fusion-bench 0.2.11__tar.gz → 0.2.13__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (804) hide show
  1. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/PKG-INFO +15 -2
  2. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/README.md +12 -0
  3. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/method/__init__.py +3 -1
  4. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +4 -1
  5. fusion_bench-0.2.13/fusion_bench/constants/clip_vision.py +22 -0
  6. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/clip_dataset.py +10 -2
  7. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/gsm8k.py +2 -2
  8. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/__init__.py +12 -2
  9. {fusion_bench-0.2.11/fusion_bench/method/DOGE_TA → fusion_bench-0.2.13/fusion_bench/method/adamerging}/clip_layer_wise_adamerging.py +1 -1
  10. fusion_bench-0.2.13/fusion_bench/method/adamerging/clip_task_wise_adamerging.py +159 -0
  11. fusion_bench-0.2.13/fusion_bench/method/doge_ta/__init__.py +2 -0
  12. {fusion_bench-0.2.11/fusion_bench/method/adamerging → fusion_bench-0.2.13/fusion_bench/method/doge_ta}/clip_layer_wise_adamerging.py +1 -1
  13. fusion_bench-0.2.11/fusion_bench/method/DOGE_TA/DOGE_TA.py → fusion_bench-0.2.13/fusion_bench/method/doge_ta/doge_ta.py +1 -1
  14. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/fisher_merging/fisher_merging.py +29 -17
  15. fusion_bench-0.2.13/fusion_bench/method/gossip/__init__.py +3 -0
  16. fusion_bench-0.2.13/fusion_bench/method/gossip/clip_layer_wise_gossip.py +43 -0
  17. fusion_bench-0.2.11/fusion_bench/method/adamerging/clip_task_wise_adamerging.py → fusion_bench-0.2.13/fusion_bench/method/gossip/clip_task_wise_gossip.py +6 -3
  18. fusion_bench-0.2.13/fusion_bench/method/gossip/entropy_loss.py +25 -0
  19. fusion_bench-0.2.13/fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +388 -0
  20. fusion_bench-0.2.13/fusion_bench/method/gossip/layer_wise_gossip.py +434 -0
  21. fusion_bench-0.2.13/fusion_bench/method/gossip/min_norm_solvers.py +227 -0
  22. fusion_bench-0.2.13/fusion_bench/method/gossip/task_wise_gossip.py +265 -0
  23. fusion_bench-0.2.13/fusion_bench/method/gossip/utils.py +74 -0
  24. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/isotropic_merging/__init__.py +1 -1
  25. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/opcm/opcm.py +102 -84
  26. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/opcm/task_arithmetic.py +35 -21
  27. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/opcm/ties_merging.py +71 -52
  28. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pwe_moe/module.py +1 -1
  29. fusion_bench-0.2.13/fusion_bench/method/pwe_moe/openclip_pwe_moe.py +476 -0
  30. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/regmean/regmean.py +25 -17
  31. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/smile_upscaling/__init__.py +1 -1
  32. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/smile_upscaling/smile_upscaling.py +13 -10
  33. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +7 -0
  34. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/task_arithmetic/task_arithmetic.py +8 -6
  35. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/ties_merging/ties_merging.py +36 -31
  36. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/we_moe/we_moe.py +14 -15
  37. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/mixins/__init__.py +6 -3
  38. fusion_bench-0.2.13/fusion_bench/mixins/hydra_config.py +49 -0
  39. fusion_bench-0.2.13/fusion_bench/mixins/openclip_classification.py +11 -0
  40. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/mixins/simple_profiler.py +4 -2
  41. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/__init__.py +3 -1
  42. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/base_pool.py +2 -2
  43. fusion_bench-0.2.13/fusion_bench/modelpool/openclip_vision/__init__.py +1 -0
  44. fusion_bench-0.2.13/fusion_bench/modelpool/openclip_vision/modelpool.py +255 -0
  45. fusion_bench-0.2.13/fusion_bench/models/open_clip/__init__.py +6 -0
  46. fusion_bench-0.2.13/fusion_bench/models/open_clip/modeling.py +176 -0
  47. fusion_bench-0.2.13/fusion_bench/models/open_clip/utils.py +311 -0
  48. fusion_bench-0.2.13/fusion_bench/models/open_clip/variables_and_paths.py +56 -0
  49. fusion_bench-0.2.13/fusion_bench/models/parameter_dict.py +116 -0
  50. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/wrappers/layer_wise_fusion.py +1 -46
  51. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py +4 -119
  52. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/scripts/nyuv2_mtl_train.py +1 -1
  53. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/__init__.py +5 -3
  54. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/clip_vision/__init__.py +1 -0
  55. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +2 -30
  56. fusion_bench-0.2.13/fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py +102 -0
  57. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +2 -30
  58. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/clip_vision/taskpool.py +1 -2
  59. fusion_bench-0.2.13/fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py +65 -0
  60. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/gpt2_text_classification.py +30 -1
  61. fusion_bench-0.2.13/fusion_bench/taskpool/openclip_vision/__init__.py +1 -0
  62. fusion_bench-0.2.13/fusion_bench/taskpool/openclip_vision/openclip_taskpool.py +196 -0
  63. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/data.py +12 -0
  64. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/devices.py +14 -0
  65. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/instantiate.py +12 -0
  66. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/misc.py +9 -2
  67. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/packages.py +14 -0
  68. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/parameters.py +1 -1
  69. fusion_bench-0.2.13/fusion_bench/utils/plot/__init__.py +0 -0
  70. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/tensorboard.py +1 -1
  71. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench.egg-info/PKG-INFO +15 -2
  72. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench.egg-info/SOURCES.txt +46 -6
  73. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +1 -2
  74. {fusion_bench-0.2.11/fusion_bench_config/dataset/image_classification/train → fusion_bench-0.2.13/fusion_bench_config/dataset/image_classification/test}/TALL20.yaml +0 -1
  75. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +0 -1
  76. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +1 -1
  77. {fusion_bench-0.2.11/fusion_bench_config/dataset/image_classification/test → fusion_bench-0.2.13/fusion_bench_config/dataset/image_classification/train}/TALL20.yaml +0 -1
  78. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +1 -1
  79. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric/auto.yaml +0 -1
  80. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric/llama_ddp.yaml +0 -1
  81. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric/llama_fsdp.yaml +0 -1
  82. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric/llama_peft_fsdp.yaml +0 -1
  83. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric/strategy/deepspeed.yaml +0 -1
  84. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +0 -1
  85. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric_model_fusion.yaml +0 -1
  86. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/llama_full_finetune.yaml +0 -2
  87. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/llama_model_fusion.yaml +0 -2
  88. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/ada_svd/clip_vision.yaml +0 -1
  89. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +0 -5
  90. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +0 -5
  91. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/adamerging/llama_sft.yaml +0 -2
  92. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/adamerging.yaml +2 -2
  93. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +0 -1
  94. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +0 -1
  95. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/classification/clip_continual_finetune.yaml +0 -1
  96. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +0 -1
  97. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +0 -1
  98. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml +1 -12
  99. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml +1 -12
  100. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml +1 -10
  101. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml +1 -14
  102. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/dare/simple_average.yaml +0 -1
  103. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/dare/task_arithmetic.yaml +0 -1
  104. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/dare/ties_merging.yaml +0 -2
  105. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/dawe/dawe_for_clip.yaml +0 -3
  106. fusion_bench-0.2.11/fusion_bench_config/method/DOGE_TA/DOGE_TA.yaml → fusion_bench-0.2.13/fusion_bench_config/method/doge_ta/doge_ta.yaml +1 -1
  107. fusion_bench-0.2.13/fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
  108. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/ensemble/simple_ensemble.yaml +0 -1
  109. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/ensemble/weighted_ensemble.yaml +0 -1
  110. fusion_bench-0.2.13/fusion_bench_config/method/gossip/layer_wise_clip.yaml +30 -0
  111. fusion_bench-0.2.13/fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml +25 -0
  112. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/isotropic_merging/iso_c.yaml +0 -1
  113. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/isotropic_merging/iso_cts.yaml +0 -1
  114. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/linear/linear_interpolation.yaml +0 -1
  115. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/linear/llama_expo.yaml +0 -3
  116. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/linear/llama_expo_with_dare.yaml +0 -5
  117. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/linear/weighted_average.yaml +0 -1
  118. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/linear/weighted_average_for_llama.yaml +0 -1
  119. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +0 -4
  120. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +0 -4
  121. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +0 -6
  122. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/mixtral_moe_upscaling.yaml +1 -2
  123. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/model_recombination.yaml +0 -1
  124. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/opcm/opcm.yaml +0 -1
  125. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/opcm/task_arithmetic.yaml +0 -2
  126. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/opcm/ties_merging.yaml +0 -2
  127. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/opcm/weight_average.yaml +0 -1
  128. fusion_bench-0.2.13/fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml +30 -0
  129. fusion_bench-0.2.13/fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml +30 -0
  130. {fusion_bench-0.2.11/fusion_bench_config/method → fusion_bench-0.2.13/fusion_bench_config/method/pwe_moe}/pwe_moe_ls_for_clip.yaml +7 -6
  131. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/rankone_moe/rankone_moe.yaml +1 -3
  132. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/regmean/gpt2_regmean.yaml +0 -1
  133. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/slerp/slerp.yaml +0 -2
  134. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +1 -1
  135. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +1 -1
  136. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +1 -1
  137. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/surgery/adamerging_surgery.yaml +1 -2
  138. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/task_arithmetic.yaml +1 -1
  139. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +0 -1
  140. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/ties_merging.yaml +1 -1
  141. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +0 -1
  142. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +0 -8
  143. fusion_bench-0.2.13/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
  144. fusion_bench-0.2.13/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
  145. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -1
  146. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -1
  147. fusion_bench-0.2.13/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
  148. fusion_bench-0.2.13/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
  149. fusion_bench-0.2.13/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
  150. fusion_bench-0.2.13/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
  151. fusion_bench-0.2.13/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
  152. fusion_bench-0.2.13/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
  153. fusion_bench-0.2.13/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
  154. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +0 -3
  155. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +0 -3
  156. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +0 -3
  157. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +0 -3
  158. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +0 -3
  159. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +0 -3
  160. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +0 -4
  161. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +0 -3
  162. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +0 -4
  163. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +0 -4
  164. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +0 -1
  165. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +0 -4
  166. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +0 -4
  167. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +0 -1
  168. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +0 -3
  169. fusion_bench-0.2.13/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md +90 -0
  170. fusion_bench-0.2.13/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml +27 -0
  171. fusion_bench-0.2.13/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml +45 -0
  172. fusion_bench-0.2.13/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_cars_dtd.yaml +23 -0
  173. fusion_bench-0.2.13/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.yaml +23 -0
  174. fusion_bench-0.2.13/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml +23 -0
  175. fusion_bench-0.2.13/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml +7 -0
  176. fusion_bench-0.2.13/fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml +26 -0
  177. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +0 -1
  178. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +0 -2
  179. fusion_bench-0.2.13/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +66 -0
  180. fusion_bench-0.2.11/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml → fusion_bench-0.2.13/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml +0 -2
  181. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +0 -1
  182. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +0 -3
  183. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +0 -4
  184. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +0 -3
  185. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/gpt-2_glue.yaml +0 -3
  186. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/nyuv2_config.yaml +0 -2
  187. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +0 -3
  188. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +0 -2
  189. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +0 -2
  190. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +0 -2
  191. fusion_bench-0.2.13/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml +24 -0
  192. fusion_bench-0.2.13/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml +24 -0
  193. fusion_bench-0.2.13/fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml +24 -0
  194. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/gpt-2_glue.yaml +0 -1
  195. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/reward_model_evaluation.yaml +0 -4
  196. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/pyproject.toml +1 -1
  197. fusion_bench-0.2.11/fusion_bench/method/DOGE_TA/__init__.py +0 -2
  198. fusion_bench-0.2.11/fusion_bench/models/parameter_dict.py +0 -75
  199. fusion_bench-0.2.11/fusion_bench_config/method/ensemble/max_model_predictor.yaml +0 -1
  200. fusion_bench-0.2.11/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +0 -1
  201. fusion_bench-0.2.11/fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +0 -1
  202. fusion_bench-0.2.11/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +0 -1
  203. fusion_bench-0.2.11/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +0 -1
  204. fusion_bench-0.2.11/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +0 -1
  205. fusion_bench-0.2.11/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +0 -1
  206. fusion_bench-0.2.11/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +0 -1
  207. fusion_bench-0.2.11/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +0 -1
  208. fusion_bench-0.2.11/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +0 -1
  209. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/LICENSE +0 -0
  210. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/__init__.py +0 -0
  211. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/__main__.py +0 -0
  212. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/__init__.py +0 -0
  213. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/method/base_algorithm.py +0 -0
  214. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +0 -0
  215. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/modelpool/__init__.py +0 -0
  216. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/modelpool/base_pool.py +0 -0
  217. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/modelpool/huggingface_clip_vision.py +0 -0
  218. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/taskpool/__init__.py +0 -0
  219. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/taskpool/base_pool.py +0 -0
  220. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/compat/taskpool/clip_image_classification.py +0 -0
  221. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/constants/__init__.py +0 -0
  222. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/constants/paths.py +0 -0
  223. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/__init__.py +0 -0
  224. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/arc_agi/__init__.py +0 -0
  225. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/arc_agi/arc.py +0 -0
  226. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/arc_agi/arc_agi.py +0 -0
  227. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/arc_agi/augmenters.py +0 -0
  228. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/arc_agi/messagers.py +0 -0
  229. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/arc_agi/np_cache.py +0 -0
  230. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/arc_agi/preprocess.py +0 -0
  231. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/arc_agi/representers.py +0 -0
  232. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/fer2013.py +0 -0
  233. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/gpt2_glue.py +0 -0
  234. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/image_dataset.py +0 -0
  235. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/imdb.py +0 -0
  236. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/__init__.py +0 -0
  237. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/alpaca.py +0 -0
  238. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/collate.py +0 -0
  239. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/metamathqa.py +0 -0
  240. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/openai.py +0 -0
  241. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/preference_700k.py +0 -0
  242. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/sharegpt.py +0 -0
  243. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/squad.py +0 -0
  244. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/stanford_shp.py +0 -0
  245. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/ultrachat.py +0 -0
  246. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/utils/__init__.py +0 -0
  247. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/llama/wikitext.py +0 -0
  248. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/dataset/nyuv2.py +0 -0
  249. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/ada_svd/__init__.py +0 -0
  250. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/ada_svd/clip_vision.py +0 -0
  251. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/adamerging/__init__.py +0 -0
  252. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/adamerging/entropy_loss.py +0 -0
  253. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +0 -0
  254. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +0 -0
  255. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/adamerging/layer_wise_adamerging.py +0 -0
  256. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/adamerging/llama_adamerging.py +0 -0
  257. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/adamerging/min_norm_solvers.py +0 -0
  258. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/adamerging/task_wise_adamerging.py +0 -0
  259. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/adamerging/utils.py +0 -0
  260. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/analysis/__init__.py +0 -0
  261. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/analysis/task_vector_cos_similarity.py +0 -0
  262. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/analysis/task_vector_violin_plot.py +0 -0
  263. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/base_algorithm.py +0 -0
  264. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/classification/__init__.py +0 -0
  265. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/classification/clip_finetune.py +0 -0
  266. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/classification/continual_clip_finetune.py +0 -0
  267. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/concrete_subspace/__init__.py +0 -0
  268. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -0
  269. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +0 -0
  270. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/concrete_subspace/clip_post_defense.py +0 -0
  271. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py +0 -0
  272. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/dare/__init__.py +0 -0
  273. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/dare/simple_average.py +0 -0
  274. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/dare/task_arithmetic.py +0 -0
  275. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/dare/ties_merging.py +0 -0
  276. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/dare/utils.py +0 -0
  277. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/dawe/__init__.py +0 -0
  278. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/dawe/dawe_for_clip.py +0 -0
  279. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/dawe/warppers/__init__.py +0 -0
  280. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/dawe/warppers/dawe_model.py +0 -0
  281. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/depth_upscaling/__init__.py +0 -0
  282. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/depth_upscaling/depth_upscaling.py +0 -0
  283. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +0 -0
  284. {fusion_bench-0.2.11/fusion_bench/method/DOGE_TA → fusion_bench-0.2.13/fusion_bench/method/doge_ta}/layer_wise_adamerging.py +0 -0
  285. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/dummy.py +0 -0
  286. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/ensemble.py +0 -0
  287. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/fisher_merging/__init__.py +0 -0
  288. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -0
  289. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +0 -0
  290. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/isotropic_merging/iso.py +0 -0
  291. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/isotropic_merging/iso_utils.py +0 -0
  292. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/linear/__init__.py +0 -0
  293. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/linear/expo.py +0 -0
  294. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/linear/linear_interpolation.py +0 -0
  295. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/linear/llama_expo.py +0 -0
  296. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/linear/simple_average_for_llama.py +0 -0
  297. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/linear/task_arithmetic_for_llama.py +0 -0
  298. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/lm_finetune/__init__.py +0 -0
  299. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/lm_finetune/bradley_terry_rm.py +0 -0
  300. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/lm_finetune/causal_lm_pretrain.py +0 -0
  301. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/lm_finetune/fullfinetune_sft.py +0 -0
  302. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/lm_finetune/peftfinetune_sft.py +0 -0
  303. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/mixture_of_experts/__init__.py +0 -0
  304. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/mixture_of_experts/mixtral_merging.py +0 -0
  305. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +0 -0
  306. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/model_recombination.py +0 -0
  307. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/opcm/__init__.py +0 -0
  308. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/opcm/utils.py +0 -0
  309. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/opcm/weight_average.py +0 -0
  310. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/__init__.py +0 -0
  311. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/llama_magnitude_prune.py +0 -0
  312. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/llama_random_prune.py +0 -0
  313. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/llama_wanda_prune.py +0 -0
  314. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/magnitude_diff_pruning.py +0 -0
  315. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/prune_utils.py +0 -0
  316. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/wanda_utils/__init__.py +0 -0
  317. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/wanda_utils/ablate.py +0 -0
  318. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/wanda_utils/data.py +0 -0
  319. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/wanda_utils/eval.py +0 -0
  320. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/wanda_utils/layerwrapper.py +0 -0
  321. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/wanda_utils/prune.py +0 -0
  322. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/wanda_utils/prune_opt.py +0 -0
  323. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pruning/wanda_utils/sparsegpt.py +0 -0
  324. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pwe_moe/__init__.py +0 -0
  325. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pwe_moe/clip_pwe_moe.py +0 -0
  326. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pwe_moe/phn/__init__.py +0 -0
  327. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pwe_moe/phn/solvers.py +0 -0
  328. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/pwe_moe/utils.py +0 -0
  329. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/rankone_moe/__init__.py +0 -0
  330. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/rankone_moe/clip_rankone_moe.py +0 -0
  331. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/rankone_moe/rankone_moe.py +0 -0
  332. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/regmean/__init__.py +0 -0
  333. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/regmean/clip_regmean.py +0 -0
  334. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/regmean/gpt2_regmean.py +0 -0
  335. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/simple_average.py +0 -0
  336. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/slerp/__init__.py +0 -0
  337. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/slerp/slerp.py +0 -0
  338. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/slerp/slerp_utils.py +0 -0
  339. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/smile_upscaling/singular_projection_merging.py +0 -0
  340. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +0 -0
  341. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/sparse_we_moe/__init__.py +0 -0
  342. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +0 -0
  343. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/sparse_we_moe/sparse_we_moe.py +0 -0
  344. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/sparselo/__init__.py +0 -0
  345. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/sparselo/sparselo.py +0 -0
  346. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/surgery/__init__.py +0 -0
  347. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/tall_mask/__init__.py +0 -0
  348. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/tall_mask/utils.py +0 -0
  349. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/task_arithmetic/__init__.py +0 -0
  350. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/task_singular_vector/TSVC.py +0 -0
  351. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/task_singular_vector/TSVM.py +0 -0
  352. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/task_singular_vector/__init__.py +0 -0
  353. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +0 -0
  354. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +0 -0
  355. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/task_singular_vector/utils/__init__.py +0 -0
  356. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/ties_merging/__init__.py +0 -0
  357. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/ties_merging/ties_merging_utils.py +0 -0
  358. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/trust_region/__init__.py +0 -0
  359. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/trust_region/clip_task_arithmetic.py +0 -0
  360. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/trust_region/utils.py +0 -0
  361. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/we_moe/__init__.py +0 -0
  362. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/we_moe/clip_we_moe.py +0 -0
  363. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/weighted_average/__init__.py +0 -0
  364. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/weighted_average/llama.py +0 -0
  365. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/method/weighted_average/weighted_average.py +0 -0
  366. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/__init__.py +0 -0
  367. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/continual_learning/backward_transfer.py +0 -0
  368. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/nyuv2/__init__.py +0 -0
  369. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/nyuv2/depth.py +0 -0
  370. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/nyuv2/loss.py +0 -0
  371. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/nyuv2/noise.py +0 -0
  372. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/nyuv2/normal.py +0 -0
  373. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/nyuv2/segmentation.py +0 -0
  374. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/text_to_image_generation/__init__.py +0 -0
  375. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +0 -0
  376. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/text_to_image_generation/compressibility.py +0 -0
  377. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +0 -0
  378. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/mixins/clip_classification.py +0 -0
  379. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/mixins/fabric_training.py +0 -0
  380. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/mixins/lightning_fabric.py +0 -0
  381. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/mixins/optim/__init__.py +0 -0
  382. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/mixins/optim/adamw_with_warmup.py +0 -0
  383. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/mixins/rich_live.py +0 -0
  384. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/mixins/serialization.py +0 -0
  385. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +0 -0
  386. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/causal_lm/__init__.py +0 -0
  387. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/causal_lm/causal_lm.py +0 -0
  388. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/clip_vision/__init__.py +0 -0
  389. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/clip_vision/modelpool.py +0 -0
  390. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/huggingface_automodel.py +0 -0
  391. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/huggingface_gpt2_classification.py +0 -0
  392. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/nyuv2_modelpool.py +0 -0
  393. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/seq2seq_lm/__init__.py +0 -0
  394. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/seq2seq_lm/modelpool.py +0 -0
  395. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/seq_classification_lm/__init__.py +0 -0
  396. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/seq_classification_lm/reward_model.py +0 -0
  397. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +0 -0
  398. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/__init__.py +0 -0
  399. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/chat_templates/__init__.py +0 -0
  400. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/chat_templates/llama_3_Instruct.py +0 -0
  401. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/chat_templates/load_tokenizer.py +0 -0
  402. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/hf_clip.py +0 -0
  403. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/linearized/__init__.py +0 -0
  404. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/linearized/linearized_model_utils.py +0 -0
  405. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/linearized/vision_model.py +0 -0
  406. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/llama/__init__.py +0 -0
  407. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/llama/model_utils/__init__.py +0 -0
  408. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/llama/model_utils/embedding.py +0 -0
  409. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/llama/model_utils/liger_kernel.py +0 -0
  410. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/llama/model_utils/misc.py +0 -0
  411. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/llama/model_utils/mod.py +0 -0
  412. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/llama/model_utils/visual.py +0 -0
  413. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/llama/patcher.py +0 -0
  414. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/llama/tokenizer_loader.py +0 -0
  415. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/masks/__init__.py +0 -0
  416. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/masks/mask_model.py +0 -0
  417. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/modeling_losparse_llama/__init__.py +0 -0
  418. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +0 -0
  419. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/modeling_losparse_llama/losparse_linear.py +0 -0
  420. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +0 -0
  421. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/modeling_losparse_llama/register.py +0 -0
  422. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/modeling_losparse_llama/utils.py +0 -0
  423. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/modeling_smile_mistral/__init__.py +0 -0
  424. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +0 -0
  425. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +0 -0
  426. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/modeling_smile_mistral/register.py +0 -0
  427. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/nyuv2/__init__.py +0 -0
  428. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/nyuv2/aspp.py +0 -0
  429. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/nyuv2/lightning_module.py +0 -0
  430. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/nyuv2/resnet.py +0 -0
  431. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/nyuv2/resnet_dilated.py +0 -0
  432. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/rankone_moe.py +0 -0
  433. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/separate_io.py +0 -0
  434. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/smile_moe/__init__.py +0 -0
  435. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/smile_moe/linear.py +0 -0
  436. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/sparse_we_moe.py +0 -0
  437. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/surgery/__init__.py +0 -0
  438. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/surgery/surgerymodelwrapper.py +0 -0
  439. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/utils.py +0 -0
  440. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/we_moe.py +0 -0
  441. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/wrappers/__init__.py +0 -0
  442. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/wrappers/ensemble.py +0 -0
  443. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/models/wrappers/task_wise_fusion.py +0 -0
  444. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/optim/__init__.py +0 -0
  445. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/optim/exception.py +0 -0
  446. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/optim/lr_scheduler/__init__.py +0 -0
  447. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/optim/lr_scheduler/linear_warmup.py +0 -0
  448. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/optim/lr_scheduler/utils/__init__.py +0 -0
  449. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/optim/lr_scheduler/utils/visualization.py +0 -0
  450. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/optim/mezo.py +0 -0
  451. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/programs/__init__.py +0 -0
  452. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/programs/base_program.py +0 -0
  453. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/programs/fabric_fusion_program.py +0 -0
  454. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/scripts/__init__.py +0 -0
  455. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/scripts/cli.py +0 -0
  456. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/scripts/clip/__init__.py +0 -0
  457. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/scripts/clip/convert_checkpoint.py +0 -0
  458. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/scripts/imgui.py +0 -0
  459. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/scripts/webui.py +0 -0
  460. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/base_pool.py +0 -0
  461. {fusion_bench-0.2.11/fusion_bench/tasks/flan_t5_text_generation → fusion_bench-0.2.13/fusion_bench/taskpool/clip_vision/utils}/__init__.py +0 -0
  462. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/dummy.py +0 -0
  463. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/llama/__init__.py +0 -0
  464. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/llama/reward_model.py +0 -0
  465. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/llama/test_generation.py +0 -0
  466. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/taskpool/nyuv2_taskpool.py +0 -0
  467. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/__init__.py +0 -0
  468. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/base_task.py +0 -0
  469. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/classification.py +0 -0
  470. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/__init__.py +0 -0
  471. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/cifar10.py +0 -0
  472. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/cifar100.py +0 -0
  473. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/clip_dataset.py +0 -0
  474. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/cub_200_2011.py +0 -0
  475. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/dtd.py +0 -0
  476. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/emnist_letters.py +0 -0
  477. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/emnist_mnist.py +0 -0
  478. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/eurosat.py +0 -0
  479. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/fashion_mnist.py +0 -0
  480. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/fer2013.py +0 -0
  481. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/flower102.py +0 -0
  482. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/food101.py +0 -0
  483. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/gtsrb.py +0 -0
  484. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/imagenet.py +0 -0
  485. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/kmnist.py +0 -0
  486. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/mnist.py +0 -0
  487. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +0 -0
  488. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +0 -0
  489. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/pcam.py +0 -0
  490. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/rendered_sst2.py +0 -0
  491. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/resisc45.py +0 -0
  492. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/stanford_cars.py +0 -0
  493. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/stl10.py +0 -0
  494. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/sun397.py +0 -0
  495. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/svhn.py +0 -0
  496. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/clip_classification/tiny_imagenet.py +0 -0
  497. {fusion_bench-0.2.11/fusion_bench/utils/plot → fusion_bench-0.2.13/fusion_bench/tasks/flan_t5_text_generation}/__init__.py +0 -0
  498. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +0 -0
  499. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +0 -0
  500. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +0 -0
  501. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +0 -0
  502. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +0 -0
  503. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/__init__.py +0 -0
  504. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/auto.py +0 -0
  505. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/cache_utils.py +0 -0
  506. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/dict.py +0 -0
  507. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/dtype.py +0 -0
  508. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/expr.py +0 -0
  509. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/fabric.py +0 -0
  510. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/functools.py +0 -0
  511. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/hydra_utils.py +0 -0
  512. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/json.py +0 -0
  513. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/lazy_imports.py +0 -0
  514. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/path.py +0 -0
  515. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/plot/color_data.py +0 -0
  516. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/plot/token.py +0 -0
  517. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/plot/token_notebook.py +0 -0
  518. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/pylogger.py +0 -0
  519. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/rich_utils.py +0 -0
  520. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/set.py +0 -0
  521. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/state_dict_arithmetic.py +0 -0
  522. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/strenum/__init__.py +0 -0
  523. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/strenum/_name_mangler.py +0 -0
  524. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/strenum/_version.py +0 -0
  525. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/timer.py +0 -0
  526. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench/utils/type.py +0 -0
  527. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench.egg-info/dependency_links.txt +0 -0
  528. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench.egg-info/entry_points.txt +0 -0
  529. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench.egg-info/requires.txt +0 -0
  530. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench.egg-info/top_level.txt +0 -0
  531. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/README.md +0 -0
  532. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/README.md +0 -0
  533. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/TALL14.yaml +0 -0
  534. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/cifar10.yaml +0 -0
  535. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/cifar100.yaml +0 -0
  536. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +0 -0
  537. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/dtd.yaml +0 -0
  538. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +0 -0
  539. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/eurosat.yaml +0 -0
  540. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/fer2013.yaml +0 -0
  541. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/food101.yaml +0 -0
  542. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +0 -0
  543. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/kmnist.yaml +0 -0
  544. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +0 -0
  545. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/mnist.yaml +0 -0
  546. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +0 -0
  547. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +0 -0
  548. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/pcam.yaml +0 -0
  549. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +0 -0
  550. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/resisc45.yaml +0 -0
  551. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +0 -0
  552. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/stl10.yaml +0 -0
  553. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/sun397.yaml +0 -0
  554. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/svhn.yaml +0 -0
  555. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +0 -0
  556. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +0 -0
  557. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/TALL14.yaml +0 -0
  558. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/cifar10.yaml +0 -0
  559. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/cifar100.yaml +0 -0
  560. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +0 -0
  561. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/dtd.yaml +0 -0
  562. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +0 -0
  563. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +0 -0
  564. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/eurosat.yaml +0 -0
  565. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/fer2013.yaml +0 -0
  566. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/food101.yaml +0 -0
  567. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +0 -0
  568. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/kmnist.yaml +0 -0
  569. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +0 -0
  570. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/mnist.yaml +0 -0
  571. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +0 -0
  572. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +0 -0
  573. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/pcam.yaml +0 -0
  574. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +0 -0
  575. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/resisc45.yaml +0 -0
  576. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +0 -0
  577. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/stl10.yaml +0 -0
  578. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/sun397.yaml +0 -0
  579. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/svhn.yaml +0 -0
  580. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +0 -0
  581. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +0 -0
  582. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/val/dtd.yaml +0 -0
  583. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/val/eurosat.yaml +0 -0
  584. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +0 -0
  585. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/val/mnist.yaml +0 -0
  586. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/val/resisc45.yaml +0 -0
  587. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +0 -0
  588. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/val/sun397.yaml +0 -0
  589. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/val/svhn.yaml +0 -0
  590. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +0 -0
  591. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +0 -0
  592. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +0 -0
  593. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/question_answering/search_qa.yaml +0 -0
  594. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/question_answering/test/search_qa.yaml +0 -0
  595. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +0 -0
  596. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/question_answering/train/search_qa.yaml +0 -0
  597. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/question_answering/val/search_qa.yaml +0 -0
  598. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/summarization/test/xsum.yaml +0 -0
  599. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/summarization/train/xsum.yaml +0 -0
  600. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/summarization/val/xsum.yaml +0 -0
  601. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/summarization/xsum.yaml +0 -0
  602. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +0 -0
  603. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +0 -0
  604. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +0 -0
  605. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +0 -0
  606. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +0 -0
  607. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +0 -0
  608. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric/loggers/csv_logger.yaml +0 -0
  609. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +0 -0
  610. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric/loggers/wandb_logger.yaml +0 -0
  611. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/fabric/strategy/llama_fsdp.yaml +0 -0
  612. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/hydra/default.yaml +0 -0
  613. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/hydra/help/fusion_bench_help.yaml +0 -0
  614. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/hydra/job_logging/rich_logging.yaml +0 -0
  615. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/llama_magnitude_pruning.yaml +0 -0
  616. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/adamerging/clip.yaml +0 -0
  617. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/classification/clip_finetune.yaml +0 -0
  618. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/clip_finetune.yaml +0 -0
  619. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +0 -0
  620. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/depth_upscaling.yaml +0 -0
  621. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/dummy.yaml +0 -0
  622. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -0
  623. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/fisher_merging/fisher_merging.yaml +0 -0
  624. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +0 -0
  625. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/linear/expo.yaml +0 -0
  626. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/linear/simple_average_for_llama.yaml +0 -0
  627. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -0
  628. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/mixtral_moe_merging.yaml +0 -0
  629. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +0 -0
  630. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/pruning/llama_random_pruning.yaml +0 -0
  631. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +0 -0
  632. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +0 -0
  633. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/regmean/clip_regmean.yaml +0 -0
  634. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/regmean/regmean.yaml +0 -0
  635. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/simple_average.yaml +0 -0
  636. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +0 -0
  637. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +0 -0
  638. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +0 -0
  639. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +0 -0
  640. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/README.md +0 -0
  641. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +0 -0
  642. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +0 -0
  643. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +0 -0
  644. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +0 -0
  645. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +0 -0
  646. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +0 -0
  647. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +0 -0
  648. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +0 -0
  649. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +0 -0
  650. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +0 -0
  651. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +0 -0
  652. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +0 -0
  653. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +0 -0
  654. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +0 -0
  655. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +0 -0
  656. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +0 -0
  657. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +0 -0
  658. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +0 -0
  659. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +0 -0
  660. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +0 -0
  661. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +0 -0
  662. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +0 -0
  663. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +0 -0
  664. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +0 -0
  665. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +0 -0
  666. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +0 -0
  667. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +0 -0
  668. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +0 -0
  669. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +0 -0
  670. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +0 -0
  671. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +0 -0
  672. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +0 -0
  673. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +0 -0
  674. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +0 -0
  675. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +0 -0
  676. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +0 -0
  677. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +0 -0
  678. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +0 -0
  679. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +0 -0
  680. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +0 -0
  681. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +0 -0
  682. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +0 -0
  683. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +0 -0
  684. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +0 -0
  685. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +0 -0
  686. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +0 -0
  687. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +0 -0
  688. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +0 -0
  689. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +0 -0
  690. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +0 -0
  691. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +0 -0
  692. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +0 -0
  693. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +0 -0
  694. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +0 -0
  695. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +0 -0
  696. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +0 -0
  697. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +0 -0
  698. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +0 -0
  699. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +0 -0
  700. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +0 -0
  701. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +0 -0
  702. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/download_TALL20_models.sh +0 -0
  703. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +0 -0
  704. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base.yaml +0 -0
  705. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +0 -0
  706. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +0 -0
  707. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +0 -0
  708. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +0 -0
  709. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +0 -0
  710. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +0 -0
  711. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +0 -0
  712. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +0 -0
  713. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +0 -0
  714. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +0 -0
  715. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +0 -0
  716. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +0 -0
  717. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +0 -0
  718. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +0 -0
  719. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +0 -0
  720. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +0 -0
  721. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-large.yaml +0 -0
  722. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +0 -0
  723. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +0 -0
  724. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +0 -0
  725. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +0 -0
  726. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +0 -0
  727. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +0 -0
  728. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +0 -0
  729. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +0 -0
  730. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/model/flan-t5/generate_flan-t5.sh +0 -0
  731. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +0 -0
  732. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +0 -0
  733. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +0 -0
  734. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +0 -0
  735. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +0 -0
  736. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +0 -0
  737. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +0 -0
  738. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +0 -0
  739. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +0 -0
  740. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +0 -0
  741. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +0 -0
  742. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +0 -0
  743. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +0 -0
  744. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +0 -0
  745. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +0 -0
  746. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +0 -0
  747. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
  748. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  749. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +0 -0
  750. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
  751. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +0 -0
  752. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +0 -0
  753. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +0 -0
  754. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +0 -0
  755. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +0 -0
  756. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +0 -0
  757. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +0 -0
  758. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/automodelpool.yaml +0 -0
  759. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/mixtral_moe_merging.yaml +0 -0
  760. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +0 -0
  761. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/nyuv2_modelpool.yaml +0 -0
  762. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +0 -0
  763. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +0 -0
  764. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +0 -0
  765. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +0 -0
  766. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/nyuv2_mtl_train.yaml +0 -0
  767. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  768. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +0 -0
  769. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +0 -0
  770. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +0 -0
  771. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +0 -0
  772. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +0 -0
  773. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +0 -0
  774. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +0 -0
  775. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +0 -0
  776. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +0 -0
  777. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +0 -0
  778. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +0 -0
  779. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +0 -0
  780. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +0 -0
  781. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +0 -0
  782. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +0 -0
  783. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +0 -0
  784. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +0 -0
  785. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +0 -0
  786. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +0 -0
  787. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +0 -0
  788. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +0 -0
  789. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +0 -0
  790. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +0 -0
  791. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +0 -0
  792. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +0 -0
  793. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +0 -0
  794. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +0 -0
  795. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +0 -0
  796. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +0 -0
  797. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -0
  798. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/dummy.yaml +0 -0
  799. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +0 -0
  800. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/fusion_bench_config/taskpool/nyuv2_taskpool.yaml +0 -0
  801. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/setup.cfg +0 -0
  802. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/tests/test_depth_upscaling.py +0 -0
  803. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/tests/test_simple_average.py +0 -0
  804. {fusion_bench-0.2.11 → fusion_bench-0.2.13}/tests/test_weighed_ensemble.py +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: fusion_bench
3
- Version: 0.2.11
3
+ Version: 0.2.13
4
4
  Summary: A Comprehensive Benchmark of Deep Model Fusion
5
5
  Author-email: Anke Tang <tang.anke@foxmail.com>
6
6
  License: MIT License
@@ -45,6 +45,7 @@ Requires-Dist: rich
45
45
  Requires-Dist: scipy
46
46
  Requires-Dist: h5py
47
47
  Requires-Dist: pytest
48
+ Dynamic: license-file
48
49
 
49
50
  <div align='center'>
50
51
 
@@ -69,6 +70,18 @@ FusionBench is a benchmark suite designed to evaluate the performance of various
69
70
 
70
71
  Projects based on FusionBench and news from the community (descending order of date):
71
72
 
73
+ <details>
74
+ <summary>Hao Mark Chen, et al. FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization. Mar 2025. https://arxiv.org/abs/2503.12649</summary>
75
+
76
+ Model merging has emerged as a promising approach for multi-task learning (MTL), offering a data-efficient alternative to conventional fine-tuning. However, with the rapid development of the open-source AI ecosystem and the increasing availability of fine-tuned foundation models, existing model merging methods face two key limitations: (i) They are primarily designed for in-house fine-tuned models, making them less adaptable to diverse model sources with partially unknown model and task information, (ii) They struggle to scale effectively when merging numerous model checkpoints. To address these challenges, we formulate model merging as a constrained optimization problem and introduce a novel approach: Frank-Wolfe Merging (FW-Merging). Inspired by Frank-Wolfe optimization, our approach iteratively selects the most relevant model in the pool to minimize a linear approximation of the objective function and then executes a local merging similar to the Frank-Wolfe update. The objective function is designed to capture the desired behavior of the target-merged model, while the fine-tuned candidate models define the constraint set. More importantly, FW-Merging serves as an orthogonal technique for existing merging methods, seamlessly integrating with them to further enhance accuracy performance. Our experiments show that FW-Merging scales across diverse model sources, remaining stable with 16 irrelevant models and improving by 15.3% with 16 relevant models on 20 CV tasks, while maintaining constant memory overhead, unlike the linear overhead of data-informed merging methods. Compared with the state-of-the-art approaches, FW-Merging surpasses the data-free merging method by 32.8% and outperforms the data-informed Adamerging by 8.39% when merging 20 ViT models.
77
+ </details>
78
+
79
+ <details>
80
+ <summary>Daniel Marczak, et al. No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces. Feb 2025. https://arxiv.org/abs/2502.04959</summary>
81
+
82
+ Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training.
83
+ </details>
84
+
72
85
  <details>
73
86
  <summary>Anke Tang, et al. Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging. Jan 2025. https://arxiv.org/pdf/2501.09522</summary>
74
87
 
@@ -21,6 +21,18 @@ FusionBench is a benchmark suite designed to evaluate the performance of various
21
21
 
22
22
  Projects based on FusionBench and news from the community (descending order of date):
23
23
 
24
+ <details>
25
+ <summary>Hao Mark Chen, et al. FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization. Mar 2025. https://arxiv.org/abs/2503.12649</summary>
26
+
27
+ Model merging has emerged as a promising approach for multi-task learning (MTL), offering a data-efficient alternative to conventional fine-tuning. However, with the rapid development of the open-source AI ecosystem and the increasing availability of fine-tuned foundation models, existing model merging methods face two key limitations: (i) They are primarily designed for in-house fine-tuned models, making them less adaptable to diverse model sources with partially unknown model and task information, (ii) They struggle to scale effectively when merging numerous model checkpoints. To address these challenges, we formulate model merging as a constrained optimization problem and introduce a novel approach: Frank-Wolfe Merging (FW-Merging). Inspired by Frank-Wolfe optimization, our approach iteratively selects the most relevant model in the pool to minimize a linear approximation of the objective function and then executes a local merging similar to the Frank-Wolfe update. The objective function is designed to capture the desired behavior of the target-merged model, while the fine-tuned candidate models define the constraint set. More importantly, FW-Merging serves as an orthogonal technique for existing merging methods, seamlessly integrating with them to further enhance accuracy performance. Our experiments show that FW-Merging scales across diverse model sources, remaining stable with 16 irrelevant models and improving by 15.3% with 16 relevant models on 20 CV tasks, while maintaining constant memory overhead, unlike the linear overhead of data-informed merging methods. Compared with the state-of-the-art approaches, FW-Merging surpasses the data-free merging method by 32.8% and outperforms the data-informed Adamerging by 8.39% when merging 20 ViT models.
28
+ </details>
29
+
30
+ <details>
31
+ <summary>Daniel Marczak, et al. No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces. Feb 2025. https://arxiv.org/abs/2502.04959</summary>
32
+
33
+ Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training.
34
+ </details>
35
+
24
36
  <details>
25
37
  <summary>Anke Tang, et al. Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging. Jan 2025. https://arxiv.org/pdf/2501.09522</summary>
26
38
 
@@ -20,9 +20,11 @@ class AlgorithmFactory:
20
20
  # model merging methods
21
21
  "clip_task_wise_adamerging": ".adamerging.clip_task_wise_adamerging.CLIPTaskWiseAdaMergingAlgorithm",
22
22
  "clip_layer_wise_adamerging": ".adamerging.clip_layer_wise_adamerging.CLIPLayerWiseAdaMergingAlgorithm",
23
- "clip_layer_wise_adamerging_doge_ta": ".DOGE_TA.clip_layer_wise_adamerging.CLIPLayerWiseAdaMergingAlgorithm",
23
+ "clip_layer_wise_adamerging_doge_ta": ".doge_ta.clip_layer_wise_adamerging.CLIPLayerWiseAdaMergingAlgorithm",
24
24
  "singular_projection_merging": "fusion_bench.method.smile_upscaling.singular_projection_merging.SingularProjectionMergingAlgorithm",
25
25
  "clip_layer_wise_adamerging_surgery": ".surgery.clip_layer_wise_adamerging_surgery.CLIPLayerWiseAdaMergingSurgeryAlgorithm",
26
+ "clip_task_wise_gossip": ".gossip.clip_task_wise_gossip.CLIPTaskWiseGossipAlgorithm",
27
+ "clip_layer_wise_gossip": ".gossip.clip_layer_wise_gossip.CLIPLayerWiseGossipAlgorithm",
26
28
  # plug-and-play model merging methods
27
29
  "clip_concrete_task_arithmetic": ".concrete_subspace.clip_concrete_task_arithmetic.ConcreteTaskArithmeticAlgorithmForCLIP",
28
30
  "clip_concrete_task_wise_adamerging": ".concrete_subspace.clip_concrete_adamerging.ConcreteTaskWiseAdaMergingForCLIP",
@@ -148,12 +148,13 @@ class FlanT5GLUETextGenerationTaskPool(LightningFabricMixin, TaskPool):
148
148
  else:
149
149
  raise ValueError(f"Unknown task {task_config.name}")
150
150
 
151
- def evaluate(self, model: T5ForConditionalGeneration):
151
+ def evaluate(self, model: T5ForConditionalGeneration, name: str = None):
152
152
  """
153
153
  Evaluate the model on the FlanT5 GLUE text generation tasks.
154
154
 
155
155
  Args:
156
156
  model (T5ForConditionalGeneration): The model to evaluate.
157
+ name (str, optional): The name of the model. Defaults to None. This is used to identify the model in the report.
157
158
 
158
159
  Returns:
159
160
  dict: A dictionary containing the evaluation results for each task.
@@ -169,6 +170,8 @@ class FlanT5GLUETextGenerationTaskPool(LightningFabricMixin, TaskPool):
169
170
  "all_params": all_params,
170
171
  "trainable_percentage": training_params / all_params,
171
172
  }
173
+ if name is not None:
174
+ report["model_info"]["name"] = name
172
175
  model = self.fabric.setup(model)
173
176
  report.update(super().evaluate(model))
174
177
  log.info(f"evaluation report: {report}")
@@ -0,0 +1,22 @@
1
+ # Constants for CLIP Vision Model Merging
2
+ TASK_NAMES_TA8 = [
3
+ "sun397",
4
+ "stanford-cars",
5
+ "resisc45",
6
+ "eurosat",
7
+ "svhn",
8
+ "gtsrb",
9
+ "mnist",
10
+ "dtd",
11
+ ]
12
+
13
+ TASK_NAMES_TA8_CAP = [
14
+ "SUN397",
15
+ "Cars",
16
+ "RESISC45",
17
+ "EuroSAT",
18
+ "SVHN",
19
+ "GTSRB",
20
+ "MNIST",
21
+ "DTD",
22
+ ]
@@ -2,11 +2,13 @@
2
2
  This module provides a class to convert a dataset whose object is a list of dictionaries with keys "image" and "label" to a dataset whose object is a tuple of tensors (inputs, label) for CLIP models.
3
3
  """
4
4
 
5
- from typing import Optional
5
+ from typing import Optional, Tuple
6
6
 
7
7
  import torch
8
8
  from transformers import CLIPProcessor, ProcessorMixin
9
9
 
10
+ __all__ = ["CLIPDataset"]
11
+
10
12
 
11
13
  class CLIPDataset(torch.utils.data.Dataset):
12
14
  """
@@ -34,7 +36,7 @@ class CLIPDataset(torch.utils.data.Dataset):
34
36
  """Returns the number of items in the dataset."""
35
37
  return len(self.dataset)
36
38
 
37
- def __getitem__(self, idx: int):
39
+ def __getitem__(self, idx: int) -> Tuple[torch.Tensor, int]:
38
40
  """
39
41
  Retrieves and processes an item from the dataset.
40
42
 
@@ -62,6 +64,12 @@ class CLIPDataset(torch.utils.data.Dataset):
62
64
  inputs = self.processor(images=[image], return_tensors="pt")[
63
65
  "pixel_values"
64
66
  ][0]
67
+ elif callable(self.processor):
68
+ inputs = self.processor(image)
69
+ else:
70
+ raise ValueError(
71
+ "The processor should be a CLIPProcessor or a callable function"
72
+ )
65
73
  else:
66
74
  # if processor is None, return the raw image directly
67
75
  inputs = image
@@ -6,7 +6,7 @@ from datasets import load_dataset
6
6
 
7
7
 
8
8
  def load_gsm8k_question_label_data(
9
- dataset_name: Literal["train", "test", "train_socratic", "test_socratic"]
9
+ dataset_name: Literal["train", "test", "train_socratic", "test_socratic"],
10
10
  ):
11
11
  R"""
12
12
  Load the GSM8K dataset and extract questions and labels.
@@ -45,7 +45,7 @@ def load_gsm8k_question_label_data(
45
45
 
46
46
 
47
47
  def load_gsm8k_question_label_dataset(
48
- dataset_name: Literal["train", "test", "train_socratic", "test_socratic"]
48
+ dataset_name: Literal["train", "test", "train_socratic", "test_socratic"],
49
49
  ):
50
50
  """
51
51
  Load the GSM8K dataset and return it as a Hugging Face Dataset object.
@@ -53,7 +53,7 @@ _import_structure = {
53
53
  "PWEMoExactParetoOptimalForCLIP",
54
54
  ],
55
55
  "ada_svd": ["AdaSVDMergingForCLIPVisionModel"],
56
- "DOGE_TA": ["DOGE_TA_Algorithm"],
56
+ "doge_ta": ["DOGE_TA_Algorithm"],
57
57
  "task_singular_vector": ["TaskSingularVectorMerging"],
58
58
  "isotropic_merging": [
59
59
  "ISO_C_Merge", # alias
@@ -62,6 +62,11 @@ _import_structure = {
62
62
  "IsotropicMergingInCommonSubspace",
63
63
  ],
64
64
  "opcm": ["OPCMForCLIP"],
65
+ "gossip": [
66
+ "CLIPLayerWiseGossipAlgorithm",
67
+ "CLIPTaskWiseGossipAlgorithm",
68
+ "FlanT5LayerWiseGossipAlgorithm",
69
+ ],
65
70
  # plug-and-play model merging methods
66
71
  "concrete_subspace": [
67
72
  "ConcreteTaskArithmeticAlgorithmForCLIP",
@@ -128,7 +133,7 @@ if TYPE_CHECKING:
128
133
  from .dare import DareSimpleAverage, DareTaskArithmetic, DareTiesMerging
129
134
  from .dawe import DataAdaptiveWeightEnsemblingForCLIP
130
135
  from .depth_upscaling import DepthUpscalingAlgorithm, DepthUpscalingForLlama
131
- from .DOGE_TA import DOGE_TA_Algorithm
136
+ from .doge_ta import DOGE_TA_Algorithm
132
137
  from .dummy import DummyAlgorithm
133
138
  from .ensemble import (
134
139
  MaxModelPredictorAlgorithm,
@@ -136,6 +141,11 @@ if TYPE_CHECKING:
136
141
  WeightedEnsembleAlgorithm,
137
142
  )
138
143
  from .fisher_merging import FisherMergingForCLIPVisionModel
144
+ from .gossip import (
145
+ CLIPLayerWiseGossipAlgorithm,
146
+ CLIPTaskWiseGossipAlgorithm,
147
+ FlanT5LayerWiseGossipAlgorithm,
148
+ )
139
149
  from .isotropic_merging import (
140
150
  ISO_C_Merge,
141
151
  ISO_CTS_Merge,
@@ -9,7 +9,7 @@ fusion_bench \
9
9
  modelpool=clip-vit-base-patch32_TA8 \
10
10
  taskpool=clip-vit-classification_TA8 \
11
11
  fabric.loggers.root_dir=outputs/logs/ViT-B-32 \
12
- fabric.loggers.name=clip_layer_wise_adamerging_adam
12
+ fabric.loggers.name=clip_layer_wise_adamerging_adamerging
13
13
  ```
14
14
  """
15
15
 
@@ -0,0 +1,159 @@
1
+ import functools
2
+ import logging
3
+ import os
4
+
5
+ import torch
6
+ from omegaconf import DictConfig
7
+ from torch import Tensor
8
+ from torch.utils.data import DataLoader
9
+ from transformers import CLIPModel, CLIPProcessor
10
+
11
+ from fusion_bench.dataset import CLIPDataset
12
+ from fusion_bench.modelpool import CLIPVisionModelPool
13
+ from fusion_bench.models.hf_clip import HFCLIPClassifier
14
+ from fusion_bench.tasks.clip_classification import get_classnames_and_templates
15
+ from fusion_bench.utils import timeit_context
16
+ from fusion_bench.utils.data import InfiniteDataLoader
17
+
18
+ from .task_wise_adamerging import TaskWiseAdaMergingAlgorithm
19
+
20
+ log = logging.getLogger(__name__)
21
+
22
+
23
+ class CLIPTaskWiseAdaMergingAlgorithm(TaskWiseAdaMergingAlgorithm):
24
+ """
25
+ A class for task-wise adaptive merging of CLIP models.
26
+
27
+ This class extends the TaskWiseAdaMergingAlgorithm to provide specific
28
+ functionality for CLIP models, including loading datasets, constructing
29
+ zero-shot classification heads, and computing logits.
30
+
31
+ Attributes:
32
+ modelpool (CLIPVisionModelPool): The model pool containing CLIP models.
33
+ _clip_processor (CLIPProcessor): The CLIP processor for preparing inputs.
34
+ zeroshot_weights (dict): A dictionary to store zero-shot weights for each task.
35
+ """
36
+
37
+ modelpool: CLIPVisionModelPool = None
38
+ _clip_processor: CLIPProcessor = None
39
+ zeroshot_weights = {}
40
+
41
+ def __init__(self, algorithm_config: DictConfig):
42
+ super().__init__(algorithm_config)
43
+
44
+ @functools.cache
45
+ def get_test_dataset(self, task: str):
46
+ """
47
+ Load the test dataset for the task.
48
+ This method is cached, so the dataset is loaded only once.
49
+
50
+ Args:
51
+ task (str): The name of the task.
52
+
53
+ Returns:
54
+ CLIPDataset: The test dataset for the task.
55
+ """
56
+ log.info(f"Loading test dataset: {task}")
57
+ dataset = self.modelpool.load_test_dataset(task)
58
+ dataset = CLIPDataset(dataset, self._clip_processor)
59
+ return dataset
60
+
61
+ @functools.cache
62
+ def get_shuffled_test_loader_iter(self, task: str):
63
+ """
64
+ Get an iterator over the shuffled test DataLoader for the task.
65
+
66
+ Args:
67
+ task (str): The name of the task.
68
+
69
+ Returns:
70
+ iterator: An iterator over the shuffled test DataLoader.
71
+ """
72
+ loader = DataLoader(
73
+ self.get_test_dataset(task),
74
+ batch_size=self.config.batch_size,
75
+ shuffle=True,
76
+ num_workers=self.config.num_workers,
77
+ pin_memory=True,
78
+ )
79
+ if self._fabric is not None:
80
+ loader = self._fabric.setup_dataloaders(loader)
81
+ return iter(InfiniteDataLoader(loader))
82
+
83
+ def on_test_time_adaptation_start(self):
84
+ """
85
+ Prepare for test-time adaptation.
86
+
87
+ This method loads the CLIP processor and constructs the zero-shot
88
+ classification head for each task.
89
+ """
90
+ clip_model_config = self.modelpool.get_model_config("_pretrained_")
91
+ pretrained_path = (
92
+ clip_model_config.pretrained_model_name_or_path
93
+ if hasattr(clip_model_config, "pretrained_model_name_or_path")
94
+ else clip_model_config.path
95
+ )
96
+
97
+ with timeit_context("Loading CLIP processor and pretrained CLIP model."):
98
+ self._clip_processor = CLIPProcessor.from_pretrained(pretrained_path)
99
+ clip_model: CLIPModel = CLIPModel.from_pretrained(pretrained_path)
100
+
101
+ clip_classifier = HFCLIPClassifier(clip_model, self._clip_processor)
102
+ self.visual_projection = clip_model.visual_projection.requires_grad_(False)
103
+ self.logit_scale_exp = clip_model.logit_scale.exp()
104
+ if self._fabric is not None:
105
+ self.visual_projection = self._fabric.to_device(self.visual_projection)
106
+ self.logit_scale_exp = self._fabric.to_device(self.logit_scale_exp)
107
+
108
+ for task in self.modelpool.model_names:
109
+ cache_file = os.path.join(
110
+ self.config.cache_dir,
111
+ f"{os.path.basename(pretrained_path)}_{task}_zeroshot_weights.pt",
112
+ )
113
+ if os.path.exists(cache_file):
114
+ log.info(f"Loading cached zeroshot weights for task: {task}")
115
+ zeroshot_weights = torch.load(cache_file, map_location="cpu")
116
+ else:
117
+ log.info(f"Construct zero shot classification head for task: {task}")
118
+ classnames, templates = get_classnames_and_templates(task)
119
+ clip_classifier.set_classification_task(classnames, templates)
120
+ zeroshot_weights = clip_classifier.zeroshot_weights
121
+ log.info(f"save zeroshot weights to {cache_file}")
122
+ torch.save(zeroshot_weights, cache_file)
123
+ self.zeroshot_weights[task] = zeroshot_weights
124
+ if self._fabric is not None:
125
+ self.zeroshot_weights[task] = self._fabric.to_device(
126
+ self.zeroshot_weights[task]
127
+ )
128
+
129
+ def compute_logits(self, module, batch, task: str) -> Tensor:
130
+ """
131
+ Compute the logits for the given batch and task.
132
+
133
+ This method computes the image embeddings, normalizes them, and calculates
134
+ the cosine similarity with the text embeddings to produce classification logits.
135
+
136
+ Args:
137
+ module (nn.Module): The model module.
138
+ batch (tuple): A batch of input data.
139
+ task (str): The name of the task.
140
+
141
+ Returns:
142
+ Tensor: The classification logits for the batch.
143
+ """
144
+ images, _ = batch
145
+ text_embeds = self.zeroshot_weights[task]
146
+
147
+ image_embeds = module(images)[1]
148
+ image_embeds = self.visual_projection(image_embeds)
149
+
150
+ # normalize embeddings
151
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
152
+
153
+ # cosine similarity
154
+ logits_per_text = (
155
+ torch.matmul(text_embeds, image_embeds.t()) * self.logit_scale_exp
156
+ )
157
+ logits_per_image = logits_per_text.t()
158
+
159
+ return logits_per_image
@@ -0,0 +1,2 @@
1
+ # flake8: noqa F401
2
+ from .doge_ta import DOGE_TA_Algorithm
@@ -9,7 +9,7 @@ fusion_bench \
9
9
  modelpool=clip-vit-base-patch32_TA8 \
10
10
  taskpool=clip-vit-classification_TA8 \
11
11
  fabric.loggers.root_dir=outputs/logs/ViT-B-32 \
12
- fabric.loggers.name=clip_layer_wise_adamerging_adam
12
+ fabric.loggers.name=clip_layer_wise_adamerging_adamerging
13
13
  ```
14
14
  """
15
15
 
@@ -7,7 +7,7 @@ Example Usage:
7
7
 
8
8
  ```bash
9
9
  fusion_bench \
10
- method=DOGE_TA/DOGE_TA \
10
+ method=doge_ta/doge_ta \
11
11
  modelpool=CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only \
12
12
  taskpool=CLIPVisionModelTaskPool/clip-vit-classification_TA8
13
13
 
@@ -12,6 +12,7 @@ from torch import Tensor, nn
12
12
  from tqdm.autonotebook import tqdm
13
13
 
14
14
  from fusion_bench.method import BaseAlgorithm
15
+ from fusion_bench.mixins import SimpleProfilerMixin
15
16
  from fusion_bench.modelpool import BaseModelPool
16
17
 
17
18
  log = logging.getLogger(__name__)
@@ -352,7 +353,7 @@ def filter_state_dict(
352
353
  return filtered_state_dict
353
354
 
354
355
 
355
- class FisherMergingAlgorithm(BaseAlgorithm):
356
+ class FisherMergingAlgorithm(BaseAlgorithm, SimpleProfilerMixin):
356
357
  """
357
358
  Implements the Fisher Merging Algorithm.
358
359
 
@@ -432,25 +433,36 @@ class FisherMergingAlgorithm(BaseAlgorithm):
432
433
  for param_name in param_names_to_merge:
433
434
  models_to_merge_param_dict[param_name].append(param_dict[param_name])
434
435
 
435
- model_to_merge_fisher_weights = self.get_fisher_weights(
436
- model_name=name,
437
- model=model,
438
- train_dataset=modelpool.load_train_dataset(name),
439
- param_names_to_merge=param_names_to_merge,
440
- )
436
+ with (
437
+ self.profile("merging models"),
438
+ self.profile("computing fisher weights"),
439
+ ):
440
+ model_to_merge_fisher_weights = self.get_fisher_weights(
441
+ model_name=name,
442
+ model=model,
443
+ train_dataset=modelpool.load_train_dataset(name),
444
+ param_names_to_merge=param_names_to_merge,
445
+ )
441
446
 
442
- models_to_merge_fisher_weights_list.append(model_to_merge_fisher_weights)
447
+ models_to_merge_fisher_weights_list.append(
448
+ model_to_merge_fisher_weights
449
+ )
443
450
 
444
- merged_params = merging_with_fisher_weights(
445
- models_to_merge_param_dict=models_to_merge_param_dict,
446
- models_to_merge_fisher_weights_list=models_to_merge_fisher_weights_list,
447
- fisher_scaling_coefficients=torch.ones(len(modelpool)) / len(modelpool),
448
- normalize_fisher_weight=self.config.get("normalize_fisher_weight", True),
449
- minimal_fisher_weight=self.config.get("minimal_fisher_weight", 1e-6),
450
- )
451
+ with self.profile("merging models"):
452
+ merged_params = merging_with_fisher_weights(
453
+ models_to_merge_param_dict=models_to_merge_param_dict,
454
+ models_to_merge_fisher_weights_list=models_to_merge_fisher_weights_list,
455
+ fisher_scaling_coefficients=torch.ones(len(modelpool)) / len(modelpool),
456
+ normalize_fisher_weight=self.config.get(
457
+ "normalize_fisher_weight", True
458
+ ),
459
+ minimal_fisher_weight=self.config.get("minimal_fisher_weight", 1e-6),
460
+ )
461
+
462
+ merged_model = modelpool.load_model("_pretrained_")
463
+ merged_model.load_state_dict(merged_params, strict=False)
451
464
 
452
- merged_model = modelpool.load_model("_pretrained_")
453
- merged_model.load_state_dict(merged_params, strict=False)
465
+ self.print_profile_summary()
454
466
  return merged_model
455
467
 
456
468
  def get_fisher_weights(
@@ -0,0 +1,3 @@
1
+ from .clip_layer_wise_gossip import CLIPLayerWiseGossipAlgorithm
2
+ from .clip_task_wise_gossip import CLIPTaskWiseGossipAlgorithm
3
+ from .flan_t5_layer_wise_gossip import FlanT5LayerWiseGossipAlgorithm
@@ -0,0 +1,43 @@
1
+ """
2
+ Example Usage:
3
+
4
+ ```bash
5
+ fusion_bench \
6
+ method=adamerging \
7
+ method.name=clip_layer_wise_adamerging \
8
+ method.save_merging_weights=merging_weights.pt \
9
+ modelpool=clip-vit-base-patch32_TA8 \
10
+ taskpool=clip-vit-classification_TA8 \
11
+ fabric_logger.root_dir=outputs/logs/ViT-B-32 \
12
+ fabric_logger.name=clip_layer_wise_adamerging_adam
13
+ ```
14
+ """
15
+
16
+ import functools
17
+ import logging
18
+
19
+ from fusion_bench.mixins import CLIPClassificationMixin
20
+
21
+ from .layer_wise_gossip import LayerWiseGossipAlgorithm
22
+
23
+ log = logging.getLogger(__name__)
24
+
25
+
26
+ class CLIPLayerWiseGossipAlgorithm(
27
+ CLIPClassificationMixin,
28
+ LayerWiseGossipAlgorithm,
29
+ ):
30
+ def on_test_time_adaptation_start(self):
31
+ """
32
+ Here we load the CLIP processor and construct the zero-shot classification head for each task.
33
+ """
34
+ if self.whether_setup_zero_shot_classification_head == False:
35
+ self.setup_zero_shot_classification_head()
36
+
37
+ @functools.cache
38
+ def get_shuffled_test_loader_iter(self, task: str):
39
+ return super().get_shuffled_test_loader_iter(
40
+ task,
41
+ batch_size=self.config.batch_size,
42
+ num_workers=self.config.num_workers,
43
+ )
@@ -14,7 +14,7 @@ from fusion_bench.models.hf_clip import HFCLIPClassifier
14
14
  from fusion_bench.tasks.clip_classification import get_classnames_and_templates
15
15
  from fusion_bench.utils import timeit_context
16
16
 
17
- from .task_wise_adamerging import TaskWiseAdaMergingAlgorithm
17
+ from .task_wise_gossip import TaskWiseGossipAlgorithm
18
18
 
19
19
  log = logging.getLogger(__name__)
20
20
 
@@ -48,11 +48,11 @@ class InfiniteDataLoader:
48
48
  return data
49
49
 
50
50
 
51
- class CLIPTaskWiseAdaMergingAlgorithm(TaskWiseAdaMergingAlgorithm):
51
+ class CLIPTaskWiseGossipAlgorithm(TaskWiseGossipAlgorithm):
52
52
  """
53
53
  A class for task-wise adaptive merging of CLIP models.
54
54
 
55
- This class extends the TaskWiseAdaMergingAlgorithm to provide specific
55
+ This class extends the TaskWiseGossipAlgorithm to provide specific
56
56
  functionality for CLIP models, including loading datasets, constructing
57
57
  zero-shot classification heads, and computing logits.
58
58
 
@@ -115,6 +115,9 @@ class CLIPTaskWiseAdaMergingAlgorithm(TaskWiseAdaMergingAlgorithm):
115
115
  This method loads the CLIP processor and constructs the zero-shot
116
116
  classification head for each task.
117
117
  """
118
+ if self._clip_processor is not None and self.zeroshot_weights is not None:
119
+ return # this can be reused in Gossip
120
+
118
121
  clip_model_config = self.modelpool.get_model_config("_pretrained_")
119
122
  pretrained_path = (
120
123
  clip_model_config.pretrained_model_name_or_path
@@ -0,0 +1,25 @@
1
+ import torch
2
+ from torch import Tensor
3
+
4
+
5
+ def entropy_loss(logits: Tensor, eps: float = 1e-8) -> Tensor:
6
+ """
7
+ Compute the entropy loss of a set of logits.
8
+
9
+ Args:
10
+ logits (Tensor): The logits to compute the entropy loss of.
11
+ eps (float): A small value to avoid log(0). Default is 1e-8.
12
+
13
+ Returns:
14
+ Tensor: The entropy loss of the logits.
15
+ """
16
+ # Ensure the logits tensor has 2 dimensions
17
+ assert (
18
+ logits.dim() == 2
19
+ ), f"Expected logits to have 2 dimensions, found {logits.dim()}, {logits.size()=}"
20
+
21
+ # Compute the softmax probabilities
22
+ probs = torch.softmax(logits, dim=-1)
23
+
24
+ # Compute the entropy loss
25
+ return -torch.sum(probs * torch.log(probs + eps), dim=-1).mean()