fusion-bench 0.2.13__tar.gz → 0.2.15__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (815) hide show
  1. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/PKG-INFO +26 -3
  2. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/README.md +23 -2
  3. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/ada_svd/clip_vision.py +4 -1
  4. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +46 -145
  5. fusion_bench-0.2.15/fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +229 -0
  6. fusion_bench-0.2.15/fusion_bench/method/smile_upscaling/smile_upscaling.py +246 -0
  7. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/causal_lm/causal_lm.py +73 -10
  8. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +2 -203
  9. fusion_bench-0.2.15/fusion_bench/models/modeling_smile_qwen2/__init__.py +8 -0
  10. fusion_bench-0.2.15/fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py +21 -0
  11. fusion_bench-0.2.15/fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +922 -0
  12. fusion_bench-0.2.15/fusion_bench/models/modeling_smile_qwen2/register.py +11 -0
  13. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/rankone_moe.py +2 -88
  14. fusion_bench-0.2.15/fusion_bench/models/smile_moe/linear_from_hf_config.py +373 -0
  15. fusion_bench-0.2.13/fusion_bench/models/smile_moe/linear.py → fusion_bench-0.2.15/fusion_bench/models/smile_moe/linear_from_module.py +103 -33
  16. fusion_bench-0.2.15/fusion_bench/models/smile_moe/utils/__init__.py +24 -0
  17. fusion_bench-0.2.15/fusion_bench/models/smile_moe/utils/svd_utils.py +46 -0
  18. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/__init__.py +2 -0
  19. fusion_bench-0.2.15/fusion_bench/taskpool/lm_eval_harness/__init__.py +3 -0
  20. fusion_bench-0.2.15/fusion_bench/taskpool/lm_eval_harness/taskpool.py +87 -0
  21. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench.egg-info/PKG-INFO +26 -3
  22. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench.egg-info/SOURCES.txt +22 -1
  23. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench.egg-info/requires.txt +3 -0
  24. fusion_bench-0.2.15/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +13 -0
  25. fusion_bench-0.2.15/fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +13 -0
  26. fusion_bench-0.2.15/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B-Instruct.yaml +11 -0
  27. fusion_bench-0.2.15/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B.yaml +11 -0
  28. fusion_bench-0.2.15/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B-Instruct.yaml +11 -0
  29. fusion_bench-0.2.15/fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B.yaml +11 -0
  30. fusion_bench-0.2.15/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml +11 -0
  31. fusion_bench-0.2.15/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml +11 -0
  32. fusion_bench-0.2.15/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml +11 -0
  33. fusion_bench-0.2.15/fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml +11 -0
  34. fusion_bench-0.2.15/fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +17 -0
  35. fusion_bench-0.2.15/fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml +12 -0
  36. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/pyproject.toml +4 -1
  37. fusion_bench-0.2.13/fusion_bench/method/smile_upscaling/smile_upscaling.py +0 -576
  38. fusion_bench-0.2.13/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +0 -10
  39. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/LICENSE +0 -0
  40. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/__init__.py +0 -0
  41. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/__main__.py +0 -0
  42. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/__init__.py +0 -0
  43. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/method/__init__.py +0 -0
  44. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/method/base_algorithm.py +0 -0
  45. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +0 -0
  46. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/modelpool/__init__.py +0 -0
  47. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/modelpool/base_pool.py +0 -0
  48. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/modelpool/huggingface_clip_vision.py +0 -0
  49. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/taskpool/__init__.py +0 -0
  50. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/taskpool/base_pool.py +0 -0
  51. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/taskpool/clip_image_classification.py +0 -0
  52. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +0 -0
  53. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/constants/__init__.py +0 -0
  54. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/constants/clip_vision.py +0 -0
  55. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/constants/paths.py +0 -0
  56. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/__init__.py +0 -0
  57. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/arc_agi/__init__.py +0 -0
  58. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/arc_agi/arc.py +0 -0
  59. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/arc_agi/arc_agi.py +0 -0
  60. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/arc_agi/augmenters.py +0 -0
  61. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/arc_agi/messagers.py +0 -0
  62. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/arc_agi/np_cache.py +0 -0
  63. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/arc_agi/preprocess.py +0 -0
  64. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/arc_agi/representers.py +0 -0
  65. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/clip_dataset.py +0 -0
  66. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/fer2013.py +0 -0
  67. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/gpt2_glue.py +0 -0
  68. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/gsm8k.py +0 -0
  69. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/image_dataset.py +0 -0
  70. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/imdb.py +0 -0
  71. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/__init__.py +0 -0
  72. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/alpaca.py +0 -0
  73. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/collate.py +0 -0
  74. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/metamathqa.py +0 -0
  75. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/openai.py +0 -0
  76. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/preference_700k.py +0 -0
  77. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/sharegpt.py +0 -0
  78. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/squad.py +0 -0
  79. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/stanford_shp.py +0 -0
  80. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/ultrachat.py +0 -0
  81. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/utils/__init__.py +0 -0
  82. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/llama/wikitext.py +0 -0
  83. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/dataset/nyuv2.py +0 -0
  84. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/__init__.py +0 -0
  85. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/ada_svd/__init__.py +0 -0
  86. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/__init__.py +0 -0
  87. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +0 -0
  88. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/clip_task_wise_adamerging.py +0 -0
  89. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/entropy_loss.py +0 -0
  90. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +0 -0
  91. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +0 -0
  92. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/layer_wise_adamerging.py +0 -0
  93. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/llama_adamerging.py +0 -0
  94. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/min_norm_solvers.py +0 -0
  95. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/task_wise_adamerging.py +0 -0
  96. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/adamerging/utils.py +0 -0
  97. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/analysis/__init__.py +0 -0
  98. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/analysis/task_vector_cos_similarity.py +0 -0
  99. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/analysis/task_vector_violin_plot.py +0 -0
  100. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/base_algorithm.py +0 -0
  101. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/classification/__init__.py +0 -0
  102. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/classification/clip_finetune.py +0 -0
  103. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/classification/continual_clip_finetune.py +0 -0
  104. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/concrete_subspace/__init__.py +0 -0
  105. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -0
  106. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +0 -0
  107. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/concrete_subspace/clip_post_defense.py +0 -0
  108. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py +0 -0
  109. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/dare/__init__.py +0 -0
  110. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/dare/simple_average.py +0 -0
  111. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/dare/task_arithmetic.py +0 -0
  112. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/dare/ties_merging.py +0 -0
  113. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/dare/utils.py +0 -0
  114. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/dawe/__init__.py +0 -0
  115. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/dawe/dawe_for_clip.py +0 -0
  116. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/dawe/warppers/__init__.py +0 -0
  117. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/dawe/warppers/dawe_model.py +0 -0
  118. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/depth_upscaling/__init__.py +0 -0
  119. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/depth_upscaling/depth_upscaling.py +0 -0
  120. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +0 -0
  121. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/doge_ta/__init__.py +0 -0
  122. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py +0 -0
  123. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/doge_ta/doge_ta.py +0 -0
  124. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/doge_ta/layer_wise_adamerging.py +0 -0
  125. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/dummy.py +0 -0
  126. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/ensemble.py +0 -0
  127. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/fisher_merging/__init__.py +0 -0
  128. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -0
  129. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/fisher_merging/fisher_merging.py +0 -0
  130. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +0 -0
  131. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/gossip/__init__.py +0 -0
  132. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/gossip/clip_layer_wise_gossip.py +0 -0
  133. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/gossip/clip_task_wise_gossip.py +0 -0
  134. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/gossip/entropy_loss.py +0 -0
  135. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +0 -0
  136. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/gossip/layer_wise_gossip.py +0 -0
  137. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/gossip/min_norm_solvers.py +0 -0
  138. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/gossip/task_wise_gossip.py +0 -0
  139. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/gossip/utils.py +0 -0
  140. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/isotropic_merging/__init__.py +0 -0
  141. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/isotropic_merging/iso.py +0 -0
  142. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/isotropic_merging/iso_utils.py +0 -0
  143. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/linear/__init__.py +0 -0
  144. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/linear/expo.py +0 -0
  145. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/linear/linear_interpolation.py +0 -0
  146. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/linear/llama_expo.py +0 -0
  147. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/linear/simple_average_for_llama.py +0 -0
  148. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/linear/task_arithmetic_for_llama.py +0 -0
  149. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/lm_finetune/__init__.py +0 -0
  150. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/lm_finetune/bradley_terry_rm.py +0 -0
  151. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/lm_finetune/causal_lm_pretrain.py +0 -0
  152. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/lm_finetune/fullfinetune_sft.py +0 -0
  153. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/lm_finetune/peftfinetune_sft.py +0 -0
  154. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/mixture_of_experts/__init__.py +0 -0
  155. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/mixture_of_experts/mixtral_merging.py +0 -0
  156. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +0 -0
  157. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/model_recombination.py +0 -0
  158. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/opcm/__init__.py +0 -0
  159. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/opcm/opcm.py +0 -0
  160. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/opcm/task_arithmetic.py +0 -0
  161. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/opcm/ties_merging.py +0 -0
  162. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/opcm/utils.py +0 -0
  163. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/opcm/weight_average.py +0 -0
  164. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/__init__.py +0 -0
  165. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/llama_magnitude_prune.py +0 -0
  166. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/llama_random_prune.py +0 -0
  167. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/llama_wanda_prune.py +0 -0
  168. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/magnitude_diff_pruning.py +0 -0
  169. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/prune_utils.py +0 -0
  170. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/wanda_utils/__init__.py +0 -0
  171. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/wanda_utils/ablate.py +0 -0
  172. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/wanda_utils/data.py +0 -0
  173. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/wanda_utils/eval.py +0 -0
  174. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/wanda_utils/layerwrapper.py +0 -0
  175. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/wanda_utils/prune.py +0 -0
  176. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/wanda_utils/prune_opt.py +0 -0
  177. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pruning/wanda_utils/sparsegpt.py +0 -0
  178. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pwe_moe/__init__.py +0 -0
  179. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pwe_moe/clip_pwe_moe.py +0 -0
  180. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pwe_moe/module.py +0 -0
  181. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pwe_moe/openclip_pwe_moe.py +0 -0
  182. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pwe_moe/phn/__init__.py +0 -0
  183. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pwe_moe/phn/solvers.py +0 -0
  184. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/pwe_moe/utils.py +0 -0
  185. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/rankone_moe/__init__.py +0 -0
  186. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/rankone_moe/clip_rankone_moe.py +0 -0
  187. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/rankone_moe/rankone_moe.py +0 -0
  188. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/regmean/__init__.py +0 -0
  189. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/regmean/clip_regmean.py +0 -0
  190. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/regmean/gpt2_regmean.py +0 -0
  191. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/regmean/regmean.py +0 -0
  192. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/simple_average.py +0 -0
  193. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/slerp/__init__.py +0 -0
  194. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/slerp/slerp.py +0 -0
  195. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/slerp/slerp_utils.py +0 -0
  196. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/smile_upscaling/__init__.py +0 -0
  197. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/smile_upscaling/singular_projection_merging.py +0 -0
  198. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/sparse_we_moe/__init__.py +0 -0
  199. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +0 -0
  200. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/sparse_we_moe/sparse_we_moe.py +0 -0
  201. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/sparselo/__init__.py +0 -0
  202. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/sparselo/sparselo.py +0 -0
  203. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/surgery/__init__.py +0 -0
  204. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +0 -0
  205. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/tall_mask/__init__.py +0 -0
  206. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/tall_mask/utils.py +0 -0
  207. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/task_arithmetic/__init__.py +0 -0
  208. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/task_arithmetic/task_arithmetic.py +0 -0
  209. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/task_singular_vector/TSVC.py +0 -0
  210. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/task_singular_vector/TSVM.py +0 -0
  211. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/task_singular_vector/__init__.py +0 -0
  212. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +0 -0
  213. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +0 -0
  214. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/task_singular_vector/utils/__init__.py +0 -0
  215. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/ties_merging/__init__.py +0 -0
  216. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/ties_merging/ties_merging.py +0 -0
  217. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/ties_merging/ties_merging_utils.py +0 -0
  218. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/trust_region/__init__.py +0 -0
  219. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/trust_region/clip_task_arithmetic.py +0 -0
  220. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/trust_region/utils.py +0 -0
  221. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/we_moe/__init__.py +0 -0
  222. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/we_moe/clip_we_moe.py +0 -0
  223. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/we_moe/we_moe.py +0 -0
  224. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/weighted_average/__init__.py +0 -0
  225. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/weighted_average/llama.py +0 -0
  226. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/method/weighted_average/weighted_average.py +0 -0
  227. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/__init__.py +0 -0
  228. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/continual_learning/backward_transfer.py +0 -0
  229. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/nyuv2/__init__.py +0 -0
  230. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/nyuv2/depth.py +0 -0
  231. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/nyuv2/loss.py +0 -0
  232. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/nyuv2/noise.py +0 -0
  233. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/nyuv2/normal.py +0 -0
  234. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/nyuv2/segmentation.py +0 -0
  235. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/text_to_image_generation/__init__.py +0 -0
  236. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +0 -0
  237. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/text_to_image_generation/compressibility.py +0 -0
  238. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +0 -0
  239. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/__init__.py +0 -0
  240. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/clip_classification.py +0 -0
  241. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/fabric_training.py +0 -0
  242. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/hydra_config.py +0 -0
  243. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/lightning_fabric.py +0 -0
  244. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/openclip_classification.py +0 -0
  245. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/optim/__init__.py +0 -0
  246. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/optim/adamw_with_warmup.py +0 -0
  247. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/rich_live.py +0 -0
  248. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/serialization.py +0 -0
  249. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/mixins/simple_profiler.py +0 -0
  250. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +0 -0
  251. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/__init__.py +0 -0
  252. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/base_pool.py +0 -0
  253. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/causal_lm/__init__.py +0 -0
  254. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/clip_vision/__init__.py +0 -0
  255. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/clip_vision/modelpool.py +0 -0
  256. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/huggingface_automodel.py +0 -0
  257. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/huggingface_gpt2_classification.py +0 -0
  258. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/nyuv2_modelpool.py +0 -0
  259. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/openclip_vision/__init__.py +0 -0
  260. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/openclip_vision/modelpool.py +0 -0
  261. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/seq2seq_lm/__init__.py +0 -0
  262. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/seq2seq_lm/modelpool.py +0 -0
  263. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/seq_classification_lm/__init__.py +0 -0
  264. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/seq_classification_lm/reward_model.py +0 -0
  265. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +0 -0
  266. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/__init__.py +0 -0
  267. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/chat_templates/__init__.py +0 -0
  268. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/chat_templates/llama_3_Instruct.py +0 -0
  269. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/chat_templates/load_tokenizer.py +0 -0
  270. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/hf_clip.py +0 -0
  271. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/linearized/__init__.py +0 -0
  272. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/linearized/linearized_model_utils.py +0 -0
  273. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/linearized/vision_model.py +0 -0
  274. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/llama/__init__.py +0 -0
  275. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/llama/model_utils/__init__.py +0 -0
  276. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/llama/model_utils/embedding.py +0 -0
  277. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/llama/model_utils/liger_kernel.py +0 -0
  278. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/llama/model_utils/misc.py +0 -0
  279. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/llama/model_utils/mod.py +0 -0
  280. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/llama/model_utils/visual.py +0 -0
  281. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/llama/patcher.py +0 -0
  282. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/llama/tokenizer_loader.py +0 -0
  283. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/masks/__init__.py +0 -0
  284. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/masks/mask_model.py +0 -0
  285. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/modeling_losparse_llama/__init__.py +0 -0
  286. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +0 -0
  287. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/modeling_losparse_llama/losparse_linear.py +0 -0
  288. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +0 -0
  289. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/modeling_losparse_llama/register.py +0 -0
  290. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/modeling_losparse_llama/utils.py +0 -0
  291. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/modeling_smile_mistral/__init__.py +0 -0
  292. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +0 -0
  293. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/modeling_smile_mistral/register.py +0 -0
  294. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/nyuv2/__init__.py +0 -0
  295. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/nyuv2/aspp.py +0 -0
  296. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/nyuv2/lightning_module.py +0 -0
  297. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/nyuv2/resnet.py +0 -0
  298. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/nyuv2/resnet_dilated.py +0 -0
  299. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/open_clip/__init__.py +0 -0
  300. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/open_clip/modeling.py +0 -0
  301. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/open_clip/utils.py +0 -0
  302. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/open_clip/variables_and_paths.py +0 -0
  303. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/parameter_dict.py +0 -0
  304. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/separate_io.py +0 -0
  305. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/smile_moe/__init__.py +0 -0
  306. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/sparse_we_moe.py +0 -0
  307. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/surgery/__init__.py +0 -0
  308. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/surgery/surgerymodelwrapper.py +0 -0
  309. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/utils.py +0 -0
  310. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/we_moe.py +0 -0
  311. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/wrappers/__init__.py +0 -0
  312. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/wrappers/ensemble.py +0 -0
  313. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/wrappers/layer_wise_fusion.py +0 -0
  314. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py +0 -0
  315. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/models/wrappers/task_wise_fusion.py +0 -0
  316. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/optim/__init__.py +0 -0
  317. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/optim/exception.py +0 -0
  318. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/optim/lr_scheduler/__init__.py +0 -0
  319. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/optim/lr_scheduler/linear_warmup.py +0 -0
  320. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/optim/lr_scheduler/utils/__init__.py +0 -0
  321. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/optim/lr_scheduler/utils/visualization.py +0 -0
  322. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/optim/mezo.py +0 -0
  323. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/programs/__init__.py +0 -0
  324. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/programs/base_program.py +0 -0
  325. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/programs/fabric_fusion_program.py +0 -0
  326. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/scripts/__init__.py +0 -0
  327. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/scripts/cli.py +0 -0
  328. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/scripts/clip/__init__.py +0 -0
  329. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/scripts/clip/convert_checkpoint.py +0 -0
  330. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/scripts/imgui.py +0 -0
  331. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/scripts/nyuv2_mtl_train.py +0 -0
  332. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/scripts/webui.py +0 -0
  333. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/base_pool.py +0 -0
  334. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/clip_vision/__init__.py +0 -0
  335. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +0 -0
  336. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py +0 -0
  337. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +0 -0
  338. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/clip_vision/taskpool.py +0 -0
  339. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/clip_vision/utils/__init__.py +0 -0
  340. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py +0 -0
  341. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/dummy.py +0 -0
  342. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/gpt2_text_classification.py +0 -0
  343. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/llama/__init__.py +0 -0
  344. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/llama/reward_model.py +0 -0
  345. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/llama/test_generation.py +0 -0
  346. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/nyuv2_taskpool.py +0 -0
  347. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/openclip_vision/__init__.py +0 -0
  348. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/taskpool/openclip_vision/openclip_taskpool.py +0 -0
  349. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/__init__.py +0 -0
  350. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/base_task.py +0 -0
  351. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/classification.py +0 -0
  352. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/__init__.py +0 -0
  353. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/cifar10.py +0 -0
  354. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/cifar100.py +0 -0
  355. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/clip_dataset.py +0 -0
  356. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/cub_200_2011.py +0 -0
  357. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/dtd.py +0 -0
  358. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/emnist_letters.py +0 -0
  359. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/emnist_mnist.py +0 -0
  360. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/eurosat.py +0 -0
  361. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/fashion_mnist.py +0 -0
  362. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/fer2013.py +0 -0
  363. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/flower102.py +0 -0
  364. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/food101.py +0 -0
  365. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/gtsrb.py +0 -0
  366. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/imagenet.py +0 -0
  367. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/kmnist.py +0 -0
  368. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/mnist.py +0 -0
  369. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +0 -0
  370. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +0 -0
  371. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/pcam.py +0 -0
  372. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/rendered_sst2.py +0 -0
  373. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/resisc45.py +0 -0
  374. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/stanford_cars.py +0 -0
  375. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/stl10.py +0 -0
  376. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/sun397.py +0 -0
  377. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/svhn.py +0 -0
  378. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/clip_classification/tiny_imagenet.py +0 -0
  379. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
  380. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +0 -0
  381. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +0 -0
  382. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +0 -0
  383. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +0 -0
  384. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +0 -0
  385. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/__init__.py +0 -0
  386. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/auto.py +0 -0
  387. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/cache_utils.py +0 -0
  388. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/data.py +0 -0
  389. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/devices.py +0 -0
  390. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/dict.py +0 -0
  391. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/dtype.py +0 -0
  392. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/expr.py +0 -0
  393. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/fabric.py +0 -0
  394. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/functools.py +0 -0
  395. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/hydra_utils.py +0 -0
  396. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/instantiate.py +0 -0
  397. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/json.py +0 -0
  398. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/lazy_imports.py +0 -0
  399. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/misc.py +0 -0
  400. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/packages.py +0 -0
  401. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/parameters.py +0 -0
  402. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/path.py +0 -0
  403. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/plot/__init__.py +0 -0
  404. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/plot/color_data.py +0 -0
  405. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/plot/token.py +0 -0
  406. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/plot/token_notebook.py +0 -0
  407. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/pylogger.py +0 -0
  408. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/rich_utils.py +0 -0
  409. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/set.py +0 -0
  410. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/state_dict_arithmetic.py +0 -0
  411. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/strenum/__init__.py +0 -0
  412. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/strenum/_name_mangler.py +0 -0
  413. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/strenum/_version.py +0 -0
  414. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/tensorboard.py +0 -0
  415. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/timer.py +0 -0
  416. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench/utils/type.py +0 -0
  417. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench.egg-info/dependency_links.txt +0 -0
  418. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench.egg-info/entry_points.txt +0 -0
  419. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench.egg-info/top_level.txt +0 -0
  420. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/README.md +0 -0
  421. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  422. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/README.md +0 -0
  423. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/TALL14.yaml +0 -0
  424. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/TALL20.yaml +0 -0
  425. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/cifar10.yaml +0 -0
  426. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/cifar100.yaml +0 -0
  427. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +0 -0
  428. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/dtd.yaml +0 -0
  429. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +0 -0
  430. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +0 -0
  431. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/eurosat.yaml +0 -0
  432. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +0 -0
  433. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/fer2013.yaml +0 -0
  434. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/food101.yaml +0 -0
  435. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +0 -0
  436. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/kmnist.yaml +0 -0
  437. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +0 -0
  438. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/mnist.yaml +0 -0
  439. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +0 -0
  440. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +0 -0
  441. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/pcam.yaml +0 -0
  442. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +0 -0
  443. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/resisc45.yaml +0 -0
  444. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +0 -0
  445. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/stl10.yaml +0 -0
  446. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/sun397.yaml +0 -0
  447. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/svhn.yaml +0 -0
  448. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +0 -0
  449. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +0 -0
  450. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/TALL14.yaml +0 -0
  451. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/TALL20.yaml +0 -0
  452. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/cifar10.yaml +0 -0
  453. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/cifar100.yaml +0 -0
  454. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +0 -0
  455. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/dtd.yaml +0 -0
  456. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +0 -0
  457. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +0 -0
  458. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/eurosat.yaml +0 -0
  459. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +0 -0
  460. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/fer2013.yaml +0 -0
  461. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/food101.yaml +0 -0
  462. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +0 -0
  463. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/kmnist.yaml +0 -0
  464. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +0 -0
  465. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/mnist.yaml +0 -0
  466. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +0 -0
  467. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +0 -0
  468. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/pcam.yaml +0 -0
  469. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +0 -0
  470. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/resisc45.yaml +0 -0
  471. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +0 -0
  472. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/stl10.yaml +0 -0
  473. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/sun397.yaml +0 -0
  474. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/svhn.yaml +0 -0
  475. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +0 -0
  476. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +0 -0
  477. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/val/dtd.yaml +0 -0
  478. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/val/eurosat.yaml +0 -0
  479. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +0 -0
  480. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/val/mnist.yaml +0 -0
  481. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/val/resisc45.yaml +0 -0
  482. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +0 -0
  483. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/val/sun397.yaml +0 -0
  484. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/val/svhn.yaml +0 -0
  485. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +0 -0
  486. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +0 -0
  487. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +0 -0
  488. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/question_answering/search_qa.yaml +0 -0
  489. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/question_answering/test/search_qa.yaml +0 -0
  490. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +0 -0
  491. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/question_answering/train/search_qa.yaml +0 -0
  492. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/question_answering/val/search_qa.yaml +0 -0
  493. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/summarization/test/xsum.yaml +0 -0
  494. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/summarization/train/xsum.yaml +0 -0
  495. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/summarization/val/xsum.yaml +0 -0
  496. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/summarization/xsum.yaml +0 -0
  497. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +0 -0
  498. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +0 -0
  499. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +0 -0
  500. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +0 -0
  501. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +0 -0
  502. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +0 -0
  503. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric/auto.yaml +0 -0
  504. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric/llama_ddp.yaml +0 -0
  505. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric/llama_fsdp.yaml +0 -0
  506. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric/llama_peft_fsdp.yaml +0 -0
  507. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric/loggers/csv_logger.yaml +0 -0
  508. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +0 -0
  509. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric/loggers/wandb_logger.yaml +0 -0
  510. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric/strategy/deepspeed.yaml +0 -0
  511. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric/strategy/llama_fsdp.yaml +0 -0
  512. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +0 -0
  513. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/fabric_model_fusion.yaml +0 -0
  514. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/hydra/default.yaml +0 -0
  515. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/hydra/help/fusion_bench_help.yaml +0 -0
  516. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/hydra/job_logging/rich_logging.yaml +0 -0
  517. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/llama_full_finetune.yaml +0 -0
  518. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/llama_magnitude_pruning.yaml +0 -0
  519. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/llama_model_fusion.yaml +0 -0
  520. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/ada_svd/clip_vision.yaml +0 -0
  521. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/adamerging/clip.yaml +0 -0
  522. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +0 -0
  523. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +0 -0
  524. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/adamerging/llama_sft.yaml +0 -0
  525. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/adamerging.yaml +0 -0
  526. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +0 -0
  527. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +0 -0
  528. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/classification/clip_continual_finetune.yaml +0 -0
  529. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/classification/clip_finetune.yaml +0 -0
  530. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/clip_finetune.yaml +0 -0
  531. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +0 -0
  532. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +0 -0
  533. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +0 -0
  534. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml +0 -0
  535. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml +0 -0
  536. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml +0 -0
  537. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml +0 -0
  538. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/dare/simple_average.yaml +0 -0
  539. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/dare/task_arithmetic.yaml +0 -0
  540. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/dare/ties_merging.yaml +0 -0
  541. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/dawe/dawe_for_clip.yaml +0 -0
  542. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/depth_upscaling.yaml +0 -0
  543. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/doge_ta/doge_ta.yaml +0 -0
  544. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/dummy.yaml +0 -0
  545. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/ensemble/max_model_predictor.yaml +0 -0
  546. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/ensemble/simple_ensemble.yaml +0 -0
  547. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/ensemble/weighted_ensemble.yaml +0 -0
  548. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -0
  549. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/fisher_merging/fisher_merging.yaml +0 -0
  550. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +0 -0
  551. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/gossip/layer_wise_clip.yaml +0 -0
  552. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml +0 -0
  553. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/isotropic_merging/iso_c.yaml +0 -0
  554. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/isotropic_merging/iso_cts.yaml +0 -0
  555. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/linear/expo.yaml +0 -0
  556. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/linear/linear_interpolation.yaml +0 -0
  557. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/linear/llama_expo.yaml +0 -0
  558. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/linear/llama_expo_with_dare.yaml +0 -0
  559. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/linear/simple_average_for_llama.yaml +0 -0
  560. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -0
  561. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/linear/weighted_average.yaml +0 -0
  562. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/linear/weighted_average_for_llama.yaml +0 -0
  563. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +0 -0
  564. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +0 -0
  565. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +0 -0
  566. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/mixtral_moe_merging.yaml +0 -0
  567. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/mixtral_moe_upscaling.yaml +0 -0
  568. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/model_recombination.yaml +0 -0
  569. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/opcm/opcm.yaml +0 -0
  570. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/opcm/task_arithmetic.yaml +0 -0
  571. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/opcm/ties_merging.yaml +0 -0
  572. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/opcm/weight_average.yaml +0 -0
  573. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +0 -0
  574. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/pruning/llama_random_pruning.yaml +0 -0
  575. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +0 -0
  576. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +0 -0
  577. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml +0 -0
  578. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml +0 -0
  579. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml +0 -0
  580. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/rankone_moe/rankone_moe.yaml +0 -0
  581. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/regmean/clip_regmean.yaml +0 -0
  582. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/regmean/gpt2_regmean.yaml +0 -0
  583. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/regmean/regmean.yaml +0 -0
  584. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/simple_average.yaml +0 -0
  585. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/slerp/slerp.yaml +0 -0
  586. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +0 -0
  587. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +0 -0
  588. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +0 -0
  589. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +0 -0
  590. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +0 -0
  591. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/surgery/adamerging_surgery.yaml +0 -0
  592. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/task_arithmetic.yaml +0 -0
  593. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +0 -0
  594. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/ties_merging.yaml +0 -0
  595. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +0 -0
  596. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +0 -0
  597. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +0 -0
  598. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/README.md +0 -0
  599. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +0 -0
  600. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +0 -0
  601. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +0 -0
  602. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +0 -0
  603. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +0 -0
  604. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +0 -0
  605. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +0 -0
  606. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +0 -0
  607. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +0 -0
  608. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +0 -0
  609. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +0 -0
  610. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +0 -0
  611. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +0 -0
  612. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +0 -0
  613. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +0 -0
  614. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +0 -0
  615. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +0 -0
  616. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +0 -0
  617. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +0 -0
  618. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +0 -0
  619. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +0 -0
  620. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +0 -0
  621. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +0 -0
  622. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +0 -0
  623. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +0 -0
  624. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +0 -0
  625. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +0 -0
  626. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +0 -0
  627. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +0 -0
  628. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +0 -0
  629. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +0 -0
  630. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +0 -0
  631. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +0 -0
  632. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +0 -0
  633. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +0 -0
  634. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +0 -0
  635. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +0 -0
  636. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +0 -0
  637. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +0 -0
  638. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +0 -0
  639. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +0 -0
  640. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +0 -0
  641. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +0 -0
  642. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +0 -0
  643. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +0 -0
  644. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +0 -0
  645. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +0 -0
  646. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +0 -0
  647. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +0 -0
  648. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +0 -0
  649. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +0 -0
  650. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +0 -0
  651. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +0 -0
  652. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +0 -0
  653. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +0 -0
  654. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +0 -0
  655. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +0 -0
  656. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +0 -0
  657. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +0 -0
  658. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +0 -0
  659. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +0 -0
  660. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +0 -0
  661. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +0 -0
  662. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +0 -0
  663. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +0 -0
  664. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +0 -0
  665. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +0 -0
  666. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +0 -0
  667. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +0 -0
  668. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +0 -0
  669. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +0 -0
  670. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +0 -0
  671. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/download_TALL20_models.sh +0 -0
  672. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +0 -0
  673. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base.yaml +0 -0
  674. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +0 -0
  675. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +0 -0
  676. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +0 -0
  677. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +0 -0
  678. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +0 -0
  679. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +0 -0
  680. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +0 -0
  681. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +0 -0
  682. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +0 -0
  683. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +0 -0
  684. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +0 -0
  685. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +0 -0
  686. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +0 -0
  687. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +0 -0
  688. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +0 -0
  689. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +0 -0
  690. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-large.yaml +0 -0
  691. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +0 -0
  692. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +0 -0
  693. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +0 -0
  694. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +0 -0
  695. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +0 -0
  696. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +0 -0
  697. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +0 -0
  698. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +0 -0
  699. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/model/flan-t5/generate_flan-t5.sh +0 -0
  700. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +0 -0
  701. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +0 -0
  702. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +0 -0
  703. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +0 -0
  704. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +0 -0
  705. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +0 -0
  706. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +0 -0
  707. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +0 -0
  708. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +0 -0
  709. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +0 -0
  710. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +0 -0
  711. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +0 -0
  712. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +0 -0
  713. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +0 -0
  714. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +0 -0
  715. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +0 -0
  716. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +0 -0
  717. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +0 -0
  718. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +0 -0
  719. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +0 -0
  720. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +0 -0
  721. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
  722. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  723. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +0 -0
  724. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +0 -0
  725. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
  726. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +0 -0
  727. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +0 -0
  728. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +0 -0
  729. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +0 -0
  730. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +0 -0
  731. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +0 -0
  732. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +0 -0
  733. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +0 -0
  734. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +0 -0
  735. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +0 -0
  736. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +0 -0
  737. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +0 -0
  738. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +0 -0
  739. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +0 -0
  740. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +0 -0
  741. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md +0 -0
  742. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml +0 -0
  743. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml +0 -0
  744. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_cars_dtd.yaml +0 -0
  745. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.yaml +0 -0
  746. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml +0 -0
  747. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml +0 -0
  748. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml +0 -0
  749. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +0 -0
  750. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +0 -0
  751. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +0 -0
  752. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +0 -0
  753. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml +0 -0
  754. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +0 -0
  755. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +0 -0
  756. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +0 -0
  757. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +0 -0
  758. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/automodelpool.yaml +0 -0
  759. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/gpt-2_glue.yaml +0 -0
  760. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/mixtral_moe_merging.yaml +0 -0
  761. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +0 -0
  762. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/nyuv2_modelpool.yaml +0 -0
  763. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +0 -0
  764. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +0 -0
  765. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +0 -0
  766. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +0 -0
  767. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/nyuv2_config.yaml +0 -0
  768. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/nyuv2_mtl_train.yaml +0 -0
  769. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +0 -0
  770. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  771. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +0 -0
  772. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +0 -0
  773. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +0 -0
  774. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +0 -0
  775. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +0 -0
  776. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +0 -0
  777. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +0 -0
  778. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +0 -0
  779. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +0 -0
  780. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +0 -0
  781. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +0 -0
  782. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +0 -0
  783. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +0 -0
  784. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +0 -0
  785. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +0 -0
  786. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +0 -0
  787. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +0 -0
  788. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +0 -0
  789. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +0 -0
  790. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +0 -0
  791. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +0 -0
  792. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +0 -0
  793. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +0 -0
  794. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +0 -0
  795. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +0 -0
  796. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +0 -0
  797. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +0 -0
  798. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +0 -0
  799. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +0 -0
  800. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +0 -0
  801. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml +0 -0
  802. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml +0 -0
  803. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml +0 -0
  804. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
  805. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  806. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
  807. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/dummy.yaml +0 -0
  808. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +0 -0
  809. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/gpt-2_glue.yaml +0 -0
  810. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/nyuv2_taskpool.yaml +0 -0
  811. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/fusion_bench_config/taskpool/reward_model_evaluation.yaml +0 -0
  812. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/setup.cfg +0 -0
  813. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/tests/test_depth_upscaling.py +0 -0
  814. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/tests/test_simple_average.py +0 -0
  815. {fusion_bench-0.2.13 → fusion_bench-0.2.15}/tests/test_weighed_ensemble.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fusion_bench
3
- Version: 0.2.13
3
+ Version: 0.2.15
4
4
  Summary: A Comprehensive Benchmark of Deep Model Fusion
5
5
  Author-email: Anke Tang <tang.anke@foxmail.com>
6
6
  License: MIT License
@@ -45,6 +45,8 @@ Requires-Dist: rich
45
45
  Requires-Dist: scipy
46
46
  Requires-Dist: h5py
47
47
  Requires-Dist: pytest
48
+ Provides-Extra: lm-eval-harness
49
+ Requires-Dist: lm-eval; extra == "lm-eval-harness"
48
50
  Dynamic: license-file
49
51
 
50
52
  <div align='center'>
@@ -61,7 +63,7 @@ Dynamic: license-file
61
63
 
62
64
  </div>
63
65
 
64
- > [!TIP]
66
+ > [!TIP]
65
67
  > Documentation is available at [tanganke.github.io/fusion_bench/](https://tanganke.github.io/fusion_bench/).
66
68
 
67
69
  ## Overview
@@ -122,7 +124,7 @@ Merging multiple expert models offers a promising approach for performing multi-
122
124
 
123
125
  ## Installation
124
126
 
125
- install from PyPI:
127
+ Install from PyPI:
126
128
 
127
129
  ```bash
128
130
  pip install fusion-bench
@@ -137,6 +139,27 @@ cd fusion_bench
137
139
  pip install -e . # install the package in editable mode
138
140
  ```
139
141
 
142
+ ### Install with [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness)
143
+
144
+ [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10256836.svg)](https://doi.org/10.5281/zenodo.10256836)
145
+
146
+
147
+ ```bash
148
+ pip install "fusion-bench[lm-eval-harness]"
149
+ ```
150
+
151
+ or install from local directory
152
+
153
+ ```bash
154
+ pip install -e ".[lm-eval-harness]"
155
+ ```
156
+
157
+ This will install the latest version of fusion-bench and the dependencies required for LM-Eval Harness.
158
+ Documentation for using LM-Eval Harness within FusionBench framework can be found at [this online documentation](https://tanganke.github.io/fusion_bench/taskpool/lm_eval_harness) or in the [`docs/taskpool/lm_eval_harness.md`](docs/taskpool/lm_eval_harness.md) markdown file.
159
+
160
+ > [!TIP]
161
+ > Documentation for merging large language models using FusionBench can be found at [this online documentation](https://tanganke.github.io/fusion_bench/modelpool/causal_lm) or in the [`docs/modelpool/causal_lm.md`](docs/modelpool/causal_lm.md) markdown file.
162
+
140
163
  ## Introduction to Deep Model Fusion
141
164
 
142
165
  Deep model fusion is a technique that merges, ensemble, or fuse multiple deep neural networks to obtain a unified model.
@@ -12,7 +12,7 @@
12
12
 
13
13
  </div>
14
14
 
15
- > [!TIP]
15
+ > [!TIP]
16
16
  > Documentation is available at [tanganke.github.io/fusion_bench/](https://tanganke.github.io/fusion_bench/).
17
17
 
18
18
  ## Overview
@@ -73,7 +73,7 @@ Merging multiple expert models offers a promising approach for performing multi-
73
73
 
74
74
  ## Installation
75
75
 
76
- install from PyPI:
76
+ Install from PyPI:
77
77
 
78
78
  ```bash
79
79
  pip install fusion-bench
@@ -88,6 +88,27 @@ cd fusion_bench
88
88
  pip install -e . # install the package in editable mode
89
89
  ```
90
90
 
91
+ ### Install with [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness)
92
+
93
+ [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10256836.svg)](https://doi.org/10.5281/zenodo.10256836)
94
+
95
+
96
+ ```bash
97
+ pip install "fusion-bench[lm-eval-harness]"
98
+ ```
99
+
100
+ or install from local directory
101
+
102
+ ```bash
103
+ pip install -e ".[lm-eval-harness]"
104
+ ```
105
+
106
+ This will install the latest version of fusion-bench and the dependencies required for LM-Eval Harness.
107
+ Documentation for using LM-Eval Harness within FusionBench framework can be found at [this online documentation](https://tanganke.github.io/fusion_bench/taskpool/lm_eval_harness) or in the [`docs/taskpool/lm_eval_harness.md`](docs/taskpool/lm_eval_harness.md) markdown file.
108
+
109
+ > [!TIP]
110
+ > Documentation for merging large language models using FusionBench can be found at [this online documentation](https://tanganke.github.io/fusion_bench/modelpool/causal_lm) or in the [`docs/modelpool/causal_lm.md`](docs/modelpool/causal_lm.md) markdown file.
111
+
91
112
  ## Introduction to Deep Model Fusion
92
113
 
93
114
  Deep model fusion is a technique that merges, ensemble, or fuse multiple deep neural networks to obtain a unified model.
@@ -31,7 +31,10 @@ from fusion_bench.method import WeightedAverageAlgorithm
31
31
  from fusion_bench.method.simple_average import simple_average
32
32
  from fusion_bench.mixins import SimpleProfilerMixin
33
33
  from fusion_bench.modelpool import CLIPVisionModelPool
34
- from fusion_bench.models.smile_moe.linear import ExpertNotTrainedError, SmileMoELinear
34
+ from fusion_bench.models.smile_moe.linear_from_module import (
35
+ ExpertNotTrainedError,
36
+ SmileMoELinear,
37
+ )
35
38
  from fusion_bench.models.utils import find_layers_with_type, get_attr, set_attr
36
39
  from fusion_bench.utils.devices import get_device
37
40
 
@@ -9,11 +9,16 @@ import torch.nn.functional as F
9
9
  from accelerate import init_empty_weights
10
10
  from torch import Tensor, nn
11
11
  from tqdm.auto import tqdm
12
- from transformers import AutoConfig, AutoTokenizer, MistralForCausalLM
12
+ from transformers import (
13
+ AutoConfig,
14
+ AutoModelForCausalLM,
15
+ AutoTokenizer,
16
+ MistralForCausalLM,
17
+ )
13
18
  from transformers.models.mistral.modeling_mistral import MistralDecoderLayer
14
19
 
15
- from fusion_bench.compat.method import ModelFusionAlgorithm
16
20
  from fusion_bench.compat.modelpool import to_modelpool
21
+ from fusion_bench.method import BaseAlgorithm
17
22
  from fusion_bench.method.simple_average import simple_average
18
23
  from fusion_bench.mixins.simple_profiler import SimpleProfilerMixin
19
24
  from fusion_bench.modelpool import BaseModelPool
@@ -25,158 +30,23 @@ from fusion_bench.models.modeling_smile_mistral.modeling_smile_mistral import (
25
30
  SmileLinear,
26
31
  SmileMistralDecoderLayer,
27
32
  )
28
- from fusion_bench.models.utils import get_attr, set_attr
33
+ from fusion_bench.models.smile_moe.linear_from_hf_config import (
34
+ ExpertNotTrainedError,
35
+ upscale_to_smile_linear,
36
+ )
29
37
  from fusion_bench.utils.dtype import parse_dtype
30
38
  from fusion_bench.utils.parameters import print_parameters
31
- from fusion_bench.utils.state_dict_arithmetic import state_dict_sub
32
39
 
33
40
  log = logging.getLogger(__name__)
34
41
 
35
42
 
36
- class ExpertNotTrainedError(Exception):
37
- pass
38
-
39
-
40
- def _is_all_zeros(tensor: Tensor | List[Tensor]) -> bool:
41
- """
42
- Check if a tensor or a list of tensors are all zeros.
43
-
44
- Args:
45
- tensor (Tensor | List[Tensor]): The tensor or list of tensors to check.
46
-
47
- Returns:
48
- bool: True if all elements are zeros, False otherwise.
49
- """
50
- if isinstance(tensor, Tensor):
51
- return torch.allclose(tensor, torch.zeros_like(tensor))
52
- else:
53
- return all(_is_all_zeros(t) for t in tensor)
54
-
55
-
56
- def _svd(w: Tensor, full_matrices=False) -> Tuple[Tensor, Tensor, Tensor]:
57
- """
58
- Perform Singular Value Decomposition (SVD) on a tensor.
59
-
60
- Args:
61
- w (Tensor): The input tensor.
62
- full_matrices (bool, optional): Whether to compute the full-sized U and V matrices. Defaults to False.
63
-
64
- Returns:
65
- Tuple[Tensor, Tensor, Tensor]: The U, S, and V matrices from SVD.
66
- """
67
- device = w.device
68
- if w.device != torch.float32 or w.device != torch.float64:
69
- w = w.float()
70
-
71
- u, s, vh = torch.linalg.svd(
72
- w,
73
- full_matrices=full_matrices,
74
- # driver="gesvd" if w.is_cuda else None
75
- )
76
- v = vh.T
77
-
78
- u = u.to(device)
79
- s = s.to(device)
80
- v = v.to(device)
81
- return u, s, v
82
-
83
-
84
- def svd(
85
- w: Tensor, full_matrices=True, accelerator=None
86
- ) -> Tuple[Tensor, Tensor, Tensor]:
87
- """
88
- Perform SVD on a tensor with optional acceleration.
89
-
90
- Args:
91
- w (Tensor): The input tensor.
92
- full_matrices (bool, optional): Whether to compute the full-sized U and V matrices. Defaults to True.
93
- accelerator (optional): The device to perform the computation on. Defaults to None.
94
-
95
- Returns:
96
- Tuple[Tensor, Tensor, Tensor]: The U, S, and V matrices from SVD.
97
- """
98
- if accelerator is None:
99
- return _svd(w, full_matrices=full_matrices)
100
- original_device = w.device
101
- w = w.to(accelerator)
102
- u, s, v = _svd(w)
103
- return u, s, v
104
-
105
-
106
- @torch.no_grad()
107
- def upscale_to_smile_linear(
108
- base: nn.Linear, experts: List[nn.Linear], target: SmileLinear, accelerator=None
109
- ):
110
- """
111
- Upscale a base linear layer to a SmileLinear layer using expert models.
112
-
113
- Args:
114
- base (nn.Linear): The base linear layer.
115
- experts (List[nn.Linear]): A list of expert linear layers.
116
- target (SmileLinear): The target SmileLinear layer.
117
- accelerator (optional): The device to perform the computation on. Defaults to None.
118
-
119
- Returns:
120
- SmileLinear: The upscaled SmileLinear layer.
121
- """
122
- w = base.weight
123
- w_ft_list = [e.weight for e in experts]
124
- dw_list = [w_ft - w for w_ft in w_ft_list]
125
-
126
- if _is_all_zeros(dw_list):
127
- raise ExpertNotTrainedError("Expert models are not trained")
128
-
129
- rank_of_router = target.rank_of_router
130
- rank_of_expert = target.rank_of_expert
131
- num_local_experts = target.num_local_experts
132
- svd_list = [svd(dw, accelerator=accelerator) for dw in dw_list]
133
-
134
- # gate
135
- gate_weight = []
136
- for u, s, v in svd_list:
137
- gate_weight.append(v[:, :rank_of_router].T)
138
- gate_weight = (
139
- torch.stack(gate_weight, dim=0)
140
- .reshape(num_local_experts * rank_of_router, -1)
141
- .contiguous()
142
- )
143
-
144
- target.gate.load_state_dict({"weight": gate_weight})
145
-
146
- # shared linear
147
- target.shared_linear.load_state_dict(base.state_dict())
148
-
149
- # experts
150
- if rank_of_expert > 0:
151
- for expert_idx, target_expert in enumerate(target.experts):
152
- u, s, v = svd_list[expert_idx]
153
- u = u[:, :rank_of_expert]
154
- s = s[:rank_of_expert]
155
- v = v[:, :rank_of_expert]
156
- state_dict = {"u": u, "svh": (s * v).T}
157
- if experts[expert_idx].bias is not None:
158
- state_dict["bias"] = experts[expert_idx].bias.data
159
- target_expert.load_state_dict(state_dict)
160
- else:
161
- for expert_idx, target_expert in enumerate(target.experts):
162
- target_expert.load_state_dict(
163
- state_dict_sub(experts[expert_idx].state_dict(), base.state_dict())
164
- )
165
-
166
- return target
167
-
168
-
169
- class SmileMistralUpscalingAlgorithm(ModelFusionAlgorithm, SimpleProfilerMixin):
43
+ class SmileMistralUpscalingAlgorithm(BaseAlgorithm, SimpleProfilerMixin):
170
44
  R"""
171
45
  SmileMistralUpscalingAlgorithm is a model fusion algorithm designed to upscale
172
46
  a pretrained Mistral model using a set of fine-tuned expert models. The algorithm
173
47
  leverages Singular Value Decomposition (SVD) to merge the weights of the pretrained
174
48
  model and the expert models into a new upscaled model.
175
49
 
176
- Attributes:
177
- modelpool (BaseModelPool): The pool of models to be used for upscaling.
178
- config (dict): Configuration parameters for the upscaling process.
179
-
180
50
  Methods:
181
51
  run(modelpool: BaseModelPool) -> SmileMistralForCausalLM:
182
52
  Executes the upscaling process and returns the upscaled model.
@@ -185,6 +55,37 @@ class SmileMistralUpscalingAlgorithm(ModelFusionAlgorithm, SimpleProfilerMixin):
185
55
  Merges the pretrained model with the fine-tuned models to create an upscaled model.
186
56
  """
187
57
 
58
+ _config_mapping = BaseAlgorithm._config_mapping | {
59
+ "device": "device",
60
+ "accelerator": "accelerator",
61
+ "model_path": "model_path",
62
+ "model_dtype": "model_dtype",
63
+ "num_experts_per_tok": "num_experts_per_tok",
64
+ "rank_of_router": "rank_of_router",
65
+ "rank_of_expert": "rank_of_expert",
66
+ }
67
+
68
+ def __init__(
69
+ self,
70
+ device,
71
+ accelerator,
72
+ model_path,
73
+ model_dtype,
74
+ num_experts_per_tok,
75
+ rank_of_router,
76
+ rank_of_expert,
77
+ **kwargs,
78
+ ):
79
+ self.device = device
80
+ self.accelerator = accelerator
81
+ self.model_path = model_path
82
+ self.model_dtype = model_dtype
83
+ # SmileMoE parameters, except `num_local_experts` which is set later according to the number of finetuned models
84
+ self.num_experts_per_tok = num_experts_per_tok
85
+ self.rank_of_router = rank_of_router
86
+ self.rank_of_expert = rank_of_expert
87
+ super().__init__(**kwargs)
88
+
188
89
  @torch.no_grad()
189
90
  def run(self, modelpool: BaseModelPool) -> SmileMistralForCausalLM:
190
91
  """
@@ -199,15 +100,15 @@ class SmileMistralUpscalingAlgorithm(ModelFusionAlgorithm, SimpleProfilerMixin):
199
100
  self.modelpool = modelpool = to_modelpool(modelpool)
200
101
  config = self.config
201
102
 
202
- print(config)
103
+ # load model from path if provided and return directly
203
104
  if config.model_path is not None and os.path.exists(config.model_path):
204
105
  log.info(f"Loading model from {config.model_path}")
205
- model = torch.load(config.model_path)
106
+ model = AutoModelForCausalLM.from_pretrained(config.model_path)
206
107
  print_parameters(model)
207
108
  return model
208
109
 
209
110
  with self.profile("load pretrained model"):
210
- pretrained_model = modelpool.load_model("_pretrained_")
111
+ pretrained_model = modelpool.load_pretrained_model()
211
112
  with self.profile("load fine-tuned model"):
212
113
  finetuned_models = [
213
114
  m for m in tqdm(modelpool.models(), total=len(modelpool.model_names))
@@ -0,0 +1,229 @@
1
+ import logging
2
+ import os
3
+ from copy import deepcopy
4
+ from typing import TYPE_CHECKING, Dict, List, Tuple
5
+
6
+ import torch
7
+ from accelerate import init_empty_weights
8
+ from tqdm.auto import tqdm
9
+ from transformers import (
10
+ AutoConfig,
11
+ AutoModelForCausalLM,
12
+ AutoTokenizer,
13
+ Qwen2ForCausalLM,
14
+ )
15
+ from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer
16
+
17
+ from fusion_bench import BaseAlgorithm, BaseModelPool
18
+ from fusion_bench.compat.modelpool import to_modelpool
19
+ from fusion_bench.mixins import SimpleProfilerMixin
20
+ from fusion_bench.models.modeling_smile_qwen2 import (
21
+ SmileQwen2Config,
22
+ SmileQwen2ForCausalLM,
23
+ )
24
+ from fusion_bench.models.modeling_smile_qwen2.modeling_smile_qwen2 import (
25
+ SmileQwen2DecoderLayer,
26
+ )
27
+ from fusion_bench.models.smile_moe.linear_from_hf_config import (
28
+ ExpertNotTrainedError,
29
+ upscale_to_smile_linear,
30
+ )
31
+ from fusion_bench.utils.dtype import parse_dtype
32
+ from fusion_bench.utils.parameters import print_parameters
33
+
34
+ log = logging.getLogger(__name__)
35
+
36
+
37
+ class SmileQwen2UpscalingAlgorithm(BaseAlgorithm, SimpleProfilerMixin):
38
+ R"""
39
+ SmileQwen2UpscalingAlgorithm is a model fusion algorithm designed to upscale
40
+ a pretrained Qwen2 model using a set of fine-tuned expert models. The algorithm
41
+ leverages Singular Value Decomposition (SVD) to merge the weights of the pretrained
42
+ model and the expert models into a new upscaled model.
43
+
44
+ Methods:
45
+ run(modelpool: BaseModelPool) -> SmileQwen2ForCausalLM:
46
+ Executes the upscaling process and returns the upscaled model.
47
+
48
+ merge(pretrained_model: Qwen2ForCausalLM, finetuned_models: List[Qwen2ForCausalLM]) -> SmileQwen2ForCausalLM:
49
+ Merges the pretrained model with the fine-tuned models to create an upscaled model.
50
+ """
51
+
52
+ _config_mapping = BaseAlgorithm._config_mapping | {
53
+ "device": "device",
54
+ "accelerator": "accelerator",
55
+ "model_path": "model_path",
56
+ "model_dtype": "model_dtype",
57
+ "num_experts_per_tok": "num_experts_per_tok",
58
+ "rank_of_router": "rank_of_router",
59
+ "rank_of_expert": "rank_of_expert",
60
+ }
61
+
62
+ def __init__(
63
+ self,
64
+ device,
65
+ accelerator,
66
+ model_path,
67
+ model_dtype,
68
+ num_experts_per_tok,
69
+ rank_of_router,
70
+ rank_of_expert,
71
+ **kwargs,
72
+ ):
73
+ self.device = device
74
+ self.accelerator = accelerator
75
+ self.model_path = model_path
76
+ self.model_dtype = model_dtype
77
+ # SmileMoE parameters, except `num_local_experts` which is set later according to the number of finetuned models
78
+ self.num_experts_per_tok = num_experts_per_tok
79
+ self.rank_of_router = rank_of_router
80
+ self.rank_of_expert = rank_of_expert
81
+ super().__init__(**kwargs)
82
+
83
+ @torch.no_grad()
84
+ def run(self, modelpool: BaseModelPool) -> SmileQwen2ForCausalLM:
85
+ """
86
+ Executes the upscaling process.
87
+
88
+ Args:
89
+ modelpool (ModelPool): The pool of models to be used for upscaling.
90
+
91
+ Returns:
92
+ SmileQwen2ForCausalLM: The upscaled model.
93
+ """
94
+ self.modelpool = modelpool = to_modelpool(modelpool)
95
+ config = self.config
96
+
97
+ # load model from path if provided and return directly
98
+ if config.model_path is not None and os.path.exists(config.model_path):
99
+ log.info(f"Loading model from {config.model_path}")
100
+ model = AutoModelForCausalLM.from_pretrained(config.model_path)
101
+ print_parameters(model)
102
+ return model
103
+
104
+ with self.profile("load pretrained model"):
105
+ pretrained_model = modelpool.load_pretrained_model()
106
+ with self.profile("load fine-tuned model"):
107
+ finetuned_models = [
108
+ m for m in tqdm(modelpool.models(), total=len(modelpool.model_names))
109
+ ]
110
+
111
+ if config.device == "cuda" and torch.cuda.is_available():
112
+ pretrained_model = pretrained_model.cuda()
113
+ print("parameter count of pretrained model:")
114
+ print_parameters(pretrained_model)
115
+ finetuned_models = [m.cuda() for m in finetuned_models]
116
+
117
+ with self.profile("merge model"):
118
+ model = self.merge(pretrained_model, finetuned_models)
119
+
120
+ self.print_profile_summary()
121
+ print("parameter count of upscaled MoE model:")
122
+ print_parameters(model)
123
+ print(model)
124
+
125
+ if config.model_dtype is not None:
126
+ model.to(dtype=parse_dtype(config.model_dtype))
127
+
128
+ if config.model_path is not None:
129
+ if os.path.dirname(config.model_path):
130
+ os.makedirs(os.path.dirname(config.model_path), exist_ok=True)
131
+ log.info(f"Saving model to {config.model_path}")
132
+ pretrained_model_config = self.modelpool.get_model_config("_pretrained_")
133
+ pretrained_path = pretrained_model_config.get(
134
+ "path", pretrained_model_config["pretrained_model_name_or_path"]
135
+ )
136
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_path)
137
+ tokenizer.save_pretrained(config.model_path)
138
+ model.save_pretrained(config.model_path)
139
+
140
+ return model
141
+
142
+ def merge(
143
+ self,
144
+ pretrained_model: Qwen2ForCausalLM,
145
+ finetuned_models: List[Qwen2ForCausalLM],
146
+ ):
147
+ """
148
+ Merges the pretrained model with the fine-tuned models to create an upscaled model.
149
+
150
+ Args:
151
+ pretrained_model (Qwen2ForCausalLM): The pretrained model.
152
+ finetuned_models (List[Qwen2ForCausalLM]): A list of fine-tuned models.
153
+
154
+ Returns:
155
+ SmileQwen2ForCausalLM: The upscaled model.
156
+ """
157
+ config = self.config
158
+
159
+ with init_empty_weights():
160
+ pretrained_model_config = self.modelpool.get_model_config("_pretrained_")
161
+ pretrained_path = pretrained_model_config.get(
162
+ "path", pretrained_model_config["pretrained_model_name_or_path"]
163
+ )
164
+ base_config = AutoConfig.from_pretrained(pretrained_path)
165
+ model_config = SmileQwen2Config(
166
+ num_experts_per_tok=config.num_experts_per_tok,
167
+ rank_of_router=config.rank_of_router,
168
+ rank_of_expert=config.rank_of_expert,
169
+ num_local_experts=len(finetuned_models),
170
+ **base_config.to_dict(),
171
+ )
172
+ model = SmileQwen2ForCausalLM(model_config)
173
+
174
+ model.to(dtype=pretrained_model.dtype).to_empty(device="cpu")
175
+
176
+ # copy pretrained model weights
177
+ state_dict = model.state_dict()
178
+ pretrained_state_dict = dict(pretrained_model.state_dict())
179
+ for key in list(pretrained_state_dict.keys()):
180
+ if key not in state_dict:
181
+ pretrained_state_dict.pop(key)
182
+ model.load_state_dict(pretrained_state_dict, strict=False)
183
+
184
+ # upscale model
185
+ for layer_idx in tqdm(
186
+ range(len(pretrained_model.model.layers)),
187
+ "Upscaling Modules (layer)",
188
+ dynamic_ncols=True,
189
+ ):
190
+ pretrained_layer: Qwen2DecoderLayer = pretrained_model.model.layers[
191
+ layer_idx
192
+ ]
193
+ finetuned_layers: List[Qwen2DecoderLayer] = [
194
+ m.model.layers[layer_idx] for m in finetuned_models
195
+ ]
196
+
197
+ target_layer: SmileQwen2DecoderLayer = model.model.layers[layer_idx]
198
+
199
+ for n in ["q_proj", "k_proj", "v_proj", "o_proj"]:
200
+ try:
201
+ upscale_to_smile_linear(
202
+ base=getattr(pretrained_layer.self_attn, n),
203
+ experts=[getattr(m.self_attn, n) for m in finetuned_layers],
204
+ target=getattr(target_layer.self_attn, n),
205
+ accelerator=config.accelerator,
206
+ )
207
+ except ExpertNotTrainedError:
208
+ setattr(
209
+ target_layer.self_attn,
210
+ n,
211
+ getattr(pretrained_layer.self_attn, n),
212
+ )
213
+
214
+ for n in ["gate_proj", "up_proj", "down_proj"]:
215
+ try:
216
+ upscale_to_smile_linear(
217
+ base=getattr(pretrained_layer.mlp, n),
218
+ experts=[getattr(m.mlp, n) for m in finetuned_layers],
219
+ target=getattr(target_layer.mlp, n),
220
+ accelerator=config.accelerator,
221
+ )
222
+ except ExpertNotTrainedError:
223
+ setattr(
224
+ target_layer.mlp,
225
+ n,
226
+ getattr(pretrained_layer.mlp, n),
227
+ )
228
+
229
+ return model