fusion-bench 0.2.14__tar.gz → 0.2.16__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (870) hide show
  1. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/PKG-INFO +10 -3
  2. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/README.md +9 -2
  3. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/__init__.py +4 -0
  4. fusion_bench-0.2.16/fusion_bench/method/fw_merging/__init__.py +2 -0
  5. fusion_bench-0.2.16/fusion_bench/method/fw_merging/fw_hard.py +448 -0
  6. fusion_bench-0.2.16/fusion_bench/method/fw_merging/fw_soft.py +519 -0
  7. fusion_bench-0.2.16/fusion_bench/method/moe_pruner/__init__.py +7 -0
  8. fusion_bench-0.2.16/fusion_bench/method/moe_pruner/hooks/__init__.py +6 -0
  9. fusion_bench-0.2.16/fusion_bench/method/moe_pruner/hooks/deepseek_v2.py +85 -0
  10. fusion_bench-0.2.16/fusion_bench/method/moe_pruner/hooks/hook.py +23 -0
  11. fusion_bench-0.2.16/fusion_bench/method/moe_pruner/hooks/mixtral.py +93 -0
  12. fusion_bench-0.2.16/fusion_bench/method/moe_pruner/moe_pruner.py +304 -0
  13. fusion_bench-0.2.16/fusion_bench/method/moe_pruner/utils/__init__.py +1 -0
  14. fusion_bench-0.2.16/fusion_bench/method/moe_pruner/utils/data.py +154 -0
  15. fusion_bench-0.2.16/fusion_bench/method/moe_pruner/utils/prune.py +313 -0
  16. fusion_bench-0.2.16/fusion_bench/method/moe_pruner/utils/score.py +41 -0
  17. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/__init__.py +1 -0
  18. fusion_bench-0.2.16/fusion_bench/method/pruning/llama_sparsegpt_prune.py +223 -0
  19. fusion_bench-0.2.16/fusion_bench/method/pruning/sparsegpt_utils/__init__.py +1 -0
  20. fusion_bench-0.2.16/fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py +128 -0
  21. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/data.py +33 -14
  22. fusion_bench-0.2.16/fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
  23. fusion_bench-0.2.16/fusion_bench/method/randes/__init__.py +15 -0
  24. fusion_bench-0.2.16/fusion_bench/method/randes/base_algorithm.py +1013 -0
  25. fusion_bench-0.2.16/fusion_bench/method/randes/modelsoup.py +126 -0
  26. fusion_bench-0.2.16/fusion_bench/method/randes/task_arithmetic.py +318 -0
  27. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/sparselo/sparselo.py +20 -2
  28. fusion_bench-0.2.16/fusion_bench/method/tall_mask/__init__.py +1 -0
  29. fusion_bench-0.2.16/fusion_bench/method/tall_mask/task_arithmetic.py +133 -0
  30. fusion_bench-0.2.16/fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
  31. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/causal_lm/causal_lm.py +73 -10
  32. fusion_bench-0.2.16/fusion_bench/modelpool/lazy_state_dict_pool.py +15 -0
  33. fusion_bench-0.2.16/fusion_bench/models/modeling_deepseek_v2/__init__.py +15 -0
  34. fusion_bench-0.2.16/fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py +208 -0
  35. fusion_bench-0.2.16/fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py +1922 -0
  36. fusion_bench-0.2.16/fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py +38 -0
  37. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/programs/fabric_fusion_program.py +5 -0
  38. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/taskpool.py +8 -1
  39. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/__init__.py +1 -0
  40. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/data.py +1 -1
  41. fusion_bench-0.2.16/fusion_bench/utils/lazy_state_dict.py +268 -0
  42. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/parameters.py +33 -0
  43. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/state_dict_arithmetic.py +74 -2
  44. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/type.py +1 -0
  45. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/PKG-INFO +10 -3
  46. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/SOURCES.txt +64 -0
  47. fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/test/TALL10.yaml +28 -0
  48. fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/test/TALL12.yaml +28 -0
  49. fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/test/TALL16.yaml +28 -0
  50. fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/test/TALL18.yaml +28 -0
  51. fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/train/TALL10.yaml +28 -0
  52. fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/train/TALL12.yaml +28 -0
  53. fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/train/TALL16.yaml +28 -0
  54. fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/train/TALL18.yaml +28 -0
  55. fusion_bench-0.2.16/fusion_bench_config/method/fw_merging/fw_hard.yaml +11 -0
  56. fusion_bench-0.2.16/fusion_bench_config/method/fw_merging/fw_soft.yaml +12 -0
  57. fusion_bench-0.2.16/fusion_bench_config/method/moe_pruner/moe_pruner.yaml +15 -0
  58. fusion_bench-0.2.16/fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml +16 -0
  59. fusion_bench-0.2.16/fusion_bench_config/method/randes/superposed_model_soup.yaml +18 -0
  60. fusion_bench-0.2.16/fusion_bench_config/method/randes/superposed_task_arithmetic.yaml +20 -0
  61. fusion_bench-0.2.16/fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml +20 -0
  62. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +2 -1
  63. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +1 -1
  64. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +1 -1
  65. fusion_bench-0.2.16/fusion_bench_config/method/tall_mask/task_arithmetic.yaml +4 -0
  66. fusion_bench-0.2.16/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml +29 -0
  67. fusion_bench-0.2.16/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml +29 -0
  68. fusion_bench-0.2.16/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml +29 -0
  69. fusion_bench-0.2.16/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml +29 -0
  70. fusion_bench-0.2.16/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml +8 -0
  71. fusion_bench-0.2.16/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml +8 -0
  72. fusion_bench-0.2.16/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml +8 -0
  73. fusion_bench-0.2.16/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml +8 -0
  74. fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml +15 -0
  75. fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B-Instruct.yaml +11 -0
  76. fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B.yaml +11 -0
  77. fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B-Instruct.yaml +11 -0
  78. fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B.yaml +11 -0
  79. fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml +11 -0
  80. fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml +11 -0
  81. fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml +11 -0
  82. fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml +11 -0
  83. fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml +14 -0
  84. fusion_bench-0.2.16/fusion_bench_config/modelpool/SeqenceClassificationModelPool/roberta-base_glue.yaml +69 -0
  85. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/pyproject.toml +1 -1
  86. fusion_bench-0.2.14/fusion_bench/utils/plot/__init__.py +0 -0
  87. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/LICENSE +0 -0
  88. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/__init__.py +0 -0
  89. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/__main__.py +0 -0
  90. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/__init__.py +0 -0
  91. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/method/__init__.py +0 -0
  92. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/method/base_algorithm.py +0 -0
  93. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +0 -0
  94. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/modelpool/__init__.py +0 -0
  95. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/modelpool/base_pool.py +0 -0
  96. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/modelpool/huggingface_clip_vision.py +0 -0
  97. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/taskpool/__init__.py +0 -0
  98. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/taskpool/base_pool.py +0 -0
  99. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/taskpool/clip_image_classification.py +0 -0
  100. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +0 -0
  101. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/constants/__init__.py +0 -0
  102. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/constants/clip_vision.py +0 -0
  103. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/constants/paths.py +0 -0
  104. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/__init__.py +0 -0
  105. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/__init__.py +0 -0
  106. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/arc.py +0 -0
  107. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/arc_agi.py +0 -0
  108. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/augmenters.py +0 -0
  109. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/messagers.py +0 -0
  110. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/np_cache.py +0 -0
  111. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/preprocess.py +0 -0
  112. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/representers.py +0 -0
  113. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/clip_dataset.py +0 -0
  114. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/fer2013.py +0 -0
  115. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/gpt2_glue.py +0 -0
  116. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/gsm8k.py +0 -0
  117. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/image_dataset.py +0 -0
  118. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/imdb.py +0 -0
  119. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/__init__.py +0 -0
  120. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/alpaca.py +0 -0
  121. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/collate.py +0 -0
  122. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/metamathqa.py +0 -0
  123. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/openai.py +0 -0
  124. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/preference_700k.py +0 -0
  125. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/sharegpt.py +0 -0
  126. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/squad.py +0 -0
  127. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/stanford_shp.py +0 -0
  128. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/ultrachat.py +0 -0
  129. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/utils/__init__.py +0 -0
  130. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/wikitext.py +0 -0
  131. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/nyuv2.py +0 -0
  132. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/ada_svd/__init__.py +0 -0
  133. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/ada_svd/clip_vision.py +0 -0
  134. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/__init__.py +0 -0
  135. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +0 -0
  136. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/clip_task_wise_adamerging.py +0 -0
  137. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/entropy_loss.py +0 -0
  138. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +0 -0
  139. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +0 -0
  140. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/layer_wise_adamerging.py +0 -0
  141. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/llama_adamerging.py +0 -0
  142. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/min_norm_solvers.py +0 -0
  143. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/task_wise_adamerging.py +0 -0
  144. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/utils.py +0 -0
  145. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/analysis/__init__.py +0 -0
  146. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/analysis/task_vector_cos_similarity.py +0 -0
  147. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/analysis/task_vector_violin_plot.py +0 -0
  148. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/base_algorithm.py +0 -0
  149. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/classification/__init__.py +0 -0
  150. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/classification/clip_finetune.py +0 -0
  151. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/classification/continual_clip_finetune.py +0 -0
  152. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/concrete_subspace/__init__.py +0 -0
  153. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -0
  154. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +0 -0
  155. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/concrete_subspace/clip_post_defense.py +0 -0
  156. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py +0 -0
  157. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dare/__init__.py +0 -0
  158. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dare/simple_average.py +0 -0
  159. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dare/task_arithmetic.py +0 -0
  160. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dare/ties_merging.py +0 -0
  161. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dare/utils.py +0 -0
  162. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dawe/__init__.py +0 -0
  163. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dawe/dawe_for_clip.py +0 -0
  164. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dawe/warppers/__init__.py +0 -0
  165. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dawe/warppers/dawe_model.py +0 -0
  166. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/depth_upscaling/__init__.py +0 -0
  167. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/depth_upscaling/depth_upscaling.py +0 -0
  168. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +0 -0
  169. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/doge_ta/__init__.py +0 -0
  170. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py +0 -0
  171. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/doge_ta/doge_ta.py +0 -0
  172. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/doge_ta/layer_wise_adamerging.py +0 -0
  173. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dummy.py +0 -0
  174. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/ensemble.py +0 -0
  175. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/fisher_merging/__init__.py +0 -0
  176. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -0
  177. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/fisher_merging/fisher_merging.py +0 -0
  178. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +0 -0
  179. /fusion_bench-0.2.14/fusion_bench/method/ties_merging/ties_merging_utils.py → /fusion_bench-0.2.16/fusion_bench/method/fw_merging/utils.py +0 -0
  180. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/__init__.py +0 -0
  181. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/clip_layer_wise_gossip.py +0 -0
  182. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/clip_task_wise_gossip.py +0 -0
  183. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/entropy_loss.py +0 -0
  184. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +0 -0
  185. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/layer_wise_gossip.py +0 -0
  186. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/min_norm_solvers.py +0 -0
  187. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/task_wise_gossip.py +0 -0
  188. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/utils.py +0 -0
  189. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/isotropic_merging/__init__.py +0 -0
  190. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/isotropic_merging/iso.py +0 -0
  191. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/isotropic_merging/iso_utils.py +0 -0
  192. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/__init__.py +0 -0
  193. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/expo.py +0 -0
  194. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/linear_interpolation.py +0 -0
  195. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/llama_expo.py +0 -0
  196. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/simple_average_for_llama.py +0 -0
  197. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/task_arithmetic_for_llama.py +0 -0
  198. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/lm_finetune/__init__.py +0 -0
  199. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/lm_finetune/bradley_terry_rm.py +0 -0
  200. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/lm_finetune/causal_lm_pretrain.py +0 -0
  201. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/lm_finetune/fullfinetune_sft.py +0 -0
  202. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/lm_finetune/peftfinetune_sft.py +0 -0
  203. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/mixture_of_experts/__init__.py +0 -0
  204. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/mixture_of_experts/mixtral_merging.py +0 -0
  205. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +0 -0
  206. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/model_recombination.py +0 -0
  207. {fusion_bench-0.2.14/fusion_bench/method/pruning/wanda_utils → fusion_bench-0.2.16/fusion_bench/method/moe_pruner/utils}/layerwrapper.py +0 -0
  208. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/__init__.py +0 -0
  209. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/opcm.py +0 -0
  210. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/task_arithmetic.py +0 -0
  211. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/ties_merging.py +0 -0
  212. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/utils.py +0 -0
  213. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/weight_average.py +0 -0
  214. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/llama_magnitude_prune.py +0 -0
  215. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/llama_random_prune.py +0 -0
  216. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/llama_wanda_prune.py +0 -0
  217. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/magnitude_diff_pruning.py +0 -0
  218. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/prune_utils.py +0 -0
  219. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/__init__.py +0 -0
  220. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/ablate.py +0 -0
  221. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/eval.py +0 -0
  222. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/prune.py +0 -0
  223. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/prune_opt.py +0 -0
  224. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/sparsegpt.py +0 -0
  225. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/__init__.py +0 -0
  226. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/clip_pwe_moe.py +0 -0
  227. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/module.py +0 -0
  228. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/openclip_pwe_moe.py +0 -0
  229. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/phn/__init__.py +0 -0
  230. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/phn/solvers.py +0 -0
  231. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/utils.py +0 -0
  232. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/rankone_moe/__init__.py +0 -0
  233. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/rankone_moe/clip_rankone_moe.py +0 -0
  234. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/rankone_moe/rankone_moe.py +0 -0
  235. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/regmean/__init__.py +0 -0
  236. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/regmean/clip_regmean.py +0 -0
  237. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/regmean/gpt2_regmean.py +0 -0
  238. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/regmean/regmean.py +0 -0
  239. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/simple_average.py +0 -0
  240. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/slerp/__init__.py +0 -0
  241. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/slerp/slerp.py +0 -0
  242. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/slerp/slerp_utils.py +0 -0
  243. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/smile_upscaling/__init__.py +0 -0
  244. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/smile_upscaling/singular_projection_merging.py +0 -0
  245. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +0 -0
  246. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +0 -0
  247. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/smile_upscaling/smile_upscaling.py +0 -0
  248. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/sparse_we_moe/__init__.py +0 -0
  249. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +0 -0
  250. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/sparse_we_moe/sparse_we_moe.py +0 -0
  251. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/sparselo/__init__.py +0 -0
  252. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/surgery/__init__.py +0 -0
  253. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +0 -0
  254. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/tall_mask/utils.py +0 -0
  255. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_arithmetic/__init__.py +0 -0
  256. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_arithmetic/task_arithmetic.py +0 -0
  257. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/TSVC.py +0 -0
  258. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/TSVM.py +0 -0
  259. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/__init__.py +0 -0
  260. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +0 -0
  261. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +0 -0
  262. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/utils/__init__.py +0 -0
  263. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/ties_merging/__init__.py +0 -0
  264. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/ties_merging/ties_merging.py +0 -0
  265. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/trust_region/__init__.py +0 -0
  266. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/trust_region/clip_task_arithmetic.py +0 -0
  267. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/trust_region/utils.py +0 -0
  268. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/we_moe/__init__.py +0 -0
  269. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/we_moe/clip_we_moe.py +0 -0
  270. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/we_moe/we_moe.py +0 -0
  271. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/weighted_average/__init__.py +0 -0
  272. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/weighted_average/llama.py +0 -0
  273. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/weighted_average/weighted_average.py +0 -0
  274. {fusion_bench-0.2.14/fusion_bench/method/tall_mask → fusion_bench-0.2.16/fusion_bench/metrics}/__init__.py +0 -0
  275. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/continual_learning/backward_transfer.py +0 -0
  276. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/__init__.py +0 -0
  277. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/depth.py +0 -0
  278. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/loss.py +0 -0
  279. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/noise.py +0 -0
  280. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/normal.py +0 -0
  281. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/segmentation.py +0 -0
  282. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/text_to_image_generation/__init__.py +0 -0
  283. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +0 -0
  284. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/text_to_image_generation/compressibility.py +0 -0
  285. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +0 -0
  286. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/__init__.py +0 -0
  287. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/clip_classification.py +0 -0
  288. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/fabric_training.py +0 -0
  289. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/hydra_config.py +0 -0
  290. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/lightning_fabric.py +0 -0
  291. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/openclip_classification.py +0 -0
  292. {fusion_bench-0.2.14/fusion_bench/metrics → fusion_bench-0.2.16/fusion_bench/mixins/optim}/__init__.py +0 -0
  293. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/optim/adamw_with_warmup.py +0 -0
  294. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/rich_live.py +0 -0
  295. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/serialization.py +0 -0
  296. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/simple_profiler.py +0 -0
  297. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +0 -0
  298. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/__init__.py +0 -0
  299. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/base_pool.py +0 -0
  300. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/causal_lm/__init__.py +0 -0
  301. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/clip_vision/__init__.py +0 -0
  302. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/clip_vision/modelpool.py +0 -0
  303. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/huggingface_automodel.py +0 -0
  304. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/huggingface_gpt2_classification.py +0 -0
  305. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/nyuv2_modelpool.py +0 -0
  306. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/openclip_vision/__init__.py +0 -0
  307. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/openclip_vision/modelpool.py +0 -0
  308. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/seq2seq_lm/__init__.py +0 -0
  309. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/seq2seq_lm/modelpool.py +0 -0
  310. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/seq_classification_lm/__init__.py +0 -0
  311. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/seq_classification_lm/reward_model.py +0 -0
  312. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +0 -0
  313. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/__init__.py +0 -0
  314. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/chat_templates/__init__.py +0 -0
  315. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/chat_templates/llama_3_Instruct.py +0 -0
  316. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/chat_templates/load_tokenizer.py +0 -0
  317. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/hf_clip.py +0 -0
  318. {fusion_bench-0.2.14/fusion_bench/mixins/optim → fusion_bench-0.2.16/fusion_bench/models/linearized}/__init__.py +0 -0
  319. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/linearized/linearized_model_utils.py +0 -0
  320. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/linearized/vision_model.py +0 -0
  321. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/__init__.py +0 -0
  322. {fusion_bench-0.2.14/fusion_bench/models/linearized → fusion_bench-0.2.16/fusion_bench/models/llama/model_utils}/__init__.py +0 -0
  323. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/model_utils/embedding.py +0 -0
  324. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/model_utils/liger_kernel.py +0 -0
  325. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/model_utils/misc.py +0 -0
  326. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/model_utils/mod.py +0 -0
  327. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/model_utils/visual.py +0 -0
  328. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/patcher.py +0 -0
  329. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/tokenizer_loader.py +0 -0
  330. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/masks/__init__.py +0 -0
  331. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/masks/mask_model.py +0 -0
  332. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/__init__.py +0 -0
  333. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +0 -0
  334. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/losparse_linear.py +0 -0
  335. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +0 -0
  336. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/register.py +0 -0
  337. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/utils.py +0 -0
  338. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_mistral/__init__.py +0 -0
  339. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +0 -0
  340. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +0 -0
  341. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_mistral/register.py +0 -0
  342. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_qwen2/__init__.py +0 -0
  343. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py +0 -0
  344. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +0 -0
  345. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_qwen2/register.py +0 -0
  346. {fusion_bench-0.2.14/fusion_bench/models/llama/model_utils → fusion_bench-0.2.16/fusion_bench/models/nyuv2}/__init__.py +0 -0
  347. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/nyuv2/aspp.py +0 -0
  348. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/nyuv2/lightning_module.py +0 -0
  349. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/nyuv2/resnet.py +0 -0
  350. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/nyuv2/resnet_dilated.py +0 -0
  351. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/open_clip/__init__.py +0 -0
  352. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/open_clip/modeling.py +0 -0
  353. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/open_clip/utils.py +0 -0
  354. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/open_clip/variables_and_paths.py +0 -0
  355. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/parameter_dict.py +0 -0
  356. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/rankone_moe.py +0 -0
  357. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/separate_io.py +0 -0
  358. {fusion_bench-0.2.14/fusion_bench/models/nyuv2 → fusion_bench-0.2.16/fusion_bench/models/smile_moe}/__init__.py +0 -0
  359. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/smile_moe/linear_from_hf_config.py +0 -0
  360. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/smile_moe/linear_from_module.py +0 -0
  361. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/smile_moe/utils/__init__.py +0 -0
  362. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/smile_moe/utils/svd_utils.py +0 -0
  363. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/sparse_we_moe.py +0 -0
  364. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/surgery/__init__.py +0 -0
  365. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/surgery/surgerymodelwrapper.py +0 -0
  366. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/utils.py +0 -0
  367. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/we_moe.py +0 -0
  368. {fusion_bench-0.2.14/fusion_bench/models/smile_moe → fusion_bench-0.2.16/fusion_bench/models/wrappers}/__init__.py +0 -0
  369. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/wrappers/ensemble.py +0 -0
  370. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/wrappers/layer_wise_fusion.py +0 -0
  371. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py +0 -0
  372. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/wrappers/task_wise_fusion.py +0 -0
  373. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/__init__.py +0 -0
  374. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/exception.py +0 -0
  375. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/lr_scheduler/__init__.py +0 -0
  376. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/lr_scheduler/linear_warmup.py +0 -0
  377. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/lr_scheduler/utils/__init__.py +0 -0
  378. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/lr_scheduler/utils/visualization.py +0 -0
  379. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/mezo.py +0 -0
  380. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/programs/__init__.py +0 -0
  381. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/programs/base_program.py +0 -0
  382. {fusion_bench-0.2.14/fusion_bench/models/wrappers → fusion_bench-0.2.16/fusion_bench/scripts}/__init__.py +0 -0
  383. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/scripts/cli.py +0 -0
  384. {fusion_bench-0.2.14/fusion_bench/scripts → fusion_bench-0.2.16/fusion_bench/scripts/clip}/__init__.py +0 -0
  385. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/scripts/clip/convert_checkpoint.py +0 -0
  386. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/scripts/imgui.py +0 -0
  387. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/scripts/nyuv2_mtl_train.py +0 -0
  388. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/scripts/webui.py +0 -0
  389. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/__init__.py +0 -0
  390. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/base_pool.py +0 -0
  391. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/__init__.py +0 -0
  392. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +0 -0
  393. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py +0 -0
  394. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +0 -0
  395. {fusion_bench-0.2.14/fusion_bench/scripts/clip → fusion_bench-0.2.16/fusion_bench/taskpool/clip_vision/utils}/__init__.py +0 -0
  396. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py +0 -0
  397. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/dummy.py +0 -0
  398. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/gpt2_text_classification.py +0 -0
  399. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/llama/__init__.py +0 -0
  400. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/llama/reward_model.py +0 -0
  401. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/llama/test_generation.py +0 -0
  402. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/lm_eval_harness/__init__.py +0 -0
  403. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/lm_eval_harness/taskpool.py +0 -0
  404. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/nyuv2_taskpool.py +0 -0
  405. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/openclip_vision/__init__.py +0 -0
  406. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/openclip_vision/openclip_taskpool.py +0 -0
  407. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/__init__.py +0 -0
  408. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/base_task.py +0 -0
  409. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/classification.py +0 -0
  410. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/__init__.py +0 -0
  411. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/cifar10.py +0 -0
  412. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/cifar100.py +0 -0
  413. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/clip_dataset.py +0 -0
  414. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/cub_200_2011.py +0 -0
  415. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/dtd.py +0 -0
  416. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/emnist_letters.py +0 -0
  417. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/emnist_mnist.py +0 -0
  418. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/eurosat.py +0 -0
  419. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/fashion_mnist.py +0 -0
  420. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/fer2013.py +0 -0
  421. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/flower102.py +0 -0
  422. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/food101.py +0 -0
  423. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/gtsrb.py +0 -0
  424. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/imagenet.py +0 -0
  425. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/kmnist.py +0 -0
  426. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/mnist.py +0 -0
  427. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +0 -0
  428. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +0 -0
  429. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/pcam.py +0 -0
  430. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/rendered_sst2.py +0 -0
  431. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/resisc45.py +0 -0
  432. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/stanford_cars.py +0 -0
  433. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/stl10.py +0 -0
  434. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/sun397.py +0 -0
  435. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/svhn.py +0 -0
  436. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/tiny_imagenet.py +0 -0
  437. {fusion_bench-0.2.14/fusion_bench/taskpool/clip_vision/utils → fusion_bench-0.2.16/fusion_bench/tasks/flan_t5_text_generation}/__init__.py +0 -0
  438. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +0 -0
  439. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +0 -0
  440. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +0 -0
  441. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +0 -0
  442. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +0 -0
  443. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/auto.py +0 -0
  444. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/cache_utils.py +0 -0
  445. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/devices.py +0 -0
  446. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/dict.py +0 -0
  447. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/dtype.py +0 -0
  448. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/expr.py +0 -0
  449. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/fabric.py +0 -0
  450. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/functools.py +0 -0
  451. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/hydra_utils.py +0 -0
  452. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/instantiate.py +0 -0
  453. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/json.py +0 -0
  454. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/lazy_imports.py +0 -0
  455. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/misc.py +0 -0
  456. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/packages.py +0 -0
  457. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/path.py +0 -0
  458. {fusion_bench-0.2.14/fusion_bench/tasks/flan_t5_text_generation → fusion_bench-0.2.16/fusion_bench/utils/plot}/__init__.py +0 -0
  459. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/plot/color_data.py +0 -0
  460. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/plot/token.py +0 -0
  461. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/plot/token_notebook.py +0 -0
  462. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/pylogger.py +0 -0
  463. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/rich_utils.py +0 -0
  464. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/set.py +0 -0
  465. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/strenum/__init__.py +0 -0
  466. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/strenum/_name_mangler.py +0 -0
  467. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/strenum/_version.py +0 -0
  468. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/tensorboard.py +0 -0
  469. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/timer.py +0 -0
  470. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/dependency_links.txt +0 -0
  471. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/entry_points.txt +0 -0
  472. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/requires.txt +0 -0
  473. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/top_level.txt +0 -0
  474. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/README.md +0 -0
  475. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  476. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/README.md +0 -0
  477. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/TALL14.yaml +0 -0
  478. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/TALL20.yaml +0 -0
  479. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/cifar10.yaml +0 -0
  480. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/cifar100.yaml +0 -0
  481. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +0 -0
  482. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/dtd.yaml +0 -0
  483. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +0 -0
  484. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +0 -0
  485. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/eurosat.yaml +0 -0
  486. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +0 -0
  487. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/fer2013.yaml +0 -0
  488. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/food101.yaml +0 -0
  489. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +0 -0
  490. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/kmnist.yaml +0 -0
  491. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +0 -0
  492. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/mnist.yaml +0 -0
  493. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +0 -0
  494. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +0 -0
  495. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/pcam.yaml +0 -0
  496. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +0 -0
  497. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/resisc45.yaml +0 -0
  498. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +0 -0
  499. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/stl10.yaml +0 -0
  500. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/sun397.yaml +0 -0
  501. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/svhn.yaml +0 -0
  502. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +0 -0
  503. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +0 -0
  504. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/TALL14.yaml +0 -0
  505. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/TALL20.yaml +0 -0
  506. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/cifar10.yaml +0 -0
  507. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/cifar100.yaml +0 -0
  508. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +0 -0
  509. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/dtd.yaml +0 -0
  510. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +0 -0
  511. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +0 -0
  512. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/eurosat.yaml +0 -0
  513. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +0 -0
  514. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/fer2013.yaml +0 -0
  515. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/food101.yaml +0 -0
  516. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +0 -0
  517. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/kmnist.yaml +0 -0
  518. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +0 -0
  519. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/mnist.yaml +0 -0
  520. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +0 -0
  521. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +0 -0
  522. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/pcam.yaml +0 -0
  523. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +0 -0
  524. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/resisc45.yaml +0 -0
  525. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +0 -0
  526. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/stl10.yaml +0 -0
  527. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/sun397.yaml +0 -0
  528. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/svhn.yaml +0 -0
  529. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +0 -0
  530. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +0 -0
  531. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/dtd.yaml +0 -0
  532. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/eurosat.yaml +0 -0
  533. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +0 -0
  534. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/mnist.yaml +0 -0
  535. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/resisc45.yaml +0 -0
  536. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +0 -0
  537. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/sun397.yaml +0 -0
  538. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/svhn.yaml +0 -0
  539. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +0 -0
  540. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +0 -0
  541. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +0 -0
  542. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/question_answering/search_qa.yaml +0 -0
  543. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/question_answering/test/search_qa.yaml +0 -0
  544. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +0 -0
  545. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/question_answering/train/search_qa.yaml +0 -0
  546. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/question_answering/val/search_qa.yaml +0 -0
  547. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/summarization/test/xsum.yaml +0 -0
  548. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/summarization/train/xsum.yaml +0 -0
  549. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/summarization/val/xsum.yaml +0 -0
  550. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/summarization/xsum.yaml +0 -0
  551. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +0 -0
  552. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +0 -0
  553. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +0 -0
  554. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +0 -0
  555. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +0 -0
  556. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +0 -0
  557. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/auto.yaml +0 -0
  558. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/llama_ddp.yaml +0 -0
  559. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/llama_fsdp.yaml +0 -0
  560. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/llama_peft_fsdp.yaml +0 -0
  561. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/loggers/csv_logger.yaml +0 -0
  562. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +0 -0
  563. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/loggers/wandb_logger.yaml +0 -0
  564. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/strategy/deepspeed.yaml +0 -0
  565. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/strategy/llama_fsdp.yaml +0 -0
  566. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +0 -0
  567. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric_model_fusion.yaml +0 -0
  568. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/hydra/default.yaml +0 -0
  569. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/hydra/help/fusion_bench_help.yaml +0 -0
  570. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/hydra/job_logging/rich_logging.yaml +0 -0
  571. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/llama_full_finetune.yaml +0 -0
  572. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/llama_magnitude_pruning.yaml +0 -0
  573. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/llama_model_fusion.yaml +0 -0
  574. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/ada_svd/clip_vision.yaml +0 -0
  575. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/adamerging/clip.yaml +0 -0
  576. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +0 -0
  577. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +0 -0
  578. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/adamerging/llama_sft.yaml +0 -0
  579. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/adamerging.yaml +0 -0
  580. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +0 -0
  581. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +0 -0
  582. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/classification/clip_continual_finetune.yaml +0 -0
  583. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/classification/clip_finetune.yaml +0 -0
  584. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/clip_finetune.yaml +0 -0
  585. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +0 -0
  586. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +0 -0
  587. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +0 -0
  588. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml +0 -0
  589. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml +0 -0
  590. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml +0 -0
  591. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml +0 -0
  592. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/dare/simple_average.yaml +0 -0
  593. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/dare/task_arithmetic.yaml +0 -0
  594. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/dare/ties_merging.yaml +0 -0
  595. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/dawe/dawe_for_clip.yaml +0 -0
  596. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/depth_upscaling.yaml +0 -0
  597. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/doge_ta/doge_ta.yaml +0 -0
  598. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/dummy.yaml +0 -0
  599. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/ensemble/max_model_predictor.yaml +0 -0
  600. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/ensemble/simple_ensemble.yaml +0 -0
  601. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/ensemble/weighted_ensemble.yaml +0 -0
  602. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -0
  603. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/fisher_merging/fisher_merging.yaml +0 -0
  604. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +0 -0
  605. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/gossip/layer_wise_clip.yaml +0 -0
  606. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml +0 -0
  607. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/isotropic_merging/iso_c.yaml +0 -0
  608. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/isotropic_merging/iso_cts.yaml +0 -0
  609. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/expo.yaml +0 -0
  610. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/linear_interpolation.yaml +0 -0
  611. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/llama_expo.yaml +0 -0
  612. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/llama_expo_with_dare.yaml +0 -0
  613. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/simple_average_for_llama.yaml +0 -0
  614. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -0
  615. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/weighted_average.yaml +0 -0
  616. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/weighted_average_for_llama.yaml +0 -0
  617. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +0 -0
  618. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +0 -0
  619. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +0 -0
  620. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/mixtral_moe_merging.yaml +0 -0
  621. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/mixtral_moe_upscaling.yaml +0 -0
  622. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/model_recombination.yaml +0 -0
  623. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/opcm/opcm.yaml +0 -0
  624. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/opcm/task_arithmetic.yaml +0 -0
  625. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/opcm/ties_merging.yaml +0 -0
  626. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/opcm/weight_average.yaml +0 -0
  627. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +0 -0
  628. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pruning/llama_random_pruning.yaml +0 -0
  629. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +0 -0
  630. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +0 -0
  631. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml +0 -0
  632. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml +0 -0
  633. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml +0 -0
  634. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/rankone_moe/rankone_moe.yaml +0 -0
  635. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/regmean/clip_regmean.yaml +0 -0
  636. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/regmean/gpt2_regmean.yaml +0 -0
  637. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/regmean/regmean.yaml +0 -0
  638. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/simple_average.yaml +0 -0
  639. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/slerp/slerp.yaml +0 -0
  640. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +0 -0
  641. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +0 -0
  642. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +0 -0
  643. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +0 -0
  644. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/surgery/adamerging_surgery.yaml +0 -0
  645. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/task_arithmetic.yaml +0 -0
  646. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +0 -0
  647. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/ties_merging.yaml +0 -0
  648. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +0 -0
  649. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +0 -0
  650. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +0 -0
  651. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/README.md +0 -0
  652. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +0 -0
  653. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +0 -0
  654. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +0 -0
  655. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +0 -0
  656. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +0 -0
  657. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +0 -0
  658. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +0 -0
  659. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +0 -0
  660. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +0 -0
  661. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +0 -0
  662. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +0 -0
  663. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +0 -0
  664. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +0 -0
  665. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +0 -0
  666. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +0 -0
  667. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +0 -0
  668. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +0 -0
  669. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +0 -0
  670. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +0 -0
  671. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +0 -0
  672. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +0 -0
  673. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +0 -0
  674. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +0 -0
  675. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +0 -0
  676. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +0 -0
  677. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +0 -0
  678. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +0 -0
  679. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +0 -0
  680. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +0 -0
  681. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +0 -0
  682. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +0 -0
  683. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +0 -0
  684. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +0 -0
  685. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +0 -0
  686. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +0 -0
  687. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +0 -0
  688. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +0 -0
  689. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +0 -0
  690. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +0 -0
  691. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +0 -0
  692. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +0 -0
  693. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +0 -0
  694. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +0 -0
  695. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +0 -0
  696. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +0 -0
  697. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +0 -0
  698. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +0 -0
  699. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +0 -0
  700. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +0 -0
  701. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +0 -0
  702. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +0 -0
  703. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +0 -0
  704. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +0 -0
  705. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +0 -0
  706. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +0 -0
  707. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +0 -0
  708. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +0 -0
  709. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +0 -0
  710. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +0 -0
  711. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +0 -0
  712. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +0 -0
  713. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +0 -0
  714. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +0 -0
  715. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +0 -0
  716. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +0 -0
  717. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +0 -0
  718. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +0 -0
  719. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +0 -0
  720. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +0 -0
  721. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +0 -0
  722. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +0 -0
  723. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +0 -0
  724. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/download_TALL20_models.sh +0 -0
  725. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +0 -0
  726. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base.yaml +0 -0
  727. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +0 -0
  728. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +0 -0
  729. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +0 -0
  730. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +0 -0
  731. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +0 -0
  732. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +0 -0
  733. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +0 -0
  734. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +0 -0
  735. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +0 -0
  736. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +0 -0
  737. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +0 -0
  738. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +0 -0
  739. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +0 -0
  740. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +0 -0
  741. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +0 -0
  742. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +0 -0
  743. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large.yaml +0 -0
  744. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +0 -0
  745. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +0 -0
  746. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +0 -0
  747. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +0 -0
  748. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +0 -0
  749. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +0 -0
  750. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +0 -0
  751. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +0 -0
  752. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/generate_flan-t5.sh +0 -0
  753. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +0 -0
  754. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +0 -0
  755. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +0 -0
  756. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +0 -0
  757. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +0 -0
  758. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +0 -0
  759. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +0 -0
  760. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +0 -0
  761. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +0 -0
  762. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +0 -0
  763. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +0 -0
  764. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +0 -0
  765. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +0 -0
  766. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +0 -0
  767. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +0 -0
  768. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +0 -0
  769. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +0 -0
  770. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +0 -0
  771. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +0 -0
  772. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +0 -0
  773. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +0 -0
  774. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
  775. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  776. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +0 -0
  777. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +0 -0
  778. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
  779. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +0 -0
  780. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +0 -0
  781. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +0 -0
  782. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +0 -0
  783. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +0 -0
  784. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +0 -0
  785. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +0 -0
  786. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +0 -0
  787. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +0 -0
  788. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +0 -0
  789. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +0 -0
  790. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +0 -0
  791. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +0 -0
  792. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +0 -0
  793. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +0 -0
  794. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +0 -0
  795. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md +0 -0
  796. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml +0 -0
  797. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml +0 -0
  798. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_cars_dtd.yaml +0 -0
  799. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.yaml +0 -0
  800. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml +0 -0
  801. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml +0 -0
  802. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml +0 -0
  803. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +0 -0
  804. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +0 -0
  805. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +0 -0
  806. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +0 -0
  807. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml +0 -0
  808. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +0 -0
  809. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +0 -0
  810. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +0 -0
  811. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +0 -0
  812. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/automodelpool.yaml +0 -0
  813. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/gpt-2_glue.yaml +0 -0
  814. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/mixtral_moe_merging.yaml +0 -0
  815. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +0 -0
  816. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/nyuv2_modelpool.yaml +0 -0
  817. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +0 -0
  818. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +0 -0
  819. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +0 -0
  820. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +0 -0
  821. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/nyuv2_config.yaml +0 -0
  822. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/nyuv2_mtl_train.yaml +0 -0
  823. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +0 -0
  824. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  825. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +0 -0
  826. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +0 -0
  827. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +0 -0
  828. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +0 -0
  829. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +0 -0
  830. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +0 -0
  831. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +0 -0
  832. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +0 -0
  833. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +0 -0
  834. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +0 -0
  835. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +0 -0
  836. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +0 -0
  837. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +0 -0
  838. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +0 -0
  839. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +0 -0
  840. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +0 -0
  841. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +0 -0
  842. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +0 -0
  843. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +0 -0
  844. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +0 -0
  845. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +0 -0
  846. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +0 -0
  847. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +0 -0
  848. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +0 -0
  849. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +0 -0
  850. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +0 -0
  851. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +0 -0
  852. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +0 -0
  853. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +0 -0
  854. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +0 -0
  855. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml +0 -0
  856. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml +0 -0
  857. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml +0 -0
  858. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml +0 -0
  859. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
  860. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  861. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
  862. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/dummy.yaml +0 -0
  863. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +0 -0
  864. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/gpt-2_glue.yaml +0 -0
  865. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/nyuv2_taskpool.yaml +0 -0
  866. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/reward_model_evaluation.yaml +0 -0
  867. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/setup.cfg +0 -0
  868. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/tests/test_depth_upscaling.py +0 -0
  869. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/tests/test_simple_average.py +0 -0
  870. {fusion_bench-0.2.14 → fusion_bench-0.2.16}/tests/test_weighed_ensemble.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fusion_bench
3
- Version: 0.2.14
3
+ Version: 0.2.16
4
4
  Summary: A Comprehensive Benchmark of Deep Model Fusion
5
5
  Author-email: Anke Tang <tang.anke@foxmail.com>
6
6
  License: MIT License
@@ -63,14 +63,14 @@ Dynamic: license-file
63
63
 
64
64
  </div>
65
65
 
66
- > [!TIP]
66
+ > [!TIP]
67
67
  > Documentation is available at [tanganke.github.io/fusion_bench/](https://tanganke.github.io/fusion_bench/).
68
68
 
69
69
  ## Overview
70
70
 
71
71
  FusionBench is a benchmark suite designed to evaluate the performance of various deep model fusion techniques. It aims to provide a comprehensive comparison of different methods on a variety of datasets and tasks.
72
72
 
73
- Projects based on FusionBench and news from the community (descending order of date):
73
+ Projects based on FusionBench and news from the community (descending order of date. If you have any work based on FusionBench, please feel free to let us know, we are willing to add it to the list. :partying_face:):
74
74
 
75
75
  <details>
76
76
  <summary>Hao Mark Chen, et al. FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization. Mar 2025. https://arxiv.org/abs/2503.12649</summary>
@@ -139,6 +139,10 @@ cd fusion_bench
139
139
  pip install -e . # install the package in editable mode
140
140
  ```
141
141
 
142
+ > [!TIP]
143
+ > FusionBench is highly dependent on the use of [Hydra](https://hydra.cc/) for configuration management and command line argument parsing, and [Lightning Fabric](https://lightning.ai/) for device management.
144
+ > If you are not familiar with these tools, it is strongly recommended to read the [Hydra](https://hydra.cc/docs/intro/) and [Lightning Fabric](https://lightning.ai/docs/fabric/stable/) documentation.
145
+
142
146
  ### Install with [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness)
143
147
 
144
148
  [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10256836.svg)](https://doi.org/10.5281/zenodo.10256836)
@@ -157,6 +161,9 @@ pip install -e ".[lm-eval-harness]"
157
161
  This will install the latest version of fusion-bench and the dependencies required for LM-Eval Harness.
158
162
  Documentation for using LM-Eval Harness within FusionBench framework can be found at [this online documentation](https://tanganke.github.io/fusion_bench/taskpool/lm_eval_harness) or in the [`docs/taskpool/lm_eval_harness.md`](docs/taskpool/lm_eval_harness.md) markdown file.
159
163
 
164
+ > [!TIP]
165
+ > Documentation for merging large language models using FusionBench can be found at [this online documentation](https://tanganke.github.io/fusion_bench/modelpool/causal_lm) or in the [`docs/modelpool/causal_lm.md`](docs/modelpool/causal_lm.md) markdown file.
166
+
160
167
  ## Introduction to Deep Model Fusion
161
168
 
162
169
  Deep model fusion is a technique that merges, ensemble, or fuse multiple deep neural networks to obtain a unified model.
@@ -12,14 +12,14 @@
12
12
 
13
13
  </div>
14
14
 
15
- > [!TIP]
15
+ > [!TIP]
16
16
  > Documentation is available at [tanganke.github.io/fusion_bench/](https://tanganke.github.io/fusion_bench/).
17
17
 
18
18
  ## Overview
19
19
 
20
20
  FusionBench is a benchmark suite designed to evaluate the performance of various deep model fusion techniques. It aims to provide a comprehensive comparison of different methods on a variety of datasets and tasks.
21
21
 
22
- Projects based on FusionBench and news from the community (descending order of date):
22
+ Projects based on FusionBench and news from the community (descending order of date. If you have any work based on FusionBench, please feel free to let us know, we are willing to add it to the list. :partying_face:):
23
23
 
24
24
  <details>
25
25
  <summary>Hao Mark Chen, et al. FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization. Mar 2025. https://arxiv.org/abs/2503.12649</summary>
@@ -88,6 +88,10 @@ cd fusion_bench
88
88
  pip install -e . # install the package in editable mode
89
89
  ```
90
90
 
91
+ > [!TIP]
92
+ > FusionBench is highly dependent on the use of [Hydra](https://hydra.cc/) for configuration management and command line argument parsing, and [Lightning Fabric](https://lightning.ai/) for device management.
93
+ > If you are not familiar with these tools, it is strongly recommended to read the [Hydra](https://hydra.cc/docs/intro/) and [Lightning Fabric](https://lightning.ai/docs/fabric/stable/) documentation.
94
+
91
95
  ### Install with [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness)
92
96
 
93
97
  [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10256836.svg)](https://doi.org/10.5281/zenodo.10256836)
@@ -106,6 +110,9 @@ pip install -e ".[lm-eval-harness]"
106
110
  This will install the latest version of fusion-bench and the dependencies required for LM-Eval Harness.
107
111
  Documentation for using LM-Eval Harness within FusionBench framework can be found at [this online documentation](https://tanganke.github.io/fusion_bench/taskpool/lm_eval_harness) or in the [`docs/taskpool/lm_eval_harness.md`](docs/taskpool/lm_eval_harness.md) markdown file.
108
112
 
113
+ > [!TIP]
114
+ > Documentation for merging large language models using FusionBench can be found at [this online documentation](https://tanganke.github.io/fusion_bench/modelpool/causal_lm) or in the [`docs/modelpool/causal_lm.md`](docs/modelpool/causal_lm.md) markdown file.
115
+
109
116
  ## Introduction to Deep Model Fusion
110
117
 
111
118
  Deep model fusion is a technique that merges, ensemble, or fuse multiple deep neural networks to obtain a unified model.
@@ -67,6 +67,7 @@ _import_structure = {
67
67
  "CLIPTaskWiseGossipAlgorithm",
68
68
  "FlanT5LayerWiseGossipAlgorithm",
69
69
  ],
70
+ "fw_merging": ["FrankWolfeHardAlgorithm", "FrankWolfeSoftAlgorithm"],
70
71
  # plug-and-play model merging methods
71
72
  "concrete_subspace": [
72
73
  "ConcreteTaskArithmeticAlgorithmForCLIP",
@@ -103,6 +104,7 @@ _import_structure = {
103
104
  "RandomPruningForLlama",
104
105
  "MagnitudePruningForLlama",
105
106
  "WandaPruningForLlama",
107
+ "SparseGPTPruningForLlama",
106
108
  ],
107
109
  "sparselo": [
108
110
  "IterativeSparseLoForLlama",
@@ -141,6 +143,7 @@ if TYPE_CHECKING:
141
143
  WeightedEnsembleAlgorithm,
142
144
  )
143
145
  from .fisher_merging import FisherMergingForCLIPVisionModel
146
+ from .fw_merging import FrankWolfeHardAlgorithm, FrankWolfeSoftAlgorithm
144
147
  from .gossip import (
145
148
  CLIPLayerWiseGossipAlgorithm,
146
149
  CLIPTaskWiseGossipAlgorithm,
@@ -172,6 +175,7 @@ if TYPE_CHECKING:
172
175
  MagnitudeDiffPruningAlgorithm,
173
176
  MagnitudePruningForLlama,
174
177
  RandomPruningForLlama,
178
+ SparseGPTPruningForLlama,
175
179
  WandaPruningForLlama,
176
180
  )
177
181
  from .pwe_moe import (
@@ -0,0 +1,2 @@
1
+ from .fw_hard import FrankWolfeHardAlgorithm
2
+ from .fw_soft import FrankWolfeSoftAlgorithm
@@ -0,0 +1,448 @@
1
+ """
2
+ This script contains the general implementation of the Task Arithmetic method.
3
+
4
+ http://arxiv.org/abs/2212.04089
5
+ """
6
+
7
+ import functools
8
+ import logging
9
+ import os
10
+ from abc import abstractmethod
11
+ from collections import defaultdict
12
+ from copy import deepcopy
13
+ from functools import partial
14
+ from typing import TYPE_CHECKING, Any, Dict, List, Mapping, TypeVar, Union
15
+
16
+ import torch
17
+ from lightning.fabric.utilities.rank_zero import rank_zero_only
18
+ from omegaconf import DictConfig
19
+ from torch import Tensor, nn
20
+ from torch.utils.data import DataLoader
21
+ from tqdm.autonotebook import tqdm
22
+
23
+ from fusion_bench.compat.method import ModelFusionAlgorithm
24
+ from fusion_bench.compat.modelpool import HuggingFaceClipVisionPool, ModelPool
25
+ from fusion_bench.dataset.clip_dataset import CLIPDataset
26
+ from fusion_bench.mixins import CLIPClassificationMixin
27
+ from fusion_bench.mixins.lightning_fabric import LightningFabricMixin
28
+ from fusion_bench.mixins.simple_profiler import SimpleProfilerMixin
29
+ from fusion_bench.models.wrappers.layer_wise_fusion import (
30
+ LayerWiseMergedModel,
31
+ get_layer_wise_weights,
32
+ )
33
+ from fusion_bench.utils.data import load_tensor_from_file
34
+ from fusion_bench.utils.type import TorchModelType
35
+
36
+ from .utils import *
37
+
38
+ if TYPE_CHECKING:
39
+ from fusion_bench.programs.fabric_fusion_program import FabricModelFusionProgram
40
+
41
+ from fusion_bench.mixins.simple_profiler import SimpleProfilerMixin
42
+ from fusion_bench.modelpool import BaseModelPool
43
+ from fusion_bench.utils import instantiate
44
+ from fusion_bench.utils.data import InfiniteDataLoader
45
+ from fusion_bench.utils.state_dict_arithmetic import (
46
+ state_dict_add,
47
+ state_dict_mul,
48
+ state_dict_sub,
49
+ )
50
+ from fusion_bench.utils.type import StateDictType
51
+
52
+ log = logging.getLogger(__name__)
53
+
54
+
55
+ @torch.no_grad()
56
+ def task_arithmetic_merge(
57
+ pretrained_model: nn.Module,
58
+ finetuned_models: List[Dict[str, Tensor]],
59
+ scaling_factor: float,
60
+ inplace: bool = True,
61
+ ) -> nn.Module:
62
+ """
63
+ Merges the task vectors from multiple fine-tuned models into a single pre-trained model.
64
+
65
+ Args:
66
+ pretrained_model (nn.Module): The pre-trained model to which the task vectors will be added.
67
+ finetuned_models (List[nn.Module]): A list of fine-tuned models from which task vectors will be calculated.
68
+ scaling_factor (float): A factor by which the task vectors will be scaled before merging.
69
+ inplace (bool, optional): If True, the pre-trained model will be modified in place.
70
+ If False, a copy of the pre-trained model will be modified. Defaults to True.
71
+
72
+ Returns:
73
+ nn.Module: The pre-trained model with the merged task vectors.
74
+ """
75
+ if not inplace:
76
+ pretrained_model = deepcopy(pretrained_model)
77
+ if isinstance(finetuned_models[0], nn.Module):
78
+ finetuned_models = [
79
+ deepcopy(model.state_dict(keep_vars=True)) for model in finetuned_models
80
+ ]
81
+ task_vector: StateDictType = None
82
+ # Calculate the total task vector
83
+ for model in finetuned_models:
84
+ if task_vector is None:
85
+ task_vector = state_dict_sub(
86
+ model,
87
+ pretrained_model.state_dict(keep_vars=True),
88
+ )
89
+ else:
90
+ task_vector = state_dict_add(
91
+ task_vector,
92
+ state_dict_sub(
93
+ model,
94
+ pretrained_model.state_dict(keep_vars=True),
95
+ ),
96
+ )
97
+ # scale the task vector
98
+ task_vector = state_dict_mul(task_vector, scaling_factor)
99
+ # add the task vector to the pretrained model
100
+ state_dict = state_dict_add(
101
+ pretrained_model.state_dict(keep_vars=True), task_vector
102
+ )
103
+ pretrained_model.load_state_dict(state_dict)
104
+ return pretrained_model
105
+
106
+
107
+ @torch.no_grad()
108
+ def ties_merge(
109
+ pretrained_model: nn.Module,
110
+ finetuned_models: List[Dict[str, Tensor]],
111
+ scaling_factor: float,
112
+ threshold: float,
113
+ ) -> nn.Module:
114
+ remove_keys = []
115
+ merge_func = "sum"
116
+ if isinstance(finetuned_models[0], nn.Module):
117
+ finetuned_models = [
118
+ deepcopy(model.state_dict(keep_vars=True)) for model in finetuned_models
119
+ ]
120
+
121
+ ptm_check = pretrained_model.state_dict(keep_vars=True)
122
+
123
+ # Compute the task vectors
124
+ flat_ft = torch.vstack(
125
+ [state_dict_to_vector(check, remove_keys) for check in finetuned_models]
126
+ )
127
+ flat_ptm = state_dict_to_vector(ptm_check, remove_keys)
128
+ tv_flat_checks = flat_ft - flat_ptm
129
+
130
+ # Perform TIES Merging
131
+ merged_tv = ties_merging(
132
+ tv_flat_checks,
133
+ reset_thresh=threshold,
134
+ merge_func=merge_func,
135
+ )
136
+ merged_check = flat_ptm + scaling_factor * merged_tv
137
+ merged_state_dict = vector_to_state_dict(
138
+ merged_check, ptm_check, remove_keys=remove_keys
139
+ )
140
+
141
+ # Load the merged state dict into the pretrained model
142
+ pretrained_model.load_state_dict(merged_state_dict)
143
+ return pretrained_model
144
+
145
+
146
+ def entropy_loss(logits: Tensor, pred=None, eps: float = 1e-8) -> Tensor:
147
+ """
148
+ Compute the entropy loss of a set of logits.
149
+
150
+ Args:
151
+ logits (Tensor): The logits to compute the entropy loss of.
152
+ eps (float): A small value to avoid log(0). Default is 1e-8.
153
+
154
+ Returns:
155
+ Tensor: The entropy loss of the logits.
156
+ """
157
+ # Ensure the logits tensor has 2 dimensions
158
+ assert (
159
+ logits.dim() == 2
160
+ ), f"Expected logits to have 2 dimensions, found {logits.dim()}, {logits.size()=}"
161
+
162
+ # Compute the softmax probabilities
163
+ probs = torch.softmax(logits, dim=-1)
164
+
165
+ # Compute the entropy loss
166
+ return -torch.sum(probs * torch.log(probs + eps), dim=-1).mean()
167
+
168
+
169
+ class FrankWolfeHardAlgorithm(
170
+ CLIPClassificationMixin,
171
+ ModelFusionAlgorithm,
172
+ SimpleProfilerMixin,
173
+ ):
174
+
175
+ def __init__(
176
+ self,
177
+ merge_fn: str,
178
+ step_size: float,
179
+ max_iters: int,
180
+ dataset_size: int,
181
+ tasks: List[str] = [],
182
+ granularity: str = "task",
183
+ max_num_models: int = 100,
184
+ loss_fn: str = "cross_entropy",
185
+ init_weight: str = "",
186
+ scaling_factor: float = 1.0,
187
+ threshold: int = 20,
188
+ **kwargs,
189
+ ):
190
+ """
191
+ Initializes the TaskArithmeticAlgorithm with the given scaling factor.
192
+
193
+ Args:
194
+ scaling_factor (int): The factor by which the task vectors will be scaled before merging.
195
+ """
196
+ self.merger = merge_fn
197
+ if merge_fn == "task_arithmetic":
198
+ self.merge_fn = task_arithmetic_merge
199
+ elif merge_fn == "ties":
200
+ self.merge_fn = partial(ties_merge, threshold=threshold)
201
+ # elif merge_fn == "concrete_ta":
202
+ # self.merge_fn = ConcreteTaskArithmeticAlgorithmForCLIP(
203
+ # instantiate(OmegaConf.load("config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml"))
204
+ # )
205
+ else:
206
+ raise ValueError(f"Unsupported merge_fn: {merge_fn}")
207
+ self.scaling_factor = scaling_factor
208
+
209
+ self.init_weight = init_weight
210
+ self.step_size = step_size
211
+ self.max_iters = max_iters
212
+ self.granularity = granularity
213
+ self.loss_fn = loss_fn
214
+ self.tasks = tasks
215
+ self.dataset_size = dataset_size
216
+ self.max_num_models = max_num_models
217
+ super().__init__(**kwargs)
218
+
219
+ def on_frank_wolfe_iteration_start(self):
220
+ self.setup_zero_shot_classification_head()
221
+
222
+ @functools.cache
223
+ def get_shuffled_loader_iter(self, task: str):
224
+ if self.loss_fn == "cross_entropy":
225
+ # get dataloader kwargs
226
+ dataloader_kwargs = self._dataloader_kwargs.copy()
227
+ dataloader_kwargs["shuffle"] = True
228
+ dataloader_kwargs["batch_size"] = 1
229
+
230
+ # get the test dataset
231
+ clip_dataset = CLIPDataset(
232
+ self.modelpool.load_train_dataset(task), self.clip_processor
233
+ )
234
+ # create the dataloader
235
+ loader = DataLoader(clip_dataset, **dataloader_kwargs)
236
+ loader = self.fabric.setup_dataloaders(loader)
237
+ return iter(InfiniteDataLoader(loader))
238
+ elif self.loss_fn == "entropy":
239
+ return super().get_shuffled_test_loader_iter(
240
+ task,
241
+ batch_size=1,
242
+ )
243
+ else:
244
+ raise ValueError(f"Unsupported loss function: {self.loss_fn}")
245
+
246
+ def frank_wolfe_iteration(self, merged_model):
247
+
248
+ merged_model.train()
249
+ # zero the gradients
250
+ for name, param in merged_model.named_parameters():
251
+ param.requires_grad = True
252
+ param.grad = None
253
+
254
+ if self.loss_fn == "cross_entropy":
255
+ loss_fn = nn.CrossEntropyLoss()
256
+ elif self.loss_fn == "entropy":
257
+ loss_fn = entropy_loss
258
+ avg_loss = defaultdict(list)
259
+ tasks = self.tasks if self.tasks else self.modelpool.model_names
260
+ for task in tasks:
261
+ log.info(f"Processing task {task}")
262
+ for _ in range(self.dataset_size):
263
+ with self.profile("data loading"):
264
+ batch = next(self.get_shuffled_loader_iter(task))
265
+ with self.profile("forward pass"):
266
+ logits = self.compute_logits(merged_model, batch[0], task)
267
+ loss = loss_fn(logits, batch[1]) / (
268
+ self.dataset_size * len(self.modelpool.model_names)
269
+ )
270
+ with self.profile("backward pass"):
271
+ # self.fabric.backward(loss, retain_graph=True)
272
+ loss.backward()
273
+ avg_loss[task].append(loss.item())
274
+
275
+ # calculate the loss
276
+ avg_loss = {
277
+ task: sum(losses) / len(losses) for task, losses in avg_loss.items()
278
+ }
279
+ log.info(
280
+ f"Average Loss: {avg_loss}, Total Loss: {sum(avg_loss.values()) / len(avg_loss)}"
281
+ )
282
+
283
+ gradients = {
284
+ name: param.grad.clone().to("cpu")
285
+ for name, param in merged_model.named_parameters()
286
+ if param.requires_grad
287
+ }
288
+ for name, param in merged_model.named_parameters():
289
+ param.grad = None
290
+ merged_model.eval()
291
+
292
+ return gradients
293
+
294
+ def frank_wolfe_selection(
295
+ self, gradients, checkpoints, model_to_merge_names={}, type="task"
296
+ ):
297
+ assert type in [
298
+ "task",
299
+ "layer",
300
+ ], f"Unsupported FW selection type: {type}, supported types are ['task', 'layer']"
301
+ min_inner_product = float("inf")
302
+ min_model = None
303
+ min_model_name = None
304
+ log_dict = {}
305
+ if type == "task":
306
+ for model_name, model_to_merge in checkpoints.items():
307
+ model_to_merge = model_to_merge.to("cpu").state_dict()
308
+ inner_product_sum = 0
309
+ for param_name, param_value in model_to_merge.items():
310
+ # caclulate consine similarity
311
+ grad = gradients[param_name]
312
+ ckpt = model_to_merge[param_name]
313
+ param_alignment = torch.dot(grad.flatten(), ckpt.flatten()) / (
314
+ torch.norm(grad) * torch.norm(ckpt)
315
+ )
316
+ inner_product_sum += param_alignment
317
+ log_dict[model_name] = inner_product_sum.item()
318
+ if (
319
+ inner_product_sum < min_inner_product
320
+ and model_name not in model_to_merge_names
321
+ ):
322
+ min_inner_product = inner_product_sum
323
+ min_model = deepcopy(model_to_merge)
324
+ min_model_name = model_name
325
+ else:
326
+ min_model = {}
327
+ min_inner_product = {}
328
+ min_idx = {}
329
+ min_model_name = {}
330
+ for model_name, model_to_merge in checkpoints.items():
331
+ model_to_merge = model_to_merge.to("cpu").state_dict()
332
+ for param_name, param_value in model_to_merge.items():
333
+ # caclulate consine similarity
334
+ grad = gradients[param_name]
335
+ ckpt = model_to_merge[param_name]
336
+ param_alignment = torch.dot(grad.flatten(), ckpt.flatten()) / (
337
+ torch.norm(grad) * torch.norm(ckpt)
338
+ )
339
+ if (
340
+ param_name not in min_inner_product
341
+ or param_alignment < min_inner_product[param_name]
342
+ ) and model_name not in model_to_merge_names[param_name]:
343
+ min_inner_product[param_name] = param_alignment
344
+ # if min_inner_product[param_name] < 0:
345
+ min_model[param_name] = param_value
346
+ min_idx[param_name] = model_name
347
+ min_model_name[param_name] = model_name
348
+ # else:
349
+ # min_model[param_name] = torch.zeros_like(param_value)
350
+ min_inner_product = sum(min_inner_product.values())
351
+ log_dict = {model_name: 0 for model_name in checkpoints.keys()}
352
+ for k in min_idx.values():
353
+ log_dict[k] += 1
354
+
355
+ return min_model, min_model_name, min_inner_product, log_dict
356
+
357
+ def run(self, modelpool: HuggingFaceClipVisionPool):
358
+ log.info("Fusing models using FW merging.")
359
+ self.modelpool = modelpool
360
+ self.log_hyperparams(self.config)
361
+ self.on_frank_wolfe_iteration_start()
362
+
363
+ assert modelpool.has_pretrained, "Pretrained model is required."
364
+ finetuned_models = {
365
+ name: modelpool.load_model(name)
366
+ for name in modelpool.model_names[: self.max_num_models]
367
+ }
368
+ pretrained_model = modelpool.load_model("_pretrained_")
369
+
370
+ if self.init_weight:
371
+ if self.init_weight == "base":
372
+ log.info("Initializing the merged model with the base model")
373
+ merged_model = pretrained_model
374
+ else:
375
+ log.info("Initializing the merged model with the initial weight")
376
+ if isinstance(self.init_weight, str):
377
+ # self.config.weights is a path to a saved tensor
378
+ layer_wise_weight = load_tensor_from_file(self.init_weight)
379
+ else:
380
+ raise ValueError(f"Unsupported weights format: {self.init_weight}")
381
+
382
+ merged_model = LayerWiseMergedModel(
383
+ layer_wise_weight=layer_wise_weight,
384
+ pretrained_model=modelpool.load_model("_pretrained_"),
385
+ finetuned_models=list(finetuned_models.values()),
386
+ clamp_weights=False,
387
+ tie_weights=True,
388
+ strict=False,
389
+ ).cuda()
390
+ merged_model = merged_model.merge_and_unload()
391
+ else:
392
+ log.info("Initializing the merged model with merge function")
393
+ merged_model = self.merge_fn(
394
+ pretrained_model=modelpool.load_model("_pretrained_"),
395
+ finetuned_models=list(finetuned_models.values()),
396
+ scaling_factor=self.scaling_factor,
397
+ ).cuda()
398
+ # merged_model = self.fabric.setup(merged_model)
399
+
400
+ initial_model = modelpool.load_model("_pretrained_")
401
+ initial_model.load_state_dict(deepcopy(merged_model.state_dict()))
402
+ finetuned_models["initial"] = initial_model
403
+ for step_idx in (
404
+ pbar := tqdm(
405
+ range(self.max_iters if not self.is_debug_mode else 1),
406
+ ("[DEBUG MODE] " if self.is_debug_mode else "") + "Frank-Wolfe Merging",
407
+ dynamic_ncols=True,
408
+ )
409
+ ):
410
+ torch.cuda.empty_cache()
411
+ torch.set_grad_enabled(True)
412
+ gradients = self.frank_wolfe_iteration(merged_model.cuda())
413
+ torch.set_grad_enabled(False)
414
+ grad_norm = torch.norm(
415
+ torch.stack([torch.norm(g) for g in gradients.values()])
416
+ )
417
+
418
+ model_to_merge_names = (
419
+ []
420
+ if self.granularity == "task"
421
+ else {name: [] for name in merged_model.state_dict().keys()}
422
+ )
423
+ min_model, min_model_name, min_alignment, chosen_model = (
424
+ self.frank_wolfe_selection(
425
+ gradients,
426
+ finetuned_models,
427
+ model_to_merge_names=model_to_merge_names,
428
+ type=self.granularity,
429
+ )
430
+ )
431
+
432
+ # Determine step size
433
+ step = 2 / (step_idx + 2) * self.step_size
434
+
435
+ # print iteration information
436
+ log.info(
437
+ f"Iteration {step_idx+1}, Task Vector: {min_model_name}, Gradient Norm: {grad_norm:.6f}, Inner Products: {min_alignment:.6f}, Chosen Model: {chosen_model}"
438
+ )
439
+
440
+ merged_model = self.merge_fn(
441
+ pretrained_model=merged_model.to("cpu"),
442
+ finetuned_models=[min_model],
443
+ scaling_factor=step * self.scaling_factor,
444
+ )
445
+
446
+ torch.set_grad_enabled(False)
447
+ merged_model = merged_model.cuda().eval()
448
+ return merged_model