fusion-bench 0.2.13__tar.gz → 0.2.14__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/PKG-INFO +22 -2
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/README.md +19 -1
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/ada_svd/clip_vision.py +4 -1
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +46 -145
- fusion_bench-0.2.14/fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +229 -0
- fusion_bench-0.2.14/fusion_bench/method/smile_upscaling/smile_upscaling.py +246 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +2 -203
- fusion_bench-0.2.14/fusion_bench/models/modeling_smile_qwen2/__init__.py +8 -0
- fusion_bench-0.2.14/fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py +21 -0
- fusion_bench-0.2.14/fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +922 -0
- fusion_bench-0.2.14/fusion_bench/models/modeling_smile_qwen2/register.py +11 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/rankone_moe.py +2 -88
- fusion_bench-0.2.14/fusion_bench/models/smile_moe/linear_from_hf_config.py +373 -0
- fusion_bench-0.2.13/fusion_bench/models/smile_moe/linear.py → fusion_bench-0.2.14/fusion_bench/models/smile_moe/linear_from_module.py +103 -33
- fusion_bench-0.2.14/fusion_bench/models/smile_moe/utils/__init__.py +24 -0
- fusion_bench-0.2.14/fusion_bench/models/smile_moe/utils/svd_utils.py +46 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/__init__.py +2 -0
- fusion_bench-0.2.14/fusion_bench/taskpool/lm_eval_harness/__init__.py +3 -0
- fusion_bench-0.2.14/fusion_bench/taskpool/lm_eval_harness/taskpool.py +87 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench.egg-info/PKG-INFO +22 -2
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench.egg-info/SOURCES.txt +14 -1
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench.egg-info/requires.txt +3 -0
- fusion_bench-0.2.14/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +13 -0
- fusion_bench-0.2.14/fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +13 -0
- fusion_bench-0.2.14/fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +17 -0
- fusion_bench-0.2.14/fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml +12 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/pyproject.toml +4 -1
- fusion_bench-0.2.13/fusion_bench/method/smile_upscaling/smile_upscaling.py +0 -576
- fusion_bench-0.2.13/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +0 -10
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/LICENSE +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/__main__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/method/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/method/base_algorithm.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/modelpool/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/modelpool/base_pool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/modelpool/huggingface_clip_vision.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/taskpool/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/taskpool/base_pool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/taskpool/clip_image_classification.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/constants/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/constants/clip_vision.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/constants/paths.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/arc_agi/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/arc_agi/arc.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/arc_agi/arc_agi.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/arc_agi/augmenters.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/arc_agi/messagers.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/arc_agi/np_cache.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/arc_agi/preprocess.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/arc_agi/representers.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/clip_dataset.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/fer2013.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/gpt2_glue.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/gsm8k.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/image_dataset.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/imdb.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/alpaca.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/collate.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/metamathqa.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/openai.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/preference_700k.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/sharegpt.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/squad.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/stanford_shp.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/ultrachat.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/utils/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/llama/wikitext.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/dataset/nyuv2.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/ada_svd/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/clip_task_wise_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/entropy_loss.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/llama_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/min_norm_solvers.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/task_wise_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/adamerging/utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/analysis/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/analysis/task_vector_cos_similarity.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/analysis/task_vector_violin_plot.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/base_algorithm.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/classification/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/classification/clip_finetune.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/classification/continual_clip_finetune.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/concrete_subspace/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/concrete_subspace/clip_post_defense.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/dare/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/dare/simple_average.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/dare/task_arithmetic.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/dare/ties_merging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/dare/utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/dawe/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/dawe/dawe_for_clip.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/dawe/warppers/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/dawe/warppers/dawe_model.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/depth_upscaling/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/depth_upscaling/depth_upscaling.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/doge_ta/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/doge_ta/doge_ta.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/doge_ta/layer_wise_adamerging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/dummy.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/ensemble.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/fisher_merging/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/fisher_merging/fisher_merging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/gossip/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/gossip/clip_layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/gossip/clip_task_wise_gossip.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/gossip/entropy_loss.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/gossip/layer_wise_gossip.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/gossip/min_norm_solvers.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/gossip/task_wise_gossip.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/gossip/utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/isotropic_merging/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/isotropic_merging/iso.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/isotropic_merging/iso_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/linear/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/linear/expo.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/linear/linear_interpolation.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/linear/llama_expo.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/linear/simple_average_for_llama.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/linear/task_arithmetic_for_llama.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/lm_finetune/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/lm_finetune/bradley_terry_rm.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/lm_finetune/causal_lm_pretrain.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/lm_finetune/fullfinetune_sft.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/lm_finetune/peftfinetune_sft.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/mixture_of_experts/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/mixture_of_experts/mixtral_merging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/model_recombination.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/opcm/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/opcm/opcm.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/opcm/task_arithmetic.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/opcm/ties_merging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/opcm/utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/opcm/weight_average.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/llama_magnitude_prune.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/llama_random_prune.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/llama_wanda_prune.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/magnitude_diff_pruning.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/prune_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/wanda_utils/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/wanda_utils/ablate.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/wanda_utils/data.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/wanda_utils/eval.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/wanda_utils/layerwrapper.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/wanda_utils/prune.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/wanda_utils/prune_opt.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pruning/wanda_utils/sparsegpt.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pwe_moe/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pwe_moe/clip_pwe_moe.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pwe_moe/module.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pwe_moe/openclip_pwe_moe.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pwe_moe/phn/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pwe_moe/phn/solvers.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/pwe_moe/utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/rankone_moe/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/rankone_moe/clip_rankone_moe.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/rankone_moe/rankone_moe.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/regmean/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/regmean/clip_regmean.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/regmean/gpt2_regmean.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/regmean/regmean.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/simple_average.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/slerp/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/slerp/slerp.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/slerp/slerp_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/smile_upscaling/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/smile_upscaling/singular_projection_merging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/sparse_we_moe/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/sparse_we_moe/sparse_we_moe.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/sparselo/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/sparselo/sparselo.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/surgery/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/tall_mask/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/tall_mask/utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/task_arithmetic/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/task_arithmetic/task_arithmetic.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/task_singular_vector/TSVC.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/task_singular_vector/TSVM.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/task_singular_vector/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/task_singular_vector/utils/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/ties_merging/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/ties_merging/ties_merging.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/ties_merging/ties_merging_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/trust_region/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/trust_region/clip_task_arithmetic.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/trust_region/utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/we_moe/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/we_moe/clip_we_moe.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/we_moe/we_moe.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/weighted_average/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/weighted_average/llama.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/method/weighted_average/weighted_average.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/continual_learning/backward_transfer.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/nyuv2/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/nyuv2/depth.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/nyuv2/loss.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/nyuv2/noise.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/nyuv2/normal.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/nyuv2/segmentation.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/text_to_image_generation/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/text_to_image_generation/compressibility.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/clip_classification.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/fabric_training.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/hydra_config.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/lightning_fabric.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/openclip_classification.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/optim/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/optim/adamw_with_warmup.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/rich_live.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/serialization.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/mixins/simple_profiler.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/base_pool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/causal_lm/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/causal_lm/causal_lm.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/clip_vision/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/clip_vision/modelpool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/huggingface_automodel.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/huggingface_gpt2_classification.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/nyuv2_modelpool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/openclip_vision/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/openclip_vision/modelpool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/seq2seq_lm/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/seq2seq_lm/modelpool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/seq_classification_lm/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/seq_classification_lm/reward_model.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/chat_templates/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/chat_templates/llama_3_Instruct.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/chat_templates/load_tokenizer.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/hf_clip.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/linearized/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/linearized/linearized_model_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/linearized/vision_model.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/llama/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/llama/model_utils/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/llama/model_utils/embedding.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/llama/model_utils/liger_kernel.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/llama/model_utils/misc.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/llama/model_utils/mod.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/llama/model_utils/visual.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/llama/patcher.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/llama/tokenizer_loader.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/masks/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/masks/mask_model.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/modeling_losparse_llama/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/modeling_losparse_llama/losparse_linear.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/modeling_losparse_llama/register.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/modeling_losparse_llama/utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/modeling_smile_mistral/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/modeling_smile_mistral/register.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/nyuv2/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/nyuv2/aspp.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/nyuv2/lightning_module.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/nyuv2/resnet.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/nyuv2/resnet_dilated.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/open_clip/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/open_clip/modeling.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/open_clip/utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/open_clip/variables_and_paths.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/parameter_dict.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/separate_io.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/smile_moe/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/sparse_we_moe.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/surgery/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/surgery/surgerymodelwrapper.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/we_moe.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/wrappers/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/wrappers/ensemble.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/wrappers/layer_wise_fusion.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/models/wrappers/task_wise_fusion.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/optim/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/optim/exception.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/optim/lr_scheduler/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/optim/lr_scheduler/linear_warmup.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/optim/lr_scheduler/utils/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/optim/lr_scheduler/utils/visualization.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/optim/mezo.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/programs/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/programs/base_program.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/programs/fabric_fusion_program.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/scripts/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/scripts/cli.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/scripts/clip/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/scripts/clip/convert_checkpoint.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/scripts/imgui.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/scripts/nyuv2_mtl_train.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/scripts/webui.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/base_pool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/clip_vision/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/clip_vision/taskpool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/clip_vision/utils/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/dummy.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/gpt2_text_classification.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/llama/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/llama/reward_model.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/llama/test_generation.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/nyuv2_taskpool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/openclip_vision/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/taskpool/openclip_vision/openclip_taskpool.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/base_task.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/classification.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/cifar10.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/cifar100.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/clip_dataset.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/cub_200_2011.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/dtd.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/emnist_letters.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/emnist_mnist.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/eurosat.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/fashion_mnist.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/fer2013.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/flower102.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/food101.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/gtsrb.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/imagenet.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/kmnist.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/mnist.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/pcam.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/rendered_sst2.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/resisc45.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/stanford_cars.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/stl10.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/sun397.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/svhn.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/clip_classification/tiny_imagenet.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/auto.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/cache_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/data.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/devices.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/dict.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/dtype.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/expr.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/fabric.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/functools.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/hydra_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/instantiate.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/json.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/lazy_imports.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/misc.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/packages.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/parameters.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/path.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/plot/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/plot/color_data.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/plot/token.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/plot/token_notebook.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/pylogger.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/rich_utils.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/set.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/state_dict_arithmetic.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/strenum/__init__.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/strenum/_name_mangler.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/strenum/_version.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/tensorboard.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/timer.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench/utils/type.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench.egg-info/dependency_links.txt +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench.egg-info/entry_points.txt +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench.egg-info/top_level.txt +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/README.md +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/README.md +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/TALL14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/TALL20.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/cifar10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/cifar100.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/dtd.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/eurosat.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/fer2013.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/food101.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/kmnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/pcam.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/resisc45.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/stl10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/sun397.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/svhn.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/TALL14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/TALL20.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/cifar10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/cifar100.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/dtd.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/eurosat.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/fer2013.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/food101.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/kmnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/pcam.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/resisc45.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/stl10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/sun397.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/svhn.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/val/dtd.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/val/eurosat.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/val/mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/val/resisc45.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/val/sun397.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/val/svhn.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/question_answering/search_qa.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/question_answering/test/search_qa.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/question_answering/train/search_qa.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/question_answering/val/search_qa.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/summarization/test/xsum.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/summarization/train/xsum.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/summarization/val/xsum.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/summarization/xsum.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric/auto.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric/llama_ddp.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric/llama_fsdp.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric/llama_peft_fsdp.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric/loggers/csv_logger.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric/loggers/wandb_logger.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric/strategy/deepspeed.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric/strategy/llama_fsdp.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/fabric_model_fusion.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/hydra/default.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/hydra/help/fusion_bench_help.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/hydra/job_logging/rich_logging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/llama_full_finetune.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/llama_magnitude_pruning.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/llama_model_fusion.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/ada_svd/clip_vision.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/adamerging/clip.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/adamerging/llama_sft.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/adamerging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/classification/clip_continual_finetune.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/classification/clip_finetune.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/clip_finetune.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/dare/simple_average.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/dare/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/dare/ties_merging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/dawe/dawe_for_clip.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/depth_upscaling.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/doge_ta/doge_ta.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/dummy.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/ensemble/max_model_predictor.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/ensemble/simple_ensemble.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/ensemble/weighted_ensemble.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/fisher_merging/fisher_merging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/gossip/layer_wise_clip.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/isotropic_merging/iso_c.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/isotropic_merging/iso_cts.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/linear/expo.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/linear/linear_interpolation.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/linear/llama_expo.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/linear/llama_expo_with_dare.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/linear/simple_average_for_llama.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/linear/weighted_average.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/linear/weighted_average_for_llama.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/mixtral_moe_merging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/mixtral_moe_upscaling.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/model_recombination.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/opcm/opcm.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/opcm/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/opcm/ties_merging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/opcm/weight_average.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/pruning/llama_random_pruning.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/rankone_moe/rankone_moe.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/regmean/clip_regmean.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/regmean/gpt2_regmean.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/regmean/regmean.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/simple_average.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/slerp/slerp.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/surgery/adamerging_surgery.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/ties_merging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/README.md +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/download_TALL20_models.sh +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-large.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/model/flan-t5/generate_flan-t5.sh +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_cars_dtd.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/automodelpool.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/gpt-2_glue.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/mixtral_moe_merging.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/nyuv2_modelpool.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/nyuv2_config.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/nyuv2_mtl_train.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/dummy.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/gpt-2_glue.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/nyuv2_taskpool.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/fusion_bench_config/taskpool/reward_model_evaluation.yaml +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/setup.cfg +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/tests/test_depth_upscaling.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/tests/test_simple_average.py +0 -0
- {fusion_bench-0.2.13 → fusion_bench-0.2.14}/tests/test_weighed_ensemble.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: fusion_bench
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.14
|
|
4
4
|
Summary: A Comprehensive Benchmark of Deep Model Fusion
|
|
5
5
|
Author-email: Anke Tang <tang.anke@foxmail.com>
|
|
6
6
|
License: MIT License
|
|
@@ -45,6 +45,8 @@ Requires-Dist: rich
|
|
|
45
45
|
Requires-Dist: scipy
|
|
46
46
|
Requires-Dist: h5py
|
|
47
47
|
Requires-Dist: pytest
|
|
48
|
+
Provides-Extra: lm-eval-harness
|
|
49
|
+
Requires-Dist: lm-eval; extra == "lm-eval-harness"
|
|
48
50
|
Dynamic: license-file
|
|
49
51
|
|
|
50
52
|
<div align='center'>
|
|
@@ -122,7 +124,7 @@ Merging multiple expert models offers a promising approach for performing multi-
|
|
|
122
124
|
|
|
123
125
|
## Installation
|
|
124
126
|
|
|
125
|
-
|
|
127
|
+
Install from PyPI:
|
|
126
128
|
|
|
127
129
|
```bash
|
|
128
130
|
pip install fusion-bench
|
|
@@ -137,6 +139,24 @@ cd fusion_bench
|
|
|
137
139
|
pip install -e . # install the package in editable mode
|
|
138
140
|
```
|
|
139
141
|
|
|
142
|
+
### Install with [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness)
|
|
143
|
+
|
|
144
|
+
[](https://doi.org/10.5281/zenodo.10256836)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
```bash
|
|
148
|
+
pip install "fusion-bench[lm-eval-harness]"
|
|
149
|
+
```
|
|
150
|
+
|
|
151
|
+
or install from local directory
|
|
152
|
+
|
|
153
|
+
```bash
|
|
154
|
+
pip install -e ".[lm-eval-harness]"
|
|
155
|
+
```
|
|
156
|
+
|
|
157
|
+
This will install the latest version of fusion-bench and the dependencies required for LM-Eval Harness.
|
|
158
|
+
Documentation for using LM-Eval Harness within FusionBench framework can be found at [this online documentation](https://tanganke.github.io/fusion_bench/taskpool/lm_eval_harness) or in the [`docs/taskpool/lm_eval_harness.md`](docs/taskpool/lm_eval_harness.md) markdown file.
|
|
159
|
+
|
|
140
160
|
## Introduction to Deep Model Fusion
|
|
141
161
|
|
|
142
162
|
Deep model fusion is a technique that merges, ensemble, or fuse multiple deep neural networks to obtain a unified model.
|
|
@@ -73,7 +73,7 @@ Merging multiple expert models offers a promising approach for performing multi-
|
|
|
73
73
|
|
|
74
74
|
## Installation
|
|
75
75
|
|
|
76
|
-
|
|
76
|
+
Install from PyPI:
|
|
77
77
|
|
|
78
78
|
```bash
|
|
79
79
|
pip install fusion-bench
|
|
@@ -88,6 +88,24 @@ cd fusion_bench
|
|
|
88
88
|
pip install -e . # install the package in editable mode
|
|
89
89
|
```
|
|
90
90
|
|
|
91
|
+
### Install with [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness)
|
|
92
|
+
|
|
93
|
+
[](https://doi.org/10.5281/zenodo.10256836)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
```bash
|
|
97
|
+
pip install "fusion-bench[lm-eval-harness]"
|
|
98
|
+
```
|
|
99
|
+
|
|
100
|
+
or install from local directory
|
|
101
|
+
|
|
102
|
+
```bash
|
|
103
|
+
pip install -e ".[lm-eval-harness]"
|
|
104
|
+
```
|
|
105
|
+
|
|
106
|
+
This will install the latest version of fusion-bench and the dependencies required for LM-Eval Harness.
|
|
107
|
+
Documentation for using LM-Eval Harness within FusionBench framework can be found at [this online documentation](https://tanganke.github.io/fusion_bench/taskpool/lm_eval_harness) or in the [`docs/taskpool/lm_eval_harness.md`](docs/taskpool/lm_eval_harness.md) markdown file.
|
|
108
|
+
|
|
91
109
|
## Introduction to Deep Model Fusion
|
|
92
110
|
|
|
93
111
|
Deep model fusion is a technique that merges, ensemble, or fuse multiple deep neural networks to obtain a unified model.
|
|
@@ -31,7 +31,10 @@ from fusion_bench.method import WeightedAverageAlgorithm
|
|
|
31
31
|
from fusion_bench.method.simple_average import simple_average
|
|
32
32
|
from fusion_bench.mixins import SimpleProfilerMixin
|
|
33
33
|
from fusion_bench.modelpool import CLIPVisionModelPool
|
|
34
|
-
from fusion_bench.models.smile_moe.
|
|
34
|
+
from fusion_bench.models.smile_moe.linear_from_module import (
|
|
35
|
+
ExpertNotTrainedError,
|
|
36
|
+
SmileMoELinear,
|
|
37
|
+
)
|
|
35
38
|
from fusion_bench.models.utils import find_layers_with_type, get_attr, set_attr
|
|
36
39
|
from fusion_bench.utils.devices import get_device
|
|
37
40
|
|
|
@@ -9,11 +9,16 @@ import torch.nn.functional as F
|
|
|
9
9
|
from accelerate import init_empty_weights
|
|
10
10
|
from torch import Tensor, nn
|
|
11
11
|
from tqdm.auto import tqdm
|
|
12
|
-
from transformers import
|
|
12
|
+
from transformers import (
|
|
13
|
+
AutoConfig,
|
|
14
|
+
AutoModelForCausalLM,
|
|
15
|
+
AutoTokenizer,
|
|
16
|
+
MistralForCausalLM,
|
|
17
|
+
)
|
|
13
18
|
from transformers.models.mistral.modeling_mistral import MistralDecoderLayer
|
|
14
19
|
|
|
15
|
-
from fusion_bench.compat.method import ModelFusionAlgorithm
|
|
16
20
|
from fusion_bench.compat.modelpool import to_modelpool
|
|
21
|
+
from fusion_bench.method import BaseAlgorithm
|
|
17
22
|
from fusion_bench.method.simple_average import simple_average
|
|
18
23
|
from fusion_bench.mixins.simple_profiler import SimpleProfilerMixin
|
|
19
24
|
from fusion_bench.modelpool import BaseModelPool
|
|
@@ -25,158 +30,23 @@ from fusion_bench.models.modeling_smile_mistral.modeling_smile_mistral import (
|
|
|
25
30
|
SmileLinear,
|
|
26
31
|
SmileMistralDecoderLayer,
|
|
27
32
|
)
|
|
28
|
-
from fusion_bench.models.
|
|
33
|
+
from fusion_bench.models.smile_moe.linear_from_hf_config import (
|
|
34
|
+
ExpertNotTrainedError,
|
|
35
|
+
upscale_to_smile_linear,
|
|
36
|
+
)
|
|
29
37
|
from fusion_bench.utils.dtype import parse_dtype
|
|
30
38
|
from fusion_bench.utils.parameters import print_parameters
|
|
31
|
-
from fusion_bench.utils.state_dict_arithmetic import state_dict_sub
|
|
32
39
|
|
|
33
40
|
log = logging.getLogger(__name__)
|
|
34
41
|
|
|
35
42
|
|
|
36
|
-
class
|
|
37
|
-
pass
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def _is_all_zeros(tensor: Tensor | List[Tensor]) -> bool:
|
|
41
|
-
"""
|
|
42
|
-
Check if a tensor or a list of tensors are all zeros.
|
|
43
|
-
|
|
44
|
-
Args:
|
|
45
|
-
tensor (Tensor | List[Tensor]): The tensor or list of tensors to check.
|
|
46
|
-
|
|
47
|
-
Returns:
|
|
48
|
-
bool: True if all elements are zeros, False otherwise.
|
|
49
|
-
"""
|
|
50
|
-
if isinstance(tensor, Tensor):
|
|
51
|
-
return torch.allclose(tensor, torch.zeros_like(tensor))
|
|
52
|
-
else:
|
|
53
|
-
return all(_is_all_zeros(t) for t in tensor)
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
def _svd(w: Tensor, full_matrices=False) -> Tuple[Tensor, Tensor, Tensor]:
|
|
57
|
-
"""
|
|
58
|
-
Perform Singular Value Decomposition (SVD) on a tensor.
|
|
59
|
-
|
|
60
|
-
Args:
|
|
61
|
-
w (Tensor): The input tensor.
|
|
62
|
-
full_matrices (bool, optional): Whether to compute the full-sized U and V matrices. Defaults to False.
|
|
63
|
-
|
|
64
|
-
Returns:
|
|
65
|
-
Tuple[Tensor, Tensor, Tensor]: The U, S, and V matrices from SVD.
|
|
66
|
-
"""
|
|
67
|
-
device = w.device
|
|
68
|
-
if w.device != torch.float32 or w.device != torch.float64:
|
|
69
|
-
w = w.float()
|
|
70
|
-
|
|
71
|
-
u, s, vh = torch.linalg.svd(
|
|
72
|
-
w,
|
|
73
|
-
full_matrices=full_matrices,
|
|
74
|
-
# driver="gesvd" if w.is_cuda else None
|
|
75
|
-
)
|
|
76
|
-
v = vh.T
|
|
77
|
-
|
|
78
|
-
u = u.to(device)
|
|
79
|
-
s = s.to(device)
|
|
80
|
-
v = v.to(device)
|
|
81
|
-
return u, s, v
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
def svd(
|
|
85
|
-
w: Tensor, full_matrices=True, accelerator=None
|
|
86
|
-
) -> Tuple[Tensor, Tensor, Tensor]:
|
|
87
|
-
"""
|
|
88
|
-
Perform SVD on a tensor with optional acceleration.
|
|
89
|
-
|
|
90
|
-
Args:
|
|
91
|
-
w (Tensor): The input tensor.
|
|
92
|
-
full_matrices (bool, optional): Whether to compute the full-sized U and V matrices. Defaults to True.
|
|
93
|
-
accelerator (optional): The device to perform the computation on. Defaults to None.
|
|
94
|
-
|
|
95
|
-
Returns:
|
|
96
|
-
Tuple[Tensor, Tensor, Tensor]: The U, S, and V matrices from SVD.
|
|
97
|
-
"""
|
|
98
|
-
if accelerator is None:
|
|
99
|
-
return _svd(w, full_matrices=full_matrices)
|
|
100
|
-
original_device = w.device
|
|
101
|
-
w = w.to(accelerator)
|
|
102
|
-
u, s, v = _svd(w)
|
|
103
|
-
return u, s, v
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
@torch.no_grad()
|
|
107
|
-
def upscale_to_smile_linear(
|
|
108
|
-
base: nn.Linear, experts: List[nn.Linear], target: SmileLinear, accelerator=None
|
|
109
|
-
):
|
|
110
|
-
"""
|
|
111
|
-
Upscale a base linear layer to a SmileLinear layer using expert models.
|
|
112
|
-
|
|
113
|
-
Args:
|
|
114
|
-
base (nn.Linear): The base linear layer.
|
|
115
|
-
experts (List[nn.Linear]): A list of expert linear layers.
|
|
116
|
-
target (SmileLinear): The target SmileLinear layer.
|
|
117
|
-
accelerator (optional): The device to perform the computation on. Defaults to None.
|
|
118
|
-
|
|
119
|
-
Returns:
|
|
120
|
-
SmileLinear: The upscaled SmileLinear layer.
|
|
121
|
-
"""
|
|
122
|
-
w = base.weight
|
|
123
|
-
w_ft_list = [e.weight for e in experts]
|
|
124
|
-
dw_list = [w_ft - w for w_ft in w_ft_list]
|
|
125
|
-
|
|
126
|
-
if _is_all_zeros(dw_list):
|
|
127
|
-
raise ExpertNotTrainedError("Expert models are not trained")
|
|
128
|
-
|
|
129
|
-
rank_of_router = target.rank_of_router
|
|
130
|
-
rank_of_expert = target.rank_of_expert
|
|
131
|
-
num_local_experts = target.num_local_experts
|
|
132
|
-
svd_list = [svd(dw, accelerator=accelerator) for dw in dw_list]
|
|
133
|
-
|
|
134
|
-
# gate
|
|
135
|
-
gate_weight = []
|
|
136
|
-
for u, s, v in svd_list:
|
|
137
|
-
gate_weight.append(v[:, :rank_of_router].T)
|
|
138
|
-
gate_weight = (
|
|
139
|
-
torch.stack(gate_weight, dim=0)
|
|
140
|
-
.reshape(num_local_experts * rank_of_router, -1)
|
|
141
|
-
.contiguous()
|
|
142
|
-
)
|
|
143
|
-
|
|
144
|
-
target.gate.load_state_dict({"weight": gate_weight})
|
|
145
|
-
|
|
146
|
-
# shared linear
|
|
147
|
-
target.shared_linear.load_state_dict(base.state_dict())
|
|
148
|
-
|
|
149
|
-
# experts
|
|
150
|
-
if rank_of_expert > 0:
|
|
151
|
-
for expert_idx, target_expert in enumerate(target.experts):
|
|
152
|
-
u, s, v = svd_list[expert_idx]
|
|
153
|
-
u = u[:, :rank_of_expert]
|
|
154
|
-
s = s[:rank_of_expert]
|
|
155
|
-
v = v[:, :rank_of_expert]
|
|
156
|
-
state_dict = {"u": u, "svh": (s * v).T}
|
|
157
|
-
if experts[expert_idx].bias is not None:
|
|
158
|
-
state_dict["bias"] = experts[expert_idx].bias.data
|
|
159
|
-
target_expert.load_state_dict(state_dict)
|
|
160
|
-
else:
|
|
161
|
-
for expert_idx, target_expert in enumerate(target.experts):
|
|
162
|
-
target_expert.load_state_dict(
|
|
163
|
-
state_dict_sub(experts[expert_idx].state_dict(), base.state_dict())
|
|
164
|
-
)
|
|
165
|
-
|
|
166
|
-
return target
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
class SmileMistralUpscalingAlgorithm(ModelFusionAlgorithm, SimpleProfilerMixin):
|
|
43
|
+
class SmileMistralUpscalingAlgorithm(BaseAlgorithm, SimpleProfilerMixin):
|
|
170
44
|
R"""
|
|
171
45
|
SmileMistralUpscalingAlgorithm is a model fusion algorithm designed to upscale
|
|
172
46
|
a pretrained Mistral model using a set of fine-tuned expert models. The algorithm
|
|
173
47
|
leverages Singular Value Decomposition (SVD) to merge the weights of the pretrained
|
|
174
48
|
model and the expert models into a new upscaled model.
|
|
175
49
|
|
|
176
|
-
Attributes:
|
|
177
|
-
modelpool (BaseModelPool): The pool of models to be used for upscaling.
|
|
178
|
-
config (dict): Configuration parameters for the upscaling process.
|
|
179
|
-
|
|
180
50
|
Methods:
|
|
181
51
|
run(modelpool: BaseModelPool) -> SmileMistralForCausalLM:
|
|
182
52
|
Executes the upscaling process and returns the upscaled model.
|
|
@@ -185,6 +55,37 @@ class SmileMistralUpscalingAlgorithm(ModelFusionAlgorithm, SimpleProfilerMixin):
|
|
|
185
55
|
Merges the pretrained model with the fine-tuned models to create an upscaled model.
|
|
186
56
|
"""
|
|
187
57
|
|
|
58
|
+
_config_mapping = BaseAlgorithm._config_mapping | {
|
|
59
|
+
"device": "device",
|
|
60
|
+
"accelerator": "accelerator",
|
|
61
|
+
"model_path": "model_path",
|
|
62
|
+
"model_dtype": "model_dtype",
|
|
63
|
+
"num_experts_per_tok": "num_experts_per_tok",
|
|
64
|
+
"rank_of_router": "rank_of_router",
|
|
65
|
+
"rank_of_expert": "rank_of_expert",
|
|
66
|
+
}
|
|
67
|
+
|
|
68
|
+
def __init__(
|
|
69
|
+
self,
|
|
70
|
+
device,
|
|
71
|
+
accelerator,
|
|
72
|
+
model_path,
|
|
73
|
+
model_dtype,
|
|
74
|
+
num_experts_per_tok,
|
|
75
|
+
rank_of_router,
|
|
76
|
+
rank_of_expert,
|
|
77
|
+
**kwargs,
|
|
78
|
+
):
|
|
79
|
+
self.device = device
|
|
80
|
+
self.accelerator = accelerator
|
|
81
|
+
self.model_path = model_path
|
|
82
|
+
self.model_dtype = model_dtype
|
|
83
|
+
# SmileMoE parameters, except `num_local_experts` which is set later according to the number of finetuned models
|
|
84
|
+
self.num_experts_per_tok = num_experts_per_tok
|
|
85
|
+
self.rank_of_router = rank_of_router
|
|
86
|
+
self.rank_of_expert = rank_of_expert
|
|
87
|
+
super().__init__(**kwargs)
|
|
88
|
+
|
|
188
89
|
@torch.no_grad()
|
|
189
90
|
def run(self, modelpool: BaseModelPool) -> SmileMistralForCausalLM:
|
|
190
91
|
"""
|
|
@@ -199,15 +100,15 @@ class SmileMistralUpscalingAlgorithm(ModelFusionAlgorithm, SimpleProfilerMixin):
|
|
|
199
100
|
self.modelpool = modelpool = to_modelpool(modelpool)
|
|
200
101
|
config = self.config
|
|
201
102
|
|
|
202
|
-
|
|
103
|
+
# load model from path if provided and return directly
|
|
203
104
|
if config.model_path is not None and os.path.exists(config.model_path):
|
|
204
105
|
log.info(f"Loading model from {config.model_path}")
|
|
205
|
-
model =
|
|
106
|
+
model = AutoModelForCausalLM.from_pretrained(config.model_path)
|
|
206
107
|
print_parameters(model)
|
|
207
108
|
return model
|
|
208
109
|
|
|
209
110
|
with self.profile("load pretrained model"):
|
|
210
|
-
pretrained_model = modelpool.
|
|
111
|
+
pretrained_model = modelpool.load_pretrained_model()
|
|
211
112
|
with self.profile("load fine-tuned model"):
|
|
212
113
|
finetuned_models = [
|
|
213
114
|
m for m in tqdm(modelpool.models(), total=len(modelpool.model_names))
|
|
@@ -0,0 +1,229 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import os
|
|
3
|
+
from copy import deepcopy
|
|
4
|
+
from typing import TYPE_CHECKING, Dict, List, Tuple
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
from accelerate import init_empty_weights
|
|
8
|
+
from tqdm.auto import tqdm
|
|
9
|
+
from transformers import (
|
|
10
|
+
AutoConfig,
|
|
11
|
+
AutoModelForCausalLM,
|
|
12
|
+
AutoTokenizer,
|
|
13
|
+
Qwen2ForCausalLM,
|
|
14
|
+
)
|
|
15
|
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer
|
|
16
|
+
|
|
17
|
+
from fusion_bench import BaseAlgorithm, BaseModelPool
|
|
18
|
+
from fusion_bench.compat.modelpool import to_modelpool
|
|
19
|
+
from fusion_bench.mixins import SimpleProfilerMixin
|
|
20
|
+
from fusion_bench.models.modeling_smile_qwen2 import (
|
|
21
|
+
SmileQwen2Config,
|
|
22
|
+
SmileQwen2ForCausalLM,
|
|
23
|
+
)
|
|
24
|
+
from fusion_bench.models.modeling_smile_qwen2.modeling_smile_qwen2 import (
|
|
25
|
+
SmileQwen2DecoderLayer,
|
|
26
|
+
)
|
|
27
|
+
from fusion_bench.models.smile_moe.linear_from_hf_config import (
|
|
28
|
+
ExpertNotTrainedError,
|
|
29
|
+
upscale_to_smile_linear,
|
|
30
|
+
)
|
|
31
|
+
from fusion_bench.utils.dtype import parse_dtype
|
|
32
|
+
from fusion_bench.utils.parameters import print_parameters
|
|
33
|
+
|
|
34
|
+
log = logging.getLogger(__name__)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class SmileQwen2UpscalingAlgorithm(BaseAlgorithm, SimpleProfilerMixin):
|
|
38
|
+
R"""
|
|
39
|
+
SmileQwen2UpscalingAlgorithm is a model fusion algorithm designed to upscale
|
|
40
|
+
a pretrained Qwen2 model using a set of fine-tuned expert models. The algorithm
|
|
41
|
+
leverages Singular Value Decomposition (SVD) to merge the weights of the pretrained
|
|
42
|
+
model and the expert models into a new upscaled model.
|
|
43
|
+
|
|
44
|
+
Methods:
|
|
45
|
+
run(modelpool: BaseModelPool) -> SmileQwen2ForCausalLM:
|
|
46
|
+
Executes the upscaling process and returns the upscaled model.
|
|
47
|
+
|
|
48
|
+
merge(pretrained_model: Qwen2ForCausalLM, finetuned_models: List[Qwen2ForCausalLM]) -> SmileQwen2ForCausalLM:
|
|
49
|
+
Merges the pretrained model with the fine-tuned models to create an upscaled model.
|
|
50
|
+
"""
|
|
51
|
+
|
|
52
|
+
_config_mapping = BaseAlgorithm._config_mapping | {
|
|
53
|
+
"device": "device",
|
|
54
|
+
"accelerator": "accelerator",
|
|
55
|
+
"model_path": "model_path",
|
|
56
|
+
"model_dtype": "model_dtype",
|
|
57
|
+
"num_experts_per_tok": "num_experts_per_tok",
|
|
58
|
+
"rank_of_router": "rank_of_router",
|
|
59
|
+
"rank_of_expert": "rank_of_expert",
|
|
60
|
+
}
|
|
61
|
+
|
|
62
|
+
def __init__(
|
|
63
|
+
self,
|
|
64
|
+
device,
|
|
65
|
+
accelerator,
|
|
66
|
+
model_path,
|
|
67
|
+
model_dtype,
|
|
68
|
+
num_experts_per_tok,
|
|
69
|
+
rank_of_router,
|
|
70
|
+
rank_of_expert,
|
|
71
|
+
**kwargs,
|
|
72
|
+
):
|
|
73
|
+
self.device = device
|
|
74
|
+
self.accelerator = accelerator
|
|
75
|
+
self.model_path = model_path
|
|
76
|
+
self.model_dtype = model_dtype
|
|
77
|
+
# SmileMoE parameters, except `num_local_experts` which is set later according to the number of finetuned models
|
|
78
|
+
self.num_experts_per_tok = num_experts_per_tok
|
|
79
|
+
self.rank_of_router = rank_of_router
|
|
80
|
+
self.rank_of_expert = rank_of_expert
|
|
81
|
+
super().__init__(**kwargs)
|
|
82
|
+
|
|
83
|
+
@torch.no_grad()
|
|
84
|
+
def run(self, modelpool: BaseModelPool) -> SmileQwen2ForCausalLM:
|
|
85
|
+
"""
|
|
86
|
+
Executes the upscaling process.
|
|
87
|
+
|
|
88
|
+
Args:
|
|
89
|
+
modelpool (ModelPool): The pool of models to be used for upscaling.
|
|
90
|
+
|
|
91
|
+
Returns:
|
|
92
|
+
SmileQwen2ForCausalLM: The upscaled model.
|
|
93
|
+
"""
|
|
94
|
+
self.modelpool = modelpool = to_modelpool(modelpool)
|
|
95
|
+
config = self.config
|
|
96
|
+
|
|
97
|
+
# load model from path if provided and return directly
|
|
98
|
+
if config.model_path is not None and os.path.exists(config.model_path):
|
|
99
|
+
log.info(f"Loading model from {config.model_path}")
|
|
100
|
+
model = AutoModelForCausalLM.from_pretrained(config.model_path)
|
|
101
|
+
print_parameters(model)
|
|
102
|
+
return model
|
|
103
|
+
|
|
104
|
+
with self.profile("load pretrained model"):
|
|
105
|
+
pretrained_model = modelpool.load_pretrained_model()
|
|
106
|
+
with self.profile("load fine-tuned model"):
|
|
107
|
+
finetuned_models = [
|
|
108
|
+
m for m in tqdm(modelpool.models(), total=len(modelpool.model_names))
|
|
109
|
+
]
|
|
110
|
+
|
|
111
|
+
if config.device == "cuda" and torch.cuda.is_available():
|
|
112
|
+
pretrained_model = pretrained_model.cuda()
|
|
113
|
+
print("parameter count of pretrained model:")
|
|
114
|
+
print_parameters(pretrained_model)
|
|
115
|
+
finetuned_models = [m.cuda() for m in finetuned_models]
|
|
116
|
+
|
|
117
|
+
with self.profile("merge model"):
|
|
118
|
+
model = self.merge(pretrained_model, finetuned_models)
|
|
119
|
+
|
|
120
|
+
self.print_profile_summary()
|
|
121
|
+
print("parameter count of upscaled MoE model:")
|
|
122
|
+
print_parameters(model)
|
|
123
|
+
print(model)
|
|
124
|
+
|
|
125
|
+
if config.model_dtype is not None:
|
|
126
|
+
model.to(dtype=parse_dtype(config.model_dtype))
|
|
127
|
+
|
|
128
|
+
if config.model_path is not None:
|
|
129
|
+
if os.path.dirname(config.model_path):
|
|
130
|
+
os.makedirs(os.path.dirname(config.model_path), exist_ok=True)
|
|
131
|
+
log.info(f"Saving model to {config.model_path}")
|
|
132
|
+
pretrained_model_config = self.modelpool.get_model_config("_pretrained_")
|
|
133
|
+
pretrained_path = pretrained_model_config.get(
|
|
134
|
+
"path", pretrained_model_config["pretrained_model_name_or_path"]
|
|
135
|
+
)
|
|
136
|
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_path)
|
|
137
|
+
tokenizer.save_pretrained(config.model_path)
|
|
138
|
+
model.save_pretrained(config.model_path)
|
|
139
|
+
|
|
140
|
+
return model
|
|
141
|
+
|
|
142
|
+
def merge(
|
|
143
|
+
self,
|
|
144
|
+
pretrained_model: Qwen2ForCausalLM,
|
|
145
|
+
finetuned_models: List[Qwen2ForCausalLM],
|
|
146
|
+
):
|
|
147
|
+
"""
|
|
148
|
+
Merges the pretrained model with the fine-tuned models to create an upscaled model.
|
|
149
|
+
|
|
150
|
+
Args:
|
|
151
|
+
pretrained_model (Qwen2ForCausalLM): The pretrained model.
|
|
152
|
+
finetuned_models (List[Qwen2ForCausalLM]): A list of fine-tuned models.
|
|
153
|
+
|
|
154
|
+
Returns:
|
|
155
|
+
SmileQwen2ForCausalLM: The upscaled model.
|
|
156
|
+
"""
|
|
157
|
+
config = self.config
|
|
158
|
+
|
|
159
|
+
with init_empty_weights():
|
|
160
|
+
pretrained_model_config = self.modelpool.get_model_config("_pretrained_")
|
|
161
|
+
pretrained_path = pretrained_model_config.get(
|
|
162
|
+
"path", pretrained_model_config["pretrained_model_name_or_path"]
|
|
163
|
+
)
|
|
164
|
+
base_config = AutoConfig.from_pretrained(pretrained_path)
|
|
165
|
+
model_config = SmileQwen2Config(
|
|
166
|
+
num_experts_per_tok=config.num_experts_per_tok,
|
|
167
|
+
rank_of_router=config.rank_of_router,
|
|
168
|
+
rank_of_expert=config.rank_of_expert,
|
|
169
|
+
num_local_experts=len(finetuned_models),
|
|
170
|
+
**base_config.to_dict(),
|
|
171
|
+
)
|
|
172
|
+
model = SmileQwen2ForCausalLM(model_config)
|
|
173
|
+
|
|
174
|
+
model.to(dtype=pretrained_model.dtype).to_empty(device="cpu")
|
|
175
|
+
|
|
176
|
+
# copy pretrained model weights
|
|
177
|
+
state_dict = model.state_dict()
|
|
178
|
+
pretrained_state_dict = dict(pretrained_model.state_dict())
|
|
179
|
+
for key in list(pretrained_state_dict.keys()):
|
|
180
|
+
if key not in state_dict:
|
|
181
|
+
pretrained_state_dict.pop(key)
|
|
182
|
+
model.load_state_dict(pretrained_state_dict, strict=False)
|
|
183
|
+
|
|
184
|
+
# upscale model
|
|
185
|
+
for layer_idx in tqdm(
|
|
186
|
+
range(len(pretrained_model.model.layers)),
|
|
187
|
+
"Upscaling Modules (layer)",
|
|
188
|
+
dynamic_ncols=True,
|
|
189
|
+
):
|
|
190
|
+
pretrained_layer: Qwen2DecoderLayer = pretrained_model.model.layers[
|
|
191
|
+
layer_idx
|
|
192
|
+
]
|
|
193
|
+
finetuned_layers: List[Qwen2DecoderLayer] = [
|
|
194
|
+
m.model.layers[layer_idx] for m in finetuned_models
|
|
195
|
+
]
|
|
196
|
+
|
|
197
|
+
target_layer: SmileQwen2DecoderLayer = model.model.layers[layer_idx]
|
|
198
|
+
|
|
199
|
+
for n in ["q_proj", "k_proj", "v_proj", "o_proj"]:
|
|
200
|
+
try:
|
|
201
|
+
upscale_to_smile_linear(
|
|
202
|
+
base=getattr(pretrained_layer.self_attn, n),
|
|
203
|
+
experts=[getattr(m.self_attn, n) for m in finetuned_layers],
|
|
204
|
+
target=getattr(target_layer.self_attn, n),
|
|
205
|
+
accelerator=config.accelerator,
|
|
206
|
+
)
|
|
207
|
+
except ExpertNotTrainedError:
|
|
208
|
+
setattr(
|
|
209
|
+
target_layer.self_attn,
|
|
210
|
+
n,
|
|
211
|
+
getattr(pretrained_layer.self_attn, n),
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
for n in ["gate_proj", "up_proj", "down_proj"]:
|
|
215
|
+
try:
|
|
216
|
+
upscale_to_smile_linear(
|
|
217
|
+
base=getattr(pretrained_layer.mlp, n),
|
|
218
|
+
experts=[getattr(m.mlp, n) for m in finetuned_layers],
|
|
219
|
+
target=getattr(target_layer.mlp, n),
|
|
220
|
+
accelerator=config.accelerator,
|
|
221
|
+
)
|
|
222
|
+
except ExpertNotTrainedError:
|
|
223
|
+
setattr(
|
|
224
|
+
target_layer.mlp,
|
|
225
|
+
n,
|
|
226
|
+
getattr(pretrained_layer.mlp, n),
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
return model
|