion_bench.utils.instantiate_utils import instantiate
|
|
33
33
|
|
|
34
34
|
from .entropy_loss import entropy_loss
|
|
35
35
|
from .min_norm_solvers import MinNormSolver
|
|
@@ -29,7 +29,7 @@ from fusion_bench.models.wrappers.layer_wise_fusion import (
|
|
|
29
29
|
get_layer_wise_weights,
|
|
30
30
|
)
|
|
31
31
|
from fusion_bench.utils.data import InfiniteDataLoader, load_tensor_from_file
|
|
32
|
-
from fusion_bench.utils.
|
|
32
|
+
from fusion_bench.utils.instantiate_utils import instantiate
|
|
33
33
|
|
|
34
34
|
from .entropy_loss import entropy_loss
|
|
35
35
|
from .min_norm_solvers import MinNormSolver
|
|
@@ -23,7 +23,7 @@ from fusion_bench.mixins import CLIPClassificationMixin
|
|
|
23
23
|
from fusion_bench.modelpool import CLIPVisionModelPool
|
|
24
24
|
from fusion_bench.utils import timeit_context
|
|
25
25
|
from fusion_bench.utils.data import InfiniteDataLoader
|
|
26
|
-
from fusion_bench.utils.
|
|
26
|
+
from fusion_bench.utils.instantiate_utils import instantiate
|
|
27
27
|
|
|
28
28
|
from .warppers.dawe_model import DataAdaptiveWeightEnsemblingCLIPVisionModel
|
|
29
29
|
|
|
@@ -1,9 +1,10 @@
|
|
|
1
1
|
import os
|
|
2
2
|
from typing import Optional
|
|
3
3
|
|
|
4
|
+
from transformers import PreTrainedModel
|
|
4
5
|
from typing_extensions import override
|
|
5
6
|
|
|
6
|
-
from fusion_bench.modelpool.causal_lm.causal_lm import
|
|
7
|
+
from fusion_bench.modelpool.causal_lm.causal_lm import CausalLMPool
|
|
7
8
|
from fusion_bench.utils import timeit_context
|
|
8
9
|
|
|
9
10
|
from .depth_upscaling import DepthUpscalingAlgorithm
|
|
@@ -46,7 +47,7 @@ class DepthUpscalingForLlama(DepthUpscalingAlgorithm):
|
|
|
46
47
|
if self.model_save_path is not None:
|
|
47
48
|
tokenizer = modelpool.load_tokenizer()
|
|
48
49
|
|
|
49
|
-
model:
|
|
50
|
+
model: PreTrainedModel = modelpool.load_pretrained_or_first_model()
|
|
50
51
|
model.model.layers = super().run(model.model.layers)
|
|
51
52
|
model.config.num_hidden_layers = len(model.model.layers)
|
|
52
53
|
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Original repo: https://github.com/Lucky-Lance/Expert_Sparsity
|
|
3
|
+
|
|
4
|
+
Reference:
|
|
5
|
+
Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models.
|
|
6
|
+
ACL 2024.
|
|
7
|
+
http://arxiv.org/abs/2402.14800
|
|
8
|
+
"""
|
|
9
|
+
|
|
10
|
+
from .mixtral import *
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
R"""
|
|
2
|
+
```bash
|
|
3
|
+
fusion_bench \
|
|
4
|
+
modelpool=CausalLMPool/mixtral-8x7b \
|
|
5
|
+
...
|
|
6
|
+
```
|
|
7
|
+
|
|
8
|
+
if use flash attention 2, pass the following to the command line:
|
|
9
|
+
|
|
10
|
+
```bash
|
|
11
|
+
+modelpool.models._pretrained_.attn_implementation=flash_attention_2
|
|
12
|
+
```
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
from .dynamic_skipping import DynamicSkippingPruningForMixtral
|
|
16
|
+
from .layer_wise_pruning import LayerWisePruningForMixtral
|
|
17
|
+
from .progressive_pruning import ProgressivePruningForMixtral
|
|
18
|
+
|
|
19
|
+
__all__ = [
|
|
20
|
+
"DynamicSkippingPruningForMixtral",
|
|
21
|
+
"LayerWisePruningForMixtral",
|
|
22
|
+
"ProgressivePruningForMixtral",
|
|
23
|
+
]
|
|
@@ -0,0 +1,175 @@
|
|
|
1
|
+
R"""
|
|
2
|
+
Example:
|
|
3
|
+
|
|
4
|
+
```bash
|
|
5
|
+
fusion_bench \
|
|
6
|
+
fabric.loggers.name="mixtral_8x7b_expert_pruning/dynamic_skipping" \
|
|
7
|
+
method=expert_sparsity/mixtral \
|
|
8
|
+
method._target_=fusion_bench.method.DynamicSkippingPruningForMixtral \
|
|
9
|
+
modelpool=CausalLMPool/mixtral-8x7b
|
|
10
|
+
```
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
import logging
|
|
14
|
+
import os
|
|
15
|
+
|
|
16
|
+
import lightning as L
|
|
17
|
+
import numpy as np
|
|
18
|
+
import torch
|
|
19
|
+
import torch.nn.functional as F
|
|
20
|
+
from torch.utils.data import DataLoader
|
|
21
|
+
from tqdm import tqdm
|
|
22
|
+
from transformers import MixtralForCausalLM
|
|
23
|
+
from transformers.models.mixtral.modeling_mixtral import MixtralForCausalLM
|
|
24
|
+
|
|
25
|
+
import fusion_bench as fb
|
|
26
|
+
from fusion_bench.method.expert_sparsity.utils.calibration_data import (
|
|
27
|
+
build_calib_loader,
|
|
28
|
+
)
|
|
29
|
+
from fusion_bench.models.expert_sparsity.mixtral.wrapper import (
|
|
30
|
+
PrunableMixtralSparseMoeBlockWrapper,
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
34
|
+
|
|
35
|
+
logger = logging.getLogger(__name__)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def dynamic_skipping(
|
|
39
|
+
model: MixtralForCausalLM,
|
|
40
|
+
calib_loader: DataLoader,
|
|
41
|
+
batch_size: int,
|
|
42
|
+
):
|
|
43
|
+
assert isinstance(
|
|
44
|
+
model, MixtralForCausalLM
|
|
45
|
+
), "Currently only `Mixtral` is supported"
|
|
46
|
+
|
|
47
|
+
for l, layer in enumerate(model.model.layers):
|
|
48
|
+
layer.block_sparse_moe = PrunableMixtralSparseMoeBlockWrapper(
|
|
49
|
+
layer.block_sparse_moe
|
|
50
|
+
)
|
|
51
|
+
layer.block_sparse_moe.cache_logits = True
|
|
52
|
+
layer.block_sparse_moe.cache_X = True
|
|
53
|
+
layer.block_sparse_moe.cache_Z = True
|
|
54
|
+
|
|
55
|
+
with torch.inference_mode():
|
|
56
|
+
for i, batch in enumerate(
|
|
57
|
+
tqdm(calib_loader, desc="Model forwarding on sample set...")
|
|
58
|
+
):
|
|
59
|
+
model_inputs = model.prepare_inputs_for_generation(**batch)
|
|
60
|
+
outputs = model(**model_inputs)
|
|
61
|
+
assert outputs is not None
|
|
62
|
+
|
|
63
|
+
res_median = {}
|
|
64
|
+
res_mean = {}
|
|
65
|
+
|
|
66
|
+
for layer_idx in range(len(model.model.layers)):
|
|
67
|
+
b = model.model.layers[layer_idx].block_sparse_moe
|
|
68
|
+
b.cache_space.prepare_for_loader()
|
|
69
|
+
dataloader = torch.utils.data.DataLoader(
|
|
70
|
+
b.cache_space,
|
|
71
|
+
batch_size=batch_size,
|
|
72
|
+
shuffle=True,
|
|
73
|
+
)
|
|
74
|
+
logger.info(len(dataloader))
|
|
75
|
+
|
|
76
|
+
ana_list = []
|
|
77
|
+
for i, (router_logits, X, Z) in enumerate(dataloader):
|
|
78
|
+
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float).view(
|
|
79
|
+
-1, b.model.num_experts
|
|
80
|
+
)
|
|
81
|
+
for j in range(len(routing_weights)):
|
|
82
|
+
sorted_weights, sort_indices = torch.sort(
|
|
83
|
+
routing_weights[j], descending=True
|
|
84
|
+
)
|
|
85
|
+
ana_list.append(float(sorted_weights[1] / sorted_weights[0]))
|
|
86
|
+
|
|
87
|
+
median = np.median(ana_list)
|
|
88
|
+
mean = np.mean(ana_list)
|
|
89
|
+
logger.info(f"layer {layer_idx} | mean: {mean}, median: {median}")
|
|
90
|
+
res_median[str(layer_idx)] = median
|
|
91
|
+
res_mean[str(layer_idx)] = mean
|
|
92
|
+
|
|
93
|
+
for l, layer in enumerate(model.model.layers):
|
|
94
|
+
layer.block_sparse_moe = layer.block_sparse_moe.model
|
|
95
|
+
|
|
96
|
+
model.config.betas = res_median
|
|
97
|
+
return model, (res_median, res_mean)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
class DynamicSkippingPruningForMixtral(
|
|
101
|
+
fb.BaseAlgorithm,
|
|
102
|
+
fb.mixins.LightningFabricMixin,
|
|
103
|
+
fb.mixins.SimpleProfilerMixin,
|
|
104
|
+
):
|
|
105
|
+
modelpool: fb.modelpool.CausalLMPool
|
|
106
|
+
|
|
107
|
+
def __init__(
|
|
108
|
+
self,
|
|
109
|
+
calib_set: str,
|
|
110
|
+
max_block_size: int,
|
|
111
|
+
n_blocks_for_stat: int,
|
|
112
|
+
batch_size: int,
|
|
113
|
+
num_workers: int,
|
|
114
|
+
num_preserved_experts: int,
|
|
115
|
+
seed: int = 42,
|
|
116
|
+
model_save_path: str = R"{log_dir}/pruned_model",
|
|
117
|
+
**kwargs,
|
|
118
|
+
):
|
|
119
|
+
super().__init__(**kwargs)
|
|
120
|
+
self.model_save_path = model_save_path
|
|
121
|
+
self.calib_set = calib_set
|
|
122
|
+
self.max_block_size = max_block_size
|
|
123
|
+
self.n_blocks_for_stat = n_blocks_for_stat
|
|
124
|
+
self.batch_size = batch_size
|
|
125
|
+
self.num_workers = num_workers
|
|
126
|
+
self.seed = seed
|
|
127
|
+
self.num_preserved_experts = num_preserved_experts
|
|
128
|
+
|
|
129
|
+
def run(self, modelpool: fb.modelpool.CausalLMPool):
|
|
130
|
+
"""
|
|
131
|
+
Args:
|
|
132
|
+
modelpool (fb.modelpool.CausalLMPool): The model pool to run the algorithm on.
|
|
133
|
+
Example Config: config/modelpool/CausalLMPool/mixtral-8x7b.yaml
|
|
134
|
+
"""
|
|
135
|
+
self.modelpool = modelpool
|
|
136
|
+
# set random seed
|
|
137
|
+
if self.seed is not None:
|
|
138
|
+
L.seed_everything(self.seed)
|
|
139
|
+
# parse model_save_path
|
|
140
|
+
self.model_save_path = self.model_save_path.format(log_dir=self.log_dir)
|
|
141
|
+
|
|
142
|
+
with self.profile("load model"):
|
|
143
|
+
model = modelpool.load_pretrained_or_first_model()
|
|
144
|
+
tokenizer = modelpool.load_tokenizer()
|
|
145
|
+
|
|
146
|
+
# Load the calibration data
|
|
147
|
+
with self.profile("load calibration data"):
|
|
148
|
+
calib_loader = build_calib_loader(
|
|
149
|
+
self.calib_set,
|
|
150
|
+
tokenizer=tokenizer,
|
|
151
|
+
max_block_size=self.max_block_size,
|
|
152
|
+
n_blocks_for_stat=self.n_blocks_for_stat,
|
|
153
|
+
batch_size=self.batch_size,
|
|
154
|
+
num_workers=self.num_workers,
|
|
155
|
+
seed=self.seed,
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
with self.profile("prune model"):
|
|
159
|
+
model, info = dynamic_skipping(
|
|
160
|
+
model,
|
|
161
|
+
calib_loader,
|
|
162
|
+
batch_size=self.batch_size,
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
if self.model_save_path is not None:
|
|
166
|
+
with self.profile("save model"):
|
|
167
|
+
modelpool.save_model(
|
|
168
|
+
model,
|
|
169
|
+
path=self.model_save_path,
|
|
170
|
+
tokenizer=tokenizer,
|
|
171
|
+
)
|
|
172
|
+
torch.save(info, os.path.join(self.log_dir, "pruning_info.pt"))
|
|
173
|
+
|
|
174
|
+
self.print_profile_summary()
|
|
175
|
+
return model
|
|
@@ -0,0 +1,159 @@
|
|
|
1
|
+
R"""
|
|
2
|
+
Example:
|
|
3
|
+
|
|
4
|
+
```bash
|
|
5
|
+
fusion_bench \
|
|
6
|
+
fabric.loggers.name="mixtral_8x7b_expert_pruning/layer_wise_pruning" \
|
|
7
|
+
method=expert_sparsity/mixtral \
|
|
8
|
+
method._target_=fusion_bench.method.LayerWisePruningForMixtral \
|
|
9
|
+
modelpool=CausalLMPool/mixtral-8x7b
|
|
10
|
+
```
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
import logging
|
|
14
|
+
import os
|
|
15
|
+
from typing import cast
|
|
16
|
+
|
|
17
|
+
import lightning as L
|
|
18
|
+
import torch
|
|
19
|
+
from torch.utils.data import DataLoader
|
|
20
|
+
from tqdm import tqdm
|
|
21
|
+
from transformers import MixtralForCausalLM
|
|
22
|
+
from transformers.models.mixtral.modeling_mixtral import MixtralDecoderLayer
|
|
23
|
+
|
|
24
|
+
import fusion_bench as fb
|
|
25
|
+
from fusion_bench.method.expert_sparsity.utils.calibration_data import (
|
|
26
|
+
build_calib_loader,
|
|
27
|
+
)
|
|
28
|
+
from fusion_bench.models.expert_sparsity.mixtral import (
|
|
29
|
+
PrunableMixtralSparseMoeBlockWrapper,
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
33
|
+
|
|
34
|
+
logger = logging.getLogger(__name__)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def layerwise_pruning(
|
|
38
|
+
model: MixtralForCausalLM,
|
|
39
|
+
calib_loader: DataLoader,
|
|
40
|
+
r: int,
|
|
41
|
+
):
|
|
42
|
+
assert isinstance(
|
|
43
|
+
model, MixtralForCausalLM
|
|
44
|
+
), "Currently only `Mixtral` is supported"
|
|
45
|
+
|
|
46
|
+
for l, layer in enumerate(model.model.layers):
|
|
47
|
+
layer = cast(MixtralDecoderLayer, layer)
|
|
48
|
+
layer.block_sparse_moe = PrunableMixtralSparseMoeBlockWrapper(
|
|
49
|
+
layer.block_sparse_moe, r=r
|
|
50
|
+
)
|
|
51
|
+
layer.block_sparse_moe.cache_X = True
|
|
52
|
+
layer.block_sparse_moe.cache_Z = True
|
|
53
|
+
|
|
54
|
+
with torch.inference_mode():
|
|
55
|
+
for i, batch in enumerate(
|
|
56
|
+
tqdm(calib_loader, desc="Model forwarding on sample set...")
|
|
57
|
+
):
|
|
58
|
+
model_inputs = model.prepare_inputs_for_generation(**batch)
|
|
59
|
+
outputs = model(**model_inputs)
|
|
60
|
+
assert outputs is not None
|
|
61
|
+
|
|
62
|
+
global_loss_history = dict()
|
|
63
|
+
for l, layer in tqdm(
|
|
64
|
+
list(enumerate(model.model.layers)), desc="Enumerating loss on sample set..."
|
|
65
|
+
):
|
|
66
|
+
layer = cast(MixtralDecoderLayer, layer)
|
|
67
|
+
b: PrunableMixtralSparseMoeBlockWrapper = layer.block_sparse_moe
|
|
68
|
+
if not hasattr(b, "cache_space"):
|
|
69
|
+
continue
|
|
70
|
+
loss_history = b.enumerate()
|
|
71
|
+
global_loss_history[l] = loss_history
|
|
72
|
+
b.prune()
|
|
73
|
+
|
|
74
|
+
logger.info("Merging & saving...")
|
|
75
|
+
for l, layer in enumerate(model.model.layers):
|
|
76
|
+
layer.block_sparse_moe = layer.block_sparse_moe.model
|
|
77
|
+
|
|
78
|
+
model.num_experts = r
|
|
79
|
+
model.config.num_local_experts = r
|
|
80
|
+
|
|
81
|
+
return model, (global_loss_history,)
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
class LayerWisePruningForMixtral(
|
|
85
|
+
fb.BaseAlgorithm,
|
|
86
|
+
fb.mixins.LightningFabricMixin,
|
|
87
|
+
fb.mixins.SimpleProfilerMixin,
|
|
88
|
+
):
|
|
89
|
+
modelpool: fb.modelpool.CausalLMPool
|
|
90
|
+
|
|
91
|
+
def __init__(
|
|
92
|
+
self,
|
|
93
|
+
calib_set: str,
|
|
94
|
+
max_block_size: int,
|
|
95
|
+
n_blocks_for_stat: int,
|
|
96
|
+
batch_size: int,
|
|
97
|
+
num_workers: int,
|
|
98
|
+
num_preserved_experts: int,
|
|
99
|
+
seed: int = 42,
|
|
100
|
+
model_save_path: str = R"{log_dir}/pruned_model",
|
|
101
|
+
**kwargs,
|
|
102
|
+
):
|
|
103
|
+
super().__init__(**kwargs)
|
|
104
|
+
self.model_save_path = model_save_path
|
|
105
|
+
self.calib_set = calib_set
|
|
106
|
+
self.max_block_size = max_block_size
|
|
107
|
+
self.n_blocks_for_stat = n_blocks_for_stat
|
|
108
|
+
self.batch_size = batch_size
|
|
109
|
+
self.num_workers = num_workers
|
|
110
|
+
self.seed = seed
|
|
111
|
+
self.num_preserved_experts = num_preserved_experts
|
|
112
|
+
|
|
113
|
+
def run(self, modelpool: fb.modelpool.CausalLMPool):
|
|
114
|
+
"""
|
|
115
|
+
Args:
|
|
116
|
+
modelpool (fb.modelpool.CausalLMPool): The model pool to run the algorithm on.
|
|
117
|
+
Example Config: config/modelpool/CausalLMPool/mixtral-8x7b.yaml
|
|
118
|
+
"""
|
|
119
|
+
self.modelpool = modelpool
|
|
120
|
+
# set random seed
|
|
121
|
+
if self.seed is not None:
|
|
122
|
+
L.seed_everything(self.seed)
|
|
123
|
+
# parse model_save_path
|
|
124
|
+
self.model_save_path = self.model_save_path.format(log_dir=self.log_dir)
|
|
125
|
+
|
|
126
|
+
with self.profile("load model"):
|
|
127
|
+
model = modelpool.load_pretrained_or_first_model()
|
|
128
|
+
tokenizer = modelpool.load_tokenizer()
|
|
129
|
+
|
|
130
|
+
# Load the calibration data
|
|
131
|
+
with self.profile("load calibration data"):
|
|
132
|
+
calib_loader = build_calib_loader(
|
|
133
|
+
self.calib_set,
|
|
134
|
+
tokenizer=tokenizer,
|
|
135
|
+
max_block_size=self.max_block_size,
|
|
136
|
+
n_blocks_for_stat=self.n_blocks_for_stat,
|
|
137
|
+
batch_size=self.batch_size,
|
|
138
|
+
num_workers=self.num_workers,
|
|
139
|
+
seed=self.seed,
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
with self.profile("prune model"):
|
|
143
|
+
model, info = layerwise_pruning(
|
|
144
|
+
model,
|
|
145
|
+
calib_loader,
|
|
146
|
+
r=self.num_preserved_experts,
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
if self.model_save_path is not None:
|
|
150
|
+
with self.profile("save model"):
|
|
151
|
+
modelpool.save_model(
|
|
152
|
+
model,
|
|
153
|
+
path=self.model_save_path,
|
|
154
|
+
tokenizer=tokenizer,
|
|
155
|
+
)
|
|
156
|
+
torch.save(info, os.path.join(self.log_dir, "pruning_info.pt"))
|
|
157
|
+
|
|
158
|
+
self.print_profile_summary()
|
|
159
|
+
return model
|
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
R"""
|
|
2
|
+
Example:
|
|
3
|
+
|
|
4
|
+
```bash
|
|
5
|
+
fusion_bench \
|
|
6
|
+
fabric.loggers.name="mixtral_8x7b_expert_pruning/progressive_pruning" \
|
|
7
|
+
method=expert_sparsity/mixtral \
|
|
8
|
+
method._target_=fusion_bench.method.ProgressivePruningForMixtral \
|
|
9
|
+
modelpool=CausalLMPool/mixtral-8x7b
|
|
10
|
+
```
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
import logging
|
|
14
|
+
import os
|
|
15
|
+
|
|
16
|
+
import lightning as L
|
|
17
|
+
import torch
|
|
18
|
+
from torch.utils.data import DataLoader
|
|
19
|
+
from tqdm import tqdm
|
|
20
|
+
from transformers import MixtralForCausalLM
|
|
21
|
+
|
|
22
|
+
import fusion_bench as fb
|
|
23
|
+
from fusion_bench.method.expert_sparsity.utils.calibration_data import (
|
|
24
|
+
build_calib_loader,
|
|
25
|
+
)
|
|
26
|
+
from fusion_bench.models.expert_sparsity.mixtral import (
|
|
27
|
+
PrunableMixtralSparseMoeBlockWrapper,
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
31
|
+
|
|
32
|
+
logger = logging.getLogger(__name__)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def progressive_pruning(
|
|
36
|
+
model: MixtralForCausalLM,
|
|
37
|
+
calib_loader: DataLoader,
|
|
38
|
+
r: int,
|
|
39
|
+
):
|
|
40
|
+
assert isinstance(
|
|
41
|
+
model, MixtralForCausalLM
|
|
42
|
+
), "Currently only `Mixtral` is supported"
|
|
43
|
+
|
|
44
|
+
for l, layer in enumerate(model.model.layers):
|
|
45
|
+
layer.block_sparse_moe = PrunableMixtralSparseMoeBlockWrapper(
|
|
46
|
+
layer.block_sparse_moe, r=r
|
|
47
|
+
)
|
|
48
|
+
layer.block_sparse_moe.cache_Z = True
|
|
49
|
+
|
|
50
|
+
with torch.inference_mode():
|
|
51
|
+
for i, batch in enumerate(
|
|
52
|
+
tqdm(calib_loader, desc="Computing Z activations on sample set...")
|
|
53
|
+
):
|
|
54
|
+
model_inputs = model.prepare_inputs_for_generation(**batch)
|
|
55
|
+
outputs = model(**model_inputs)
|
|
56
|
+
assert outputs is not None
|
|
57
|
+
|
|
58
|
+
del model_inputs
|
|
59
|
+
del outputs
|
|
60
|
+
torch.cuda.empty_cache()
|
|
61
|
+
|
|
62
|
+
for l, layer in enumerate(model.model.layers):
|
|
63
|
+
layer.block_sparse_moe.cache_Z = False
|
|
64
|
+
|
|
65
|
+
# Drop
|
|
66
|
+
global_loss_history = dict()
|
|
67
|
+
|
|
68
|
+
for l, layer in tqdm(
|
|
69
|
+
list(enumerate(model.model.layers)), desc="Dropping layers..."
|
|
70
|
+
):
|
|
71
|
+
b = layer.block_sparse_moe
|
|
72
|
+
|
|
73
|
+
b.cache_X = True
|
|
74
|
+
with torch.inference_mode():
|
|
75
|
+
for i, batch in enumerate(calib_loader):
|
|
76
|
+
model_inputs = model.prepare_inputs_for_generation(**batch)
|
|
77
|
+
outputs = model(**model_inputs)
|
|
78
|
+
assert outputs is not None
|
|
79
|
+
|
|
80
|
+
del model_inputs
|
|
81
|
+
del outputs
|
|
82
|
+
torch.cuda.empty_cache()
|
|
83
|
+
b.cache_X = False
|
|
84
|
+
|
|
85
|
+
loss_history = b.enumerate()
|
|
86
|
+
global_loss_history[l] = loss_history
|
|
87
|
+
|
|
88
|
+
b.prune()
|
|
89
|
+
layer.block_sparse_moe = b.model
|
|
90
|
+
|
|
91
|
+
# Prune & save
|
|
92
|
+
model.num_experts = r
|
|
93
|
+
model.config.num_local_experts = r
|
|
94
|
+
|
|
95
|
+
return model, (global_loss_history,)
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
class ProgressivePruningForMixtral(
|
|
99
|
+
fb.BaseAlgorithm,
|
|
100
|
+
fb.mixins.LightningFabricMixin,
|
|
101
|
+
fb.mixins.SimpleProfilerMixin,
|
|
102
|
+
):
|
|
103
|
+
modelpool: fb.modelpool.CausalLMPool
|
|
104
|
+
|
|
105
|
+
def __init__(
|
|
106
|
+
self,
|
|
107
|
+
calib_set: str,
|
|
108
|
+
max_block_size: int,
|
|
109
|
+
n_blocks_for_stat: int,
|
|
110
|
+
batch_size: int,
|
|
111
|
+
num_workers: int,
|
|
112
|
+
num_preserved_experts: int,
|
|
113
|
+
seed: int = 42,
|
|
114
|
+
model_save_path: str = R"{log_dir}/pruned_model",
|
|
115
|
+
**kwargs,
|
|
116
|
+
):
|
|
117
|
+
super().__init__(**kwargs)
|
|
118
|
+
self.model_save_path = model_save_path
|
|
119
|
+
self.calib_set = calib_set
|
|
120
|
+
self.max_block_size = max_block_size
|
|
121
|
+
self.n_blocks_for_stat = n_blocks_for_stat
|
|
122
|
+
self.batch_size = batch_size
|
|
123
|
+
self.num_workers = num_workers
|
|
124
|
+
self.seed = seed
|
|
125
|
+
self.num_preserved_experts = num_preserved_experts
|
|
126
|
+
|
|
127
|
+
def run(self, modelpool: fb.modelpool.CausalLMPool):
|
|
128
|
+
"""
|
|
129
|
+
Args:
|
|
130
|
+
modelpool (fb.modelpool.CausalLMPool): The model pool to run the algorithm on.
|
|
131
|
+
Example Config: config/modelpool/CausalLMPool/mixtral-8x7b.yaml
|
|
132
|
+
"""
|
|
133
|
+
self.modelpool = modelpool
|
|
134
|
+
# set random seed
|
|
135
|
+
if self.seed is not None:
|
|
136
|
+
L.seed_everything(self.seed)
|
|
137
|
+
# parse model_save_path
|
|
138
|
+
self.model_save_path = self.model_save_path.format(log_dir=self.log_dir)
|
|
139
|
+
|
|
140
|
+
with self.profile("load model"):
|
|
141
|
+
model = modelpool.load_pretrained_or_first_model()
|
|
142
|
+
tokenizer = modelpool.load_tokenizer()
|
|
143
|
+
|
|
144
|
+
# Load the calibration data
|
|
145
|
+
with self.profile("load calibration data"):
|
|
146
|
+
calib_loader = build_calib_loader(
|
|
147
|
+
self.calib_set,
|
|
148
|
+
tokenizer=tokenizer,
|
|
149
|
+
max_block_size=self.max_block_size,
|
|
150
|
+
n_blocks_for_stat=self.n_blocks_for_stat,
|
|
151
|
+
batch_size=self.batch_size,
|
|
152
|
+
num_workers=self.num_workers,
|
|
153
|
+
seed=self.seed,
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
with self.profile("prune model"):
|
|
157
|
+
model, info = progressive_pruning(
|
|
158
|
+
model,
|
|
159
|
+
calib_loader,
|
|
160
|
+
r=self.num_preserved_experts,
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
if self.model_save_path is not None:
|
|
164
|
+
with self.profile("save model"):
|
|
165
|
+
modelpool.save_model(
|
|
166
|
+
model,
|
|
167
|
+
path=self.model_save_path,
|
|
168
|
+
tokenizer=tokenizer,
|
|
169
|
+
)
|
|
170
|
+
torch.save(info, os.path.join(self.log_dir, "pruning_info.pt"))
|
|
171
|
+
|
|
172
|
+
self.print_profile_summary()
|
|
173
|
+
return model
|