fusion-bench 0.2.14__tar.gz → 0.2.16__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/PKG-INFO +10 -3
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/README.md +9 -2
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/__init__.py +4 -0
- fusion_bench-0.2.16/fusion_bench/method/fw_merging/__init__.py +2 -0
- fusion_bench-0.2.16/fusion_bench/method/fw_merging/fw_hard.py +448 -0
- fusion_bench-0.2.16/fusion_bench/method/fw_merging/fw_soft.py +519 -0
- fusion_bench-0.2.16/fusion_bench/method/moe_pruner/__init__.py +7 -0
- fusion_bench-0.2.16/fusion_bench/method/moe_pruner/hooks/__init__.py +6 -0
- fusion_bench-0.2.16/fusion_bench/method/moe_pruner/hooks/deepseek_v2.py +85 -0
- fusion_bench-0.2.16/fusion_bench/method/moe_pruner/hooks/hook.py +23 -0
- fusion_bench-0.2.16/fusion_bench/method/moe_pruner/hooks/mixtral.py +93 -0
- fusion_bench-0.2.16/fusion_bench/method/moe_pruner/moe_pruner.py +304 -0
- fusion_bench-0.2.16/fusion_bench/method/moe_pruner/utils/__init__.py +1 -0
- fusion_bench-0.2.16/fusion_bench/method/moe_pruner/utils/data.py +154 -0
- fusion_bench-0.2.16/fusion_bench/method/moe_pruner/utils/prune.py +313 -0
- fusion_bench-0.2.16/fusion_bench/method/moe_pruner/utils/score.py +41 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/__init__.py +1 -0
- fusion_bench-0.2.16/fusion_bench/method/pruning/llama_sparsegpt_prune.py +223 -0
- fusion_bench-0.2.16/fusion_bench/method/pruning/sparsegpt_utils/__init__.py +1 -0
- fusion_bench-0.2.16/fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py +128 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/data.py +33 -14
- fusion_bench-0.2.16/fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench-0.2.16/fusion_bench/method/randes/__init__.py +15 -0
- fusion_bench-0.2.16/fusion_bench/method/randes/base_algorithm.py +1013 -0
- fusion_bench-0.2.16/fusion_bench/method/randes/modelsoup.py +126 -0
- fusion_bench-0.2.16/fusion_bench/method/randes/task_arithmetic.py +318 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/sparselo/sparselo.py +20 -2
- fusion_bench-0.2.16/fusion_bench/method/tall_mask/__init__.py +1 -0
- fusion_bench-0.2.16/fusion_bench/method/tall_mask/task_arithmetic.py +133 -0
- fusion_bench-0.2.16/fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/causal_lm/causal_lm.py +73 -10
- fusion_bench-0.2.16/fusion_bench/modelpool/lazy_state_dict_pool.py +15 -0
- fusion_bench-0.2.16/fusion_bench/models/modeling_deepseek_v2/__init__.py +15 -0
- fusion_bench-0.2.16/fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py +208 -0
- fusion_bench-0.2.16/fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py +1922 -0
- fusion_bench-0.2.16/fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py +38 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/programs/fabric_fusion_program.py +5 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/taskpool.py +8 -1
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/__init__.py +1 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/data.py +1 -1
- fusion_bench-0.2.16/fusion_bench/utils/lazy_state_dict.py +268 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/parameters.py +33 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/state_dict_arithmetic.py +74 -2
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/type.py +1 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/PKG-INFO +10 -3
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/SOURCES.txt +64 -0
- fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/test/TALL10.yaml +28 -0
- fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/test/TALL12.yaml +28 -0
- fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/test/TALL16.yaml +28 -0
- fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/test/TALL18.yaml +28 -0
- fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/train/TALL10.yaml +28 -0
- fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/train/TALL12.yaml +28 -0
- fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/train/TALL16.yaml +28 -0
- fusion_bench-0.2.16/fusion_bench_config/dataset/image_classification/train/TALL18.yaml +28 -0
- fusion_bench-0.2.16/fusion_bench_config/method/fw_merging/fw_hard.yaml +11 -0
- fusion_bench-0.2.16/fusion_bench_config/method/fw_merging/fw_soft.yaml +12 -0
- fusion_bench-0.2.16/fusion_bench_config/method/moe_pruner/moe_pruner.yaml +15 -0
- fusion_bench-0.2.16/fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml +16 -0
- fusion_bench-0.2.16/fusion_bench_config/method/randes/superposed_model_soup.yaml +18 -0
- fusion_bench-0.2.16/fusion_bench_config/method/randes/superposed_task_arithmetic.yaml +20 -0
- fusion_bench-0.2.16/fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml +20 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +2 -1
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +1 -1
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +1 -1
- fusion_bench-0.2.16/fusion_bench_config/method/tall_mask/task_arithmetic.yaml +4 -0
- fusion_bench-0.2.16/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml +29 -0
- fusion_bench-0.2.16/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml +29 -0
- fusion_bench-0.2.16/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml +29 -0
- fusion_bench-0.2.16/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml +29 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml +8 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml +8 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml +8 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml +8 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml +15 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B-Instruct.yaml +11 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B.yaml +11 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B-Instruct.yaml +11 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B.yaml +11 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml +11 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml +11 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml +11 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml +11 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml +14 -0
- fusion_bench-0.2.16/fusion_bench_config/modelpool/SeqenceClassificationModelPool/roberta-base_glue.yaml +69 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/pyproject.toml +1 -1
- fusion_bench-0.2.14/fusion_bench/utils/plot/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/LICENSE +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/__main__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/method/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/method/base_algorithm.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/modelpool/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/modelpool/base_pool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/modelpool/huggingface_clip_vision.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/taskpool/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/taskpool/base_pool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/taskpool/clip_image_classification.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/constants/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/constants/clip_vision.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/constants/paths.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/arc.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/arc_agi.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/augmenters.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/messagers.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/np_cache.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/preprocess.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/arc_agi/representers.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/clip_dataset.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/fer2013.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/gpt2_glue.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/gsm8k.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/image_dataset.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/imdb.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/alpaca.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/collate.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/metamathqa.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/openai.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/preference_700k.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/sharegpt.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/squad.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/stanford_shp.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/ultrachat.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/utils/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/llama/wikitext.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/dataset/nyuv2.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/ada_svd/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/ada_svd/clip_vision.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/clip_task_wise_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/entropy_loss.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/llama_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/min_norm_solvers.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/task_wise_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/adamerging/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/analysis/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/analysis/task_vector_cos_similarity.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/analysis/task_vector_violin_plot.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/base_algorithm.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/classification/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/classification/clip_finetune.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/classification/continual_clip_finetune.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/concrete_subspace/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/concrete_subspace/clip_post_defense.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dare/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dare/simple_average.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dare/task_arithmetic.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dare/ties_merging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dare/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dawe/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dawe/dawe_for_clip.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dawe/warppers/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dawe/warppers/dawe_model.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/depth_upscaling/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/depth_upscaling/depth_upscaling.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/doge_ta/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/doge_ta/doge_ta.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/doge_ta/layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/dummy.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/ensemble.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/fisher_merging/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/fisher_merging/fisher_merging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +0 -0
- /fusion_bench-0.2.14/fusion_bench/method/ties_merging/ties_merging_utils.py → /fusion_bench-0.2.16/fusion_bench/method/fw_merging/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/clip_layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/clip_task_wise_gossip.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/entropy_loss.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/min_norm_solvers.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/task_wise_gossip.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/gossip/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/isotropic_merging/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/isotropic_merging/iso.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/isotropic_merging/iso_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/expo.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/linear_interpolation.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/llama_expo.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/simple_average_for_llama.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/linear/task_arithmetic_for_llama.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/lm_finetune/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/lm_finetune/bradley_terry_rm.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/lm_finetune/causal_lm_pretrain.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/lm_finetune/fullfinetune_sft.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/lm_finetune/peftfinetune_sft.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/mixture_of_experts/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/mixture_of_experts/mixtral_merging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/model_recombination.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/method/pruning/wanda_utils → fusion_bench-0.2.16/fusion_bench/method/moe_pruner/utils}/layerwrapper.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/opcm.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/task_arithmetic.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/ties_merging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/opcm/weight_average.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/llama_magnitude_prune.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/llama_random_prune.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/llama_wanda_prune.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/magnitude_diff_pruning.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/prune_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/ablate.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/eval.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/prune.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/prune_opt.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pruning/wanda_utils/sparsegpt.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/clip_pwe_moe.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/module.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/openclip_pwe_moe.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/phn/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/phn/solvers.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/pwe_moe/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/rankone_moe/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/rankone_moe/clip_rankone_moe.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/rankone_moe/rankone_moe.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/regmean/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/regmean/clip_regmean.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/regmean/gpt2_regmean.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/regmean/regmean.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/simple_average.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/slerp/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/slerp/slerp.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/slerp/slerp_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/smile_upscaling/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/smile_upscaling/singular_projection_merging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/smile_upscaling/smile_upscaling.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/sparse_we_moe/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/sparse_we_moe/sparse_we_moe.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/sparselo/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/surgery/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/tall_mask/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_arithmetic/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_arithmetic/task_arithmetic.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/TSVC.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/TSVM.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/task_singular_vector/utils/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/ties_merging/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/ties_merging/ties_merging.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/trust_region/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/trust_region/clip_task_arithmetic.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/trust_region/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/we_moe/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/we_moe/clip_we_moe.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/we_moe/we_moe.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/weighted_average/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/weighted_average/llama.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/method/weighted_average/weighted_average.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/method/tall_mask → fusion_bench-0.2.16/fusion_bench/metrics}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/continual_learning/backward_transfer.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/depth.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/loss.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/noise.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/normal.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/nyuv2/segmentation.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/text_to_image_generation/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/text_to_image_generation/compressibility.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/clip_classification.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/fabric_training.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/hydra_config.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/lightning_fabric.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/openclip_classification.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/metrics → fusion_bench-0.2.16/fusion_bench/mixins/optim}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/optim/adamw_with_warmup.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/rich_live.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/serialization.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/mixins/simple_profiler.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/base_pool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/causal_lm/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/clip_vision/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/clip_vision/modelpool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/huggingface_automodel.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/huggingface_gpt2_classification.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/nyuv2_modelpool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/openclip_vision/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/openclip_vision/modelpool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/seq2seq_lm/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/seq2seq_lm/modelpool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/seq_classification_lm/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/seq_classification_lm/reward_model.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/chat_templates/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/chat_templates/llama_3_Instruct.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/chat_templates/load_tokenizer.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/hf_clip.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/mixins/optim → fusion_bench-0.2.16/fusion_bench/models/linearized}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/linearized/linearized_model_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/linearized/vision_model.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/__init__.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/models/linearized → fusion_bench-0.2.16/fusion_bench/models/llama/model_utils}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/model_utils/embedding.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/model_utils/liger_kernel.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/model_utils/misc.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/model_utils/mod.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/model_utils/visual.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/patcher.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/llama/tokenizer_loader.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/masks/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/masks/mask_model.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/losparse_linear.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/register.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_losparse_llama/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_mistral/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_mistral/register.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_qwen2/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/modeling_smile_qwen2/register.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/models/llama/model_utils → fusion_bench-0.2.16/fusion_bench/models/nyuv2}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/nyuv2/aspp.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/nyuv2/lightning_module.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/nyuv2/resnet.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/nyuv2/resnet_dilated.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/open_clip/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/open_clip/modeling.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/open_clip/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/open_clip/variables_and_paths.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/parameter_dict.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/rankone_moe.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/separate_io.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/models/nyuv2 → fusion_bench-0.2.16/fusion_bench/models/smile_moe}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/smile_moe/linear_from_hf_config.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/smile_moe/linear_from_module.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/smile_moe/utils/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/smile_moe/utils/svd_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/sparse_we_moe.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/surgery/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/surgery/surgerymodelwrapper.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/we_moe.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/models/smile_moe → fusion_bench-0.2.16/fusion_bench/models/wrappers}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/wrappers/ensemble.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/wrappers/layer_wise_fusion.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/models/wrappers/task_wise_fusion.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/exception.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/lr_scheduler/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/lr_scheduler/linear_warmup.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/lr_scheduler/utils/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/lr_scheduler/utils/visualization.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/optim/mezo.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/programs/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/programs/base_program.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/models/wrappers → fusion_bench-0.2.16/fusion_bench/scripts}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/scripts/cli.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/scripts → fusion_bench-0.2.16/fusion_bench/scripts/clip}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/scripts/clip/convert_checkpoint.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/scripts/imgui.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/scripts/nyuv2_mtl_train.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/scripts/webui.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/base_pool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/scripts/clip → fusion_bench-0.2.16/fusion_bench/taskpool/clip_vision/utils}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/dummy.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/gpt2_text_classification.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/llama/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/llama/reward_model.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/llama/test_generation.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/lm_eval_harness/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/lm_eval_harness/taskpool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/nyuv2_taskpool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/openclip_vision/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/taskpool/openclip_vision/openclip_taskpool.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/base_task.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/classification.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/cifar10.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/cifar100.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/clip_dataset.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/cub_200_2011.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/dtd.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/emnist_letters.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/emnist_mnist.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/eurosat.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/fashion_mnist.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/fer2013.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/flower102.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/food101.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/gtsrb.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/imagenet.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/kmnist.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/mnist.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/pcam.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/rendered_sst2.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/resisc45.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/stanford_cars.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/stl10.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/sun397.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/svhn.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/clip_classification/tiny_imagenet.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/taskpool/clip_vision/utils → fusion_bench-0.2.16/fusion_bench/tasks/flan_t5_text_generation}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/auto.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/cache_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/devices.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/dict.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/dtype.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/expr.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/fabric.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/functools.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/hydra_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/instantiate.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/json.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/lazy_imports.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/misc.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/packages.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/path.py +0 -0
- {fusion_bench-0.2.14/fusion_bench/tasks/flan_t5_text_generation → fusion_bench-0.2.16/fusion_bench/utils/plot}/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/plot/color_data.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/plot/token.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/plot/token_notebook.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/pylogger.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/rich_utils.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/set.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/strenum/__init__.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/strenum/_name_mangler.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/strenum/_version.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/tensorboard.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench/utils/timer.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/dependency_links.txt +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/entry_points.txt +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/requires.txt +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench.egg-info/top_level.txt +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/README.md +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/README.md +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/TALL14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/TALL20.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/cifar10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/cifar100.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/dtd.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/eurosat.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/fer2013.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/food101.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/kmnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/pcam.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/resisc45.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/stl10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/sun397.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/svhn.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/TALL14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/TALL20.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/cifar10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/cifar100.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/dtd.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/eurosat.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/fer2013.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/food101.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/kmnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/pcam.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/resisc45.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/stl10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/sun397.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/svhn.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/dtd.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/eurosat.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/resisc45.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/sun397.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/svhn.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/question_answering/search_qa.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/question_answering/test/search_qa.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/question_answering/train/search_qa.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/question_answering/val/search_qa.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/summarization/test/xsum.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/summarization/train/xsum.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/summarization/val/xsum.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/summarization/xsum.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/auto.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/llama_ddp.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/llama_fsdp.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/llama_peft_fsdp.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/loggers/csv_logger.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/loggers/wandb_logger.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/strategy/deepspeed.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/strategy/llama_fsdp.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/fabric_model_fusion.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/hydra/default.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/hydra/help/fusion_bench_help.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/hydra/job_logging/rich_logging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/llama_full_finetune.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/llama_magnitude_pruning.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/llama_model_fusion.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/ada_svd/clip_vision.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/adamerging/clip.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/adamerging/llama_sft.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/adamerging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/classification/clip_continual_finetune.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/classification/clip_finetune.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/clip_finetune.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/dare/simple_average.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/dare/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/dare/ties_merging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/dawe/dawe_for_clip.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/depth_upscaling.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/doge_ta/doge_ta.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/dummy.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/ensemble/max_model_predictor.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/ensemble/simple_ensemble.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/ensemble/weighted_ensemble.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/fisher_merging/fisher_merging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/gossip/layer_wise_clip.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/isotropic_merging/iso_c.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/isotropic_merging/iso_cts.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/expo.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/linear_interpolation.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/llama_expo.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/llama_expo_with_dare.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/simple_average_for_llama.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/weighted_average.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/linear/weighted_average_for_llama.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/mixtral_moe_merging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/mixtral_moe_upscaling.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/model_recombination.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/opcm/opcm.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/opcm/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/opcm/ties_merging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/opcm/weight_average.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pruning/llama_random_pruning.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/rankone_moe/rankone_moe.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/regmean/clip_regmean.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/regmean/gpt2_regmean.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/regmean/regmean.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/simple_average.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/slerp/slerp.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/surgery/adamerging_surgery.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/ties_merging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/README.md +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/download_TALL20_models.sh +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/model/flan-t5/generate_flan-t5.sh +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_cars_dtd.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/automodelpool.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/gpt-2_glue.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/mixtral_moe_merging.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/nyuv2_modelpool.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/nyuv2_config.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/nyuv2_mtl_train.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/dummy.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/gpt-2_glue.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/nyuv2_taskpool.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/fusion_bench_config/taskpool/reward_model_evaluation.yaml +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/setup.cfg +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/tests/test_depth_upscaling.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/tests/test_simple_average.py +0 -0
- {fusion_bench-0.2.14 → fusion_bench-0.2.16}/tests/test_weighed_ensemble.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: fusion_bench
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.16
|
|
4
4
|
Summary: A Comprehensive Benchmark of Deep Model Fusion
|
|
5
5
|
Author-email: Anke Tang <tang.anke@foxmail.com>
|
|
6
6
|
License: MIT License
|
|
@@ -63,14 +63,14 @@ Dynamic: license-file
|
|
|
63
63
|
|
|
64
64
|
</div>
|
|
65
65
|
|
|
66
|
-
> [!TIP]
|
|
66
|
+
> [!TIP]
|
|
67
67
|
> Documentation is available at [tanganke.github.io/fusion_bench/](https://tanganke.github.io/fusion_bench/).
|
|
68
68
|
|
|
69
69
|
## Overview
|
|
70
70
|
|
|
71
71
|
FusionBench is a benchmark suite designed to evaluate the performance of various deep model fusion techniques. It aims to provide a comprehensive comparison of different methods on a variety of datasets and tasks.
|
|
72
72
|
|
|
73
|
-
Projects based on FusionBench and news from the community (descending order of date):
|
|
73
|
+
Projects based on FusionBench and news from the community (descending order of date. If you have any work based on FusionBench, please feel free to let us know, we are willing to add it to the list. :partying_face:):
|
|
74
74
|
|
|
75
75
|
<details>
|
|
76
76
|
<summary>Hao Mark Chen, et al. FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization. Mar 2025. https://arxiv.org/abs/2503.12649</summary>
|
|
@@ -139,6 +139,10 @@ cd fusion_bench
|
|
|
139
139
|
pip install -e . # install the package in editable mode
|
|
140
140
|
```
|
|
141
141
|
|
|
142
|
+
> [!TIP]
|
|
143
|
+
> FusionBench is highly dependent on the use of [Hydra](https://hydra.cc/) for configuration management and command line argument parsing, and [Lightning Fabric](https://lightning.ai/) for device management.
|
|
144
|
+
> If you are not familiar with these tools, it is strongly recommended to read the [Hydra](https://hydra.cc/docs/intro/) and [Lightning Fabric](https://lightning.ai/docs/fabric/stable/) documentation.
|
|
145
|
+
|
|
142
146
|
### Install with [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness)
|
|
143
147
|
|
|
144
148
|
[](https://doi.org/10.5281/zenodo.10256836)
|
|
@@ -157,6 +161,9 @@ pip install -e ".[lm-eval-harness]"
|
|
|
157
161
|
This will install the latest version of fusion-bench and the dependencies required for LM-Eval Harness.
|
|
158
162
|
Documentation for using LM-Eval Harness within FusionBench framework can be found at [this online documentation](https://tanganke.github.io/fusion_bench/taskpool/lm_eval_harness) or in the [`docs/taskpool/lm_eval_harness.md`](docs/taskpool/lm_eval_harness.md) markdown file.
|
|
159
163
|
|
|
164
|
+
> [!TIP]
|
|
165
|
+
> Documentation for merging large language models using FusionBench can be found at [this online documentation](https://tanganke.github.io/fusion_bench/modelpool/causal_lm) or in the [`docs/modelpool/causal_lm.md`](docs/modelpool/causal_lm.md) markdown file.
|
|
166
|
+
|
|
160
167
|
## Introduction to Deep Model Fusion
|
|
161
168
|
|
|
162
169
|
Deep model fusion is a technique that merges, ensemble, or fuse multiple deep neural networks to obtain a unified model.
|
|
@@ -12,14 +12,14 @@
|
|
|
12
12
|
|
|
13
13
|
</div>
|
|
14
14
|
|
|
15
|
-
> [!TIP]
|
|
15
|
+
> [!TIP]
|
|
16
16
|
> Documentation is available at [tanganke.github.io/fusion_bench/](https://tanganke.github.io/fusion_bench/).
|
|
17
17
|
|
|
18
18
|
## Overview
|
|
19
19
|
|
|
20
20
|
FusionBench is a benchmark suite designed to evaluate the performance of various deep model fusion techniques. It aims to provide a comprehensive comparison of different methods on a variety of datasets and tasks.
|
|
21
21
|
|
|
22
|
-
Projects based on FusionBench and news from the community (descending order of date):
|
|
22
|
+
Projects based on FusionBench and news from the community (descending order of date. If you have any work based on FusionBench, please feel free to let us know, we are willing to add it to the list. :partying_face:):
|
|
23
23
|
|
|
24
24
|
<details>
|
|
25
25
|
<summary>Hao Mark Chen, et al. FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization. Mar 2025. https://arxiv.org/abs/2503.12649</summary>
|
|
@@ -88,6 +88,10 @@ cd fusion_bench
|
|
|
88
88
|
pip install -e . # install the package in editable mode
|
|
89
89
|
```
|
|
90
90
|
|
|
91
|
+
> [!TIP]
|
|
92
|
+
> FusionBench is highly dependent on the use of [Hydra](https://hydra.cc/) for configuration management and command line argument parsing, and [Lightning Fabric](https://lightning.ai/) for device management.
|
|
93
|
+
> If you are not familiar with these tools, it is strongly recommended to read the [Hydra](https://hydra.cc/docs/intro/) and [Lightning Fabric](https://lightning.ai/docs/fabric/stable/) documentation.
|
|
94
|
+
|
|
91
95
|
### Install with [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness)
|
|
92
96
|
|
|
93
97
|
[](https://doi.org/10.5281/zenodo.10256836)
|
|
@@ -106,6 +110,9 @@ pip install -e ".[lm-eval-harness]"
|
|
|
106
110
|
This will install the latest version of fusion-bench and the dependencies required for LM-Eval Harness.
|
|
107
111
|
Documentation for using LM-Eval Harness within FusionBench framework can be found at [this online documentation](https://tanganke.github.io/fusion_bench/taskpool/lm_eval_harness) or in the [`docs/taskpool/lm_eval_harness.md`](docs/taskpool/lm_eval_harness.md) markdown file.
|
|
108
112
|
|
|
113
|
+
> [!TIP]
|
|
114
|
+
> Documentation for merging large language models using FusionBench can be found at [this online documentation](https://tanganke.github.io/fusion_bench/modelpool/causal_lm) or in the [`docs/modelpool/causal_lm.md`](docs/modelpool/causal_lm.md) markdown file.
|
|
115
|
+
|
|
109
116
|
## Introduction to Deep Model Fusion
|
|
110
117
|
|
|
111
118
|
Deep model fusion is a technique that merges, ensemble, or fuse multiple deep neural networks to obtain a unified model.
|
|
@@ -67,6 +67,7 @@ _import_structure = {
|
|
|
67
67
|
"CLIPTaskWiseGossipAlgorithm",
|
|
68
68
|
"FlanT5LayerWiseGossipAlgorithm",
|
|
69
69
|
],
|
|
70
|
+
"fw_merging": ["FrankWolfeHardAlgorithm", "FrankWolfeSoftAlgorithm"],
|
|
70
71
|
# plug-and-play model merging methods
|
|
71
72
|
"concrete_subspace": [
|
|
72
73
|
"ConcreteTaskArithmeticAlgorithmForCLIP",
|
|
@@ -103,6 +104,7 @@ _import_structure = {
|
|
|
103
104
|
"RandomPruningForLlama",
|
|
104
105
|
"MagnitudePruningForLlama",
|
|
105
106
|
"WandaPruningForLlama",
|
|
107
|
+
"SparseGPTPruningForLlama",
|
|
106
108
|
],
|
|
107
109
|
"sparselo": [
|
|
108
110
|
"IterativeSparseLoForLlama",
|
|
@@ -141,6 +143,7 @@ if TYPE_CHECKING:
|
|
|
141
143
|
WeightedEnsembleAlgorithm,
|
|
142
144
|
)
|
|
143
145
|
from .fisher_merging import FisherMergingForCLIPVisionModel
|
|
146
|
+
from .fw_merging import FrankWolfeHardAlgorithm, FrankWolfeSoftAlgorithm
|
|
144
147
|
from .gossip import (
|
|
145
148
|
CLIPLayerWiseGossipAlgorithm,
|
|
146
149
|
CLIPTaskWiseGossipAlgorithm,
|
|
@@ -172,6 +175,7 @@ if TYPE_CHECKING:
|
|
|
172
175
|
MagnitudeDiffPruningAlgorithm,
|
|
173
176
|
MagnitudePruningForLlama,
|
|
174
177
|
RandomPruningForLlama,
|
|
178
|
+
SparseGPTPruningForLlama,
|
|
175
179
|
WandaPruningForLlama,
|
|
176
180
|
)
|
|
177
181
|
from .pwe_moe import (
|
|
@@ -0,0 +1,448 @@
|
|
|
1
|
+
"""
|
|
2
|
+
This script contains the general implementation of the Task Arithmetic method.
|
|
3
|
+
|
|
4
|
+
http://arxiv.org/abs/2212.04089
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
import functools
|
|
8
|
+
import logging
|
|
9
|
+
import os
|
|
10
|
+
from abc import abstractmethod
|
|
11
|
+
from collections import defaultdict
|
|
12
|
+
from copy import deepcopy
|
|
13
|
+
from functools import partial
|
|
14
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Mapping, TypeVar, Union
|
|
15
|
+
|
|
16
|
+
import torch
|
|
17
|
+
from lightning.fabric.utilities.rank_zero import rank_zero_only
|
|
18
|
+
from omegaconf import DictConfig
|
|
19
|
+
from torch import Tensor, nn
|
|
20
|
+
from torch.utils.data import DataLoader
|
|
21
|
+
from tqdm.autonotebook import tqdm
|
|
22
|
+
|
|
23
|
+
from fusion_bench.compat.method import ModelFusionAlgorithm
|
|
24
|
+
from fusion_bench.compat.modelpool import HuggingFaceClipVisionPool, ModelPool
|
|
25
|
+
from fusion_bench.dataset.clip_dataset import CLIPDataset
|
|
26
|
+
from fusion_bench.mixins import CLIPClassificationMixin
|
|
27
|
+
from fusion_bench.mixins.lightning_fabric import LightningFabricMixin
|
|
28
|
+
from fusion_bench.mixins.simple_profiler import SimpleProfilerMixin
|
|
29
|
+
from fusion_bench.models.wrappers.layer_wise_fusion import (
|
|
30
|
+
LayerWiseMergedModel,
|
|
31
|
+
get_layer_wise_weights,
|
|
32
|
+
)
|
|
33
|
+
from fusion_bench.utils.data import load_tensor_from_file
|
|
34
|
+
from fusion_bench.utils.type import TorchModelType
|
|
35
|
+
|
|
36
|
+
from .utils import *
|
|
37
|
+
|
|
38
|
+
if TYPE_CHECKING:
|
|
39
|
+
from fusion_bench.programs.fabric_fusion_program import FabricModelFusionProgram
|
|
40
|
+
|
|
41
|
+
from fusion_bench.mixins.simple_profiler import SimpleProfilerMixin
|
|
42
|
+
from fusion_bench.modelpool import BaseModelPool
|
|
43
|
+
from fusion_bench.utils import instantiate
|
|
44
|
+
from fusion_bench.utils.data import InfiniteDataLoader
|
|
45
|
+
from fusion_bench.utils.state_dict_arithmetic import (
|
|
46
|
+
state_dict_add,
|
|
47
|
+
state_dict_mul,
|
|
48
|
+
state_dict_sub,
|
|
49
|
+
)
|
|
50
|
+
from fusion_bench.utils.type import StateDictType
|
|
51
|
+
|
|
52
|
+
log = logging.getLogger(__name__)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
@torch.no_grad()
|
|
56
|
+
def task_arithmetic_merge(
|
|
57
|
+
pretrained_model: nn.Module,
|
|
58
|
+
finetuned_models: List[Dict[str, Tensor]],
|
|
59
|
+
scaling_factor: float,
|
|
60
|
+
inplace: bool = True,
|
|
61
|
+
) -> nn.Module:
|
|
62
|
+
"""
|
|
63
|
+
Merges the task vectors from multiple fine-tuned models into a single pre-trained model.
|
|
64
|
+
|
|
65
|
+
Args:
|
|
66
|
+
pretrained_model (nn.Module): The pre-trained model to which the task vectors will be added.
|
|
67
|
+
finetuned_models (List[nn.Module]): A list of fine-tuned models from which task vectors will be calculated.
|
|
68
|
+
scaling_factor (float): A factor by which the task vectors will be scaled before merging.
|
|
69
|
+
inplace (bool, optional): If True, the pre-trained model will be modified in place.
|
|
70
|
+
If False, a copy of the pre-trained model will be modified. Defaults to True.
|
|
71
|
+
|
|
72
|
+
Returns:
|
|
73
|
+
nn.Module: The pre-trained model with the merged task vectors.
|
|
74
|
+
"""
|
|
75
|
+
if not inplace:
|
|
76
|
+
pretrained_model = deepcopy(pretrained_model)
|
|
77
|
+
if isinstance(finetuned_models[0], nn.Module):
|
|
78
|
+
finetuned_models = [
|
|
79
|
+
deepcopy(model.state_dict(keep_vars=True)) for model in finetuned_models
|
|
80
|
+
]
|
|
81
|
+
task_vector: StateDictType = None
|
|
82
|
+
# Calculate the total task vector
|
|
83
|
+
for model in finetuned_models:
|
|
84
|
+
if task_vector is None:
|
|
85
|
+
task_vector = state_dict_sub(
|
|
86
|
+
model,
|
|
87
|
+
pretrained_model.state_dict(keep_vars=True),
|
|
88
|
+
)
|
|
89
|
+
else:
|
|
90
|
+
task_vector = state_dict_add(
|
|
91
|
+
task_vector,
|
|
92
|
+
state_dict_sub(
|
|
93
|
+
model,
|
|
94
|
+
pretrained_model.state_dict(keep_vars=True),
|
|
95
|
+
),
|
|
96
|
+
)
|
|
97
|
+
# scale the task vector
|
|
98
|
+
task_vector = state_dict_mul(task_vector, scaling_factor)
|
|
99
|
+
# add the task vector to the pretrained model
|
|
100
|
+
state_dict = state_dict_add(
|
|
101
|
+
pretrained_model.state_dict(keep_vars=True), task_vector
|
|
102
|
+
)
|
|
103
|
+
pretrained_model.load_state_dict(state_dict)
|
|
104
|
+
return pretrained_model
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
@torch.no_grad()
|
|
108
|
+
def ties_merge(
|
|
109
|
+
pretrained_model: nn.Module,
|
|
110
|
+
finetuned_models: List[Dict[str, Tensor]],
|
|
111
|
+
scaling_factor: float,
|
|
112
|
+
threshold: float,
|
|
113
|
+
) -> nn.Module:
|
|
114
|
+
remove_keys = []
|
|
115
|
+
merge_func = "sum"
|
|
116
|
+
if isinstance(finetuned_models[0], nn.Module):
|
|
117
|
+
finetuned_models = [
|
|
118
|
+
deepcopy(model.state_dict(keep_vars=True)) for model in finetuned_models
|
|
119
|
+
]
|
|
120
|
+
|
|
121
|
+
ptm_check = pretrained_model.state_dict(keep_vars=True)
|
|
122
|
+
|
|
123
|
+
# Compute the task vectors
|
|
124
|
+
flat_ft = torch.vstack(
|
|
125
|
+
[state_dict_to_vector(check, remove_keys) for check in finetuned_models]
|
|
126
|
+
)
|
|
127
|
+
flat_ptm = state_dict_to_vector(ptm_check, remove_keys)
|
|
128
|
+
tv_flat_checks = flat_ft - flat_ptm
|
|
129
|
+
|
|
130
|
+
# Perform TIES Merging
|
|
131
|
+
merged_tv = ties_merging(
|
|
132
|
+
tv_flat_checks,
|
|
133
|
+
reset_thresh=threshold,
|
|
134
|
+
merge_func=merge_func,
|
|
135
|
+
)
|
|
136
|
+
merged_check = flat_ptm + scaling_factor * merged_tv
|
|
137
|
+
merged_state_dict = vector_to_state_dict(
|
|
138
|
+
merged_check, ptm_check, remove_keys=remove_keys
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
# Load the merged state dict into the pretrained model
|
|
142
|
+
pretrained_model.load_state_dict(merged_state_dict)
|
|
143
|
+
return pretrained_model
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def entropy_loss(logits: Tensor, pred=None, eps: float = 1e-8) -> Tensor:
|
|
147
|
+
"""
|
|
148
|
+
Compute the entropy loss of a set of logits.
|
|
149
|
+
|
|
150
|
+
Args:
|
|
151
|
+
logits (Tensor): The logits to compute the entropy loss of.
|
|
152
|
+
eps (float): A small value to avoid log(0). Default is 1e-8.
|
|
153
|
+
|
|
154
|
+
Returns:
|
|
155
|
+
Tensor: The entropy loss of the logits.
|
|
156
|
+
"""
|
|
157
|
+
# Ensure the logits tensor has 2 dimensions
|
|
158
|
+
assert (
|
|
159
|
+
logits.dim() == 2
|
|
160
|
+
), f"Expected logits to have 2 dimensions, found {logits.dim()}, {logits.size()=}"
|
|
161
|
+
|
|
162
|
+
# Compute the softmax probabilities
|
|
163
|
+
probs = torch.softmax(logits, dim=-1)
|
|
164
|
+
|
|
165
|
+
# Compute the entropy loss
|
|
166
|
+
return -torch.sum(probs * torch.log(probs + eps), dim=-1).mean()
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
class FrankWolfeHardAlgorithm(
|
|
170
|
+
CLIPClassificationMixin,
|
|
171
|
+
ModelFusionAlgorithm,
|
|
172
|
+
SimpleProfilerMixin,
|
|
173
|
+
):
|
|
174
|
+
|
|
175
|
+
def __init__(
|
|
176
|
+
self,
|
|
177
|
+
merge_fn: str,
|
|
178
|
+
step_size: float,
|
|
179
|
+
max_iters: int,
|
|
180
|
+
dataset_size: int,
|
|
181
|
+
tasks: List[str] = [],
|
|
182
|
+
granularity: str = "task",
|
|
183
|
+
max_num_models: int = 100,
|
|
184
|
+
loss_fn: str = "cross_entropy",
|
|
185
|
+
init_weight: str = "",
|
|
186
|
+
scaling_factor: float = 1.0,
|
|
187
|
+
threshold: int = 20,
|
|
188
|
+
**kwargs,
|
|
189
|
+
):
|
|
190
|
+
"""
|
|
191
|
+
Initializes the TaskArithmeticAlgorithm with the given scaling factor.
|
|
192
|
+
|
|
193
|
+
Args:
|
|
194
|
+
scaling_factor (int): The factor by which the task vectors will be scaled before merging.
|
|
195
|
+
"""
|
|
196
|
+
self.merger = merge_fn
|
|
197
|
+
if merge_fn == "task_arithmetic":
|
|
198
|
+
self.merge_fn = task_arithmetic_merge
|
|
199
|
+
elif merge_fn == "ties":
|
|
200
|
+
self.merge_fn = partial(ties_merge, threshold=threshold)
|
|
201
|
+
# elif merge_fn == "concrete_ta":
|
|
202
|
+
# self.merge_fn = ConcreteTaskArithmeticAlgorithmForCLIP(
|
|
203
|
+
# instantiate(OmegaConf.load("config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml"))
|
|
204
|
+
# )
|
|
205
|
+
else:
|
|
206
|
+
raise ValueError(f"Unsupported merge_fn: {merge_fn}")
|
|
207
|
+
self.scaling_factor = scaling_factor
|
|
208
|
+
|
|
209
|
+
self.init_weight = init_weight
|
|
210
|
+
self.step_size = step_size
|
|
211
|
+
self.max_iters = max_iters
|
|
212
|
+
self.granularity = granularity
|
|
213
|
+
self.loss_fn = loss_fn
|
|
214
|
+
self.tasks = tasks
|
|
215
|
+
self.dataset_size = dataset_size
|
|
216
|
+
self.max_num_models = max_num_models
|
|
217
|
+
super().__init__(**kwargs)
|
|
218
|
+
|
|
219
|
+
def on_frank_wolfe_iteration_start(self):
|
|
220
|
+
self.setup_zero_shot_classification_head()
|
|
221
|
+
|
|
222
|
+
@functools.cache
|
|
223
|
+
def get_shuffled_loader_iter(self, task: str):
|
|
224
|
+
if self.loss_fn == "cross_entropy":
|
|
225
|
+
# get dataloader kwargs
|
|
226
|
+
dataloader_kwargs = self._dataloader_kwargs.copy()
|
|
227
|
+
dataloader_kwargs["shuffle"] = True
|
|
228
|
+
dataloader_kwargs["batch_size"] = 1
|
|
229
|
+
|
|
230
|
+
# get the test dataset
|
|
231
|
+
clip_dataset = CLIPDataset(
|
|
232
|
+
self.modelpool.load_train_dataset(task), self.clip_processor
|
|
233
|
+
)
|
|
234
|
+
# create the dataloader
|
|
235
|
+
loader = DataLoader(clip_dataset, **dataloader_kwargs)
|
|
236
|
+
loader = self.fabric.setup_dataloaders(loader)
|
|
237
|
+
return iter(InfiniteDataLoader(loader))
|
|
238
|
+
elif self.loss_fn == "entropy":
|
|
239
|
+
return super().get_shuffled_test_loader_iter(
|
|
240
|
+
task,
|
|
241
|
+
batch_size=1,
|
|
242
|
+
)
|
|
243
|
+
else:
|
|
244
|
+
raise ValueError(f"Unsupported loss function: {self.loss_fn}")
|
|
245
|
+
|
|
246
|
+
def frank_wolfe_iteration(self, merged_model):
|
|
247
|
+
|
|
248
|
+
merged_model.train()
|
|
249
|
+
# zero the gradients
|
|
250
|
+
for name, param in merged_model.named_parameters():
|
|
251
|
+
param.requires_grad = True
|
|
252
|
+
param.grad = None
|
|
253
|
+
|
|
254
|
+
if self.loss_fn == "cross_entropy":
|
|
255
|
+
loss_fn = nn.CrossEntropyLoss()
|
|
256
|
+
elif self.loss_fn == "entropy":
|
|
257
|
+
loss_fn = entropy_loss
|
|
258
|
+
avg_loss = defaultdict(list)
|
|
259
|
+
tasks = self.tasks if self.tasks else self.modelpool.model_names
|
|
260
|
+
for task in tasks:
|
|
261
|
+
log.info(f"Processing task {task}")
|
|
262
|
+
for _ in range(self.dataset_size):
|
|
263
|
+
with self.profile("data loading"):
|
|
264
|
+
batch = next(self.get_shuffled_loader_iter(task))
|
|
265
|
+
with self.profile("forward pass"):
|
|
266
|
+
logits = self.compute_logits(merged_model, batch[0], task)
|
|
267
|
+
loss = loss_fn(logits, batch[1]) / (
|
|
268
|
+
self.dataset_size * len(self.modelpool.model_names)
|
|
269
|
+
)
|
|
270
|
+
with self.profile("backward pass"):
|
|
271
|
+
# self.fabric.backward(loss, retain_graph=True)
|
|
272
|
+
loss.backward()
|
|
273
|
+
avg_loss[task].append(loss.item())
|
|
274
|
+
|
|
275
|
+
# calculate the loss
|
|
276
|
+
avg_loss = {
|
|
277
|
+
task: sum(losses) / len(losses) for task, losses in avg_loss.items()
|
|
278
|
+
}
|
|
279
|
+
log.info(
|
|
280
|
+
f"Average Loss: {avg_loss}, Total Loss: {sum(avg_loss.values()) / len(avg_loss)}"
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
gradients = {
|
|
284
|
+
name: param.grad.clone().to("cpu")
|
|
285
|
+
for name, param in merged_model.named_parameters()
|
|
286
|
+
if param.requires_grad
|
|
287
|
+
}
|
|
288
|
+
for name, param in merged_model.named_parameters():
|
|
289
|
+
param.grad = None
|
|
290
|
+
merged_model.eval()
|
|
291
|
+
|
|
292
|
+
return gradients
|
|
293
|
+
|
|
294
|
+
def frank_wolfe_selection(
|
|
295
|
+
self, gradients, checkpoints, model_to_merge_names={}, type="task"
|
|
296
|
+
):
|
|
297
|
+
assert type in [
|
|
298
|
+
"task",
|
|
299
|
+
"layer",
|
|
300
|
+
], f"Unsupported FW selection type: {type}, supported types are ['task', 'layer']"
|
|
301
|
+
min_inner_product = float("inf")
|
|
302
|
+
min_model = None
|
|
303
|
+
min_model_name = None
|
|
304
|
+
log_dict = {}
|
|
305
|
+
if type == "task":
|
|
306
|
+
for model_name, model_to_merge in checkpoints.items():
|
|
307
|
+
model_to_merge = model_to_merge.to("cpu").state_dict()
|
|
308
|
+
inner_product_sum = 0
|
|
309
|
+
for param_name, param_value in model_to_merge.items():
|
|
310
|
+
# caclulate consine similarity
|
|
311
|
+
grad = gradients[param_name]
|
|
312
|
+
ckpt = model_to_merge[param_name]
|
|
313
|
+
param_alignment = torch.dot(grad.flatten(), ckpt.flatten()) / (
|
|
314
|
+
torch.norm(grad) * torch.norm(ckpt)
|
|
315
|
+
)
|
|
316
|
+
inner_product_sum += param_alignment
|
|
317
|
+
log_dict[model_name] = inner_product_sum.item()
|
|
318
|
+
if (
|
|
319
|
+
inner_product_sum < min_inner_product
|
|
320
|
+
and model_name not in model_to_merge_names
|
|
321
|
+
):
|
|
322
|
+
min_inner_product = inner_product_sum
|
|
323
|
+
min_model = deepcopy(model_to_merge)
|
|
324
|
+
min_model_name = model_name
|
|
325
|
+
else:
|
|
326
|
+
min_model = {}
|
|
327
|
+
min_inner_product = {}
|
|
328
|
+
min_idx = {}
|
|
329
|
+
min_model_name = {}
|
|
330
|
+
for model_name, model_to_merge in checkpoints.items():
|
|
331
|
+
model_to_merge = model_to_merge.to("cpu").state_dict()
|
|
332
|
+
for param_name, param_value in model_to_merge.items():
|
|
333
|
+
# caclulate consine similarity
|
|
334
|
+
grad = gradients[param_name]
|
|
335
|
+
ckpt = model_to_merge[param_name]
|
|
336
|
+
param_alignment = torch.dot(grad.flatten(), ckpt.flatten()) / (
|
|
337
|
+
torch.norm(grad) * torch.norm(ckpt)
|
|
338
|
+
)
|
|
339
|
+
if (
|
|
340
|
+
param_name not in min_inner_product
|
|
341
|
+
or param_alignment < min_inner_product[param_name]
|
|
342
|
+
) and model_name not in model_to_merge_names[param_name]:
|
|
343
|
+
min_inner_product[param_name] = param_alignment
|
|
344
|
+
# if min_inner_product[param_name] < 0:
|
|
345
|
+
min_model[param_name] = param_value
|
|
346
|
+
min_idx[param_name] = model_name
|
|
347
|
+
min_model_name[param_name] = model_name
|
|
348
|
+
# else:
|
|
349
|
+
# min_model[param_name] = torch.zeros_like(param_value)
|
|
350
|
+
min_inner_product = sum(min_inner_product.values())
|
|
351
|
+
log_dict = {model_name: 0 for model_name in checkpoints.keys()}
|
|
352
|
+
for k in min_idx.values():
|
|
353
|
+
log_dict[k] += 1
|
|
354
|
+
|
|
355
|
+
return min_model, min_model_name, min_inner_product, log_dict
|
|
356
|
+
|
|
357
|
+
def run(self, modelpool: HuggingFaceClipVisionPool):
|
|
358
|
+
log.info("Fusing models using FW merging.")
|
|
359
|
+
self.modelpool = modelpool
|
|
360
|
+
self.log_hyperparams(self.config)
|
|
361
|
+
self.on_frank_wolfe_iteration_start()
|
|
362
|
+
|
|
363
|
+
assert modelpool.has_pretrained, "Pretrained model is required."
|
|
364
|
+
finetuned_models = {
|
|
365
|
+
name: modelpool.load_model(name)
|
|
366
|
+
for name in modelpool.model_names[: self.max_num_models]
|
|
367
|
+
}
|
|
368
|
+
pretrained_model = modelpool.load_model("_pretrained_")
|
|
369
|
+
|
|
370
|
+
if self.init_weight:
|
|
371
|
+
if self.init_weight == "base":
|
|
372
|
+
log.info("Initializing the merged model with the base model")
|
|
373
|
+
merged_model = pretrained_model
|
|
374
|
+
else:
|
|
375
|
+
log.info("Initializing the merged model with the initial weight")
|
|
376
|
+
if isinstance(self.init_weight, str):
|
|
377
|
+
# self.config.weights is a path to a saved tensor
|
|
378
|
+
layer_wise_weight = load_tensor_from_file(self.init_weight)
|
|
379
|
+
else:
|
|
380
|
+
raise ValueError(f"Unsupported weights format: {self.init_weight}")
|
|
381
|
+
|
|
382
|
+
merged_model = LayerWiseMergedModel(
|
|
383
|
+
layer_wise_weight=layer_wise_weight,
|
|
384
|
+
pretrained_model=modelpool.load_model("_pretrained_"),
|
|
385
|
+
finetuned_models=list(finetuned_models.values()),
|
|
386
|
+
clamp_weights=False,
|
|
387
|
+
tie_weights=True,
|
|
388
|
+
strict=False,
|
|
389
|
+
).cuda()
|
|
390
|
+
merged_model = merged_model.merge_and_unload()
|
|
391
|
+
else:
|
|
392
|
+
log.info("Initializing the merged model with merge function")
|
|
393
|
+
merged_model = self.merge_fn(
|
|
394
|
+
pretrained_model=modelpool.load_model("_pretrained_"),
|
|
395
|
+
finetuned_models=list(finetuned_models.values()),
|
|
396
|
+
scaling_factor=self.scaling_factor,
|
|
397
|
+
).cuda()
|
|
398
|
+
# merged_model = self.fabric.setup(merged_model)
|
|
399
|
+
|
|
400
|
+
initial_model = modelpool.load_model("_pretrained_")
|
|
401
|
+
initial_model.load_state_dict(deepcopy(merged_model.state_dict()))
|
|
402
|
+
finetuned_models["initial"] = initial_model
|
|
403
|
+
for step_idx in (
|
|
404
|
+
pbar := tqdm(
|
|
405
|
+
range(self.max_iters if not self.is_debug_mode else 1),
|
|
406
|
+
("[DEBUG MODE] " if self.is_debug_mode else "") + "Frank-Wolfe Merging",
|
|
407
|
+
dynamic_ncols=True,
|
|
408
|
+
)
|
|
409
|
+
):
|
|
410
|
+
torch.cuda.empty_cache()
|
|
411
|
+
torch.set_grad_enabled(True)
|
|
412
|
+
gradients = self.frank_wolfe_iteration(merged_model.cuda())
|
|
413
|
+
torch.set_grad_enabled(False)
|
|
414
|
+
grad_norm = torch.norm(
|
|
415
|
+
torch.stack([torch.norm(g) for g in gradients.values()])
|
|
416
|
+
)
|
|
417
|
+
|
|
418
|
+
model_to_merge_names = (
|
|
419
|
+
[]
|
|
420
|
+
if self.granularity == "task"
|
|
421
|
+
else {name: [] for name in merged_model.state_dict().keys()}
|
|
422
|
+
)
|
|
423
|
+
min_model, min_model_name, min_alignment, chosen_model = (
|
|
424
|
+
self.frank_wolfe_selection(
|
|
425
|
+
gradients,
|
|
426
|
+
finetuned_models,
|
|
427
|
+
model_to_merge_names=model_to_merge_names,
|
|
428
|
+
type=self.granularity,
|
|
429
|
+
)
|
|
430
|
+
)
|
|
431
|
+
|
|
432
|
+
# Determine step size
|
|
433
|
+
step = 2 / (step_idx + 2) * self.step_size
|
|
434
|
+
|
|
435
|
+
# print iteration information
|
|
436
|
+
log.info(
|
|
437
|
+
f"Iteration {step_idx+1}, Task Vector: {min_model_name}, Gradient Norm: {grad_norm:.6f}, Inner Products: {min_alignment:.6f}, Chosen Model: {chosen_model}"
|
|
438
|
+
)
|
|
439
|
+
|
|
440
|
+
merged_model = self.merge_fn(
|
|
441
|
+
pretrained_model=merged_model.to("cpu"),
|
|
442
|
+
finetuned_models=[min_model],
|
|
443
|
+
scaling_factor=step * self.scaling_factor,
|
|
444
|
+
)
|
|
445
|
+
|
|
446
|
+
torch.set_grad_enabled(False)
|
|
447
|
+
merged_model = merged_model.cuda().eval()
|
|
448
|
+
return merged_model
|