froog 0.2.8__tar.gz → 0.3.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- froog-0.3.0/PKG-INFO +301 -0
- froog-0.3.0/README.md +285 -0
- {froog-0.2.8 → froog-0.3.0}/froog/ops.py +1 -1
- {froog-0.2.8 → froog-0.3.0}/froog/tensor.py +2 -3
- {froog-0.2.8 → froog-0.3.0}/froog/utils.py +20 -18
- froog-0.3.0/froog.egg-info/PKG-INFO +301 -0
- {froog-0.2.8 → froog-0.3.0}/froog.egg-info/SOURCES.txt +6 -1
- {froog-0.2.8 → froog-0.3.0}/froog.egg-info/requires.txt +1 -0
- {froog-0.2.8 → froog-0.3.0}/setup.py +3 -3
- froog-0.3.0/tests/test_conv_speed.py +99 -0
- froog-0.3.0/tests/test_models.py +136 -0
- froog-0.3.0/tests/test_ops.py +100 -0
- froog-0.3.0/tests/test_optim.py +65 -0
- froog-0.3.0/tests/test_tensor.py +76 -0
- froog-0.2.8/PKG-INFO +0 -151
- froog-0.2.8/README.md +0 -139
- froog-0.2.8/froog.egg-info/PKG-INFO +0 -151
- {froog-0.2.8 → froog-0.3.0}/LICENSE +0 -0
- {froog-0.2.8 → froog-0.3.0}/froog/__init__.py +0 -0
- {froog-0.2.8 → froog-0.3.0}/froog/gradcheck.py +0 -0
- {froog-0.2.8 → froog-0.3.0}/froog/nn.py +0 -0
- {froog-0.2.8 → froog-0.3.0}/froog/ops_gpu.py +0 -0
- {froog-0.2.8 → froog-0.3.0}/froog/optim.py +0 -0
- {froog-0.2.8 → froog-0.3.0}/froog.egg-info/dependency_links.txt +0 -0
- {froog-0.2.8 → froog-0.3.0}/froog.egg-info/top_level.txt +0 -0
- {froog-0.2.8 → froog-0.3.0}/setup.cfg +0 -0
froog-0.3.0/PKG-INFO
ADDED
@@ -0,0 +1,301 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: froog
|
3
|
+
Version: 0.3.0
|
4
|
+
Summary: a beautifully simplistic tensor library
|
5
|
+
Author: Kevin Buhler
|
6
|
+
License: MIT
|
7
|
+
Classifier: Programming Language :: Python :: 3
|
8
|
+
Classifier: License :: OSI Approved :: MIT License
|
9
|
+
Requires-Python: >=3.8
|
10
|
+
Description-Content-Type: text/markdown
|
11
|
+
License-File: LICENSE
|
12
|
+
Requires-Dist: numpy
|
13
|
+
Requires-Dist: requests
|
14
|
+
Requires-Dist: matplotlib
|
15
|
+
Requires-Dist: urllib
|
16
|
+
|
17
|
+
# froog <img src="https://github.com/kevbuh/froog/actions/workflows/test.yml/badge.svg" alt="unit test badge" > <img src="https://static.pepy.tech/badge/froog" alt="num downloads badge">
|
18
|
+
<div align="center" >
|
19
|
+
<img src="https://raw.githubusercontent.com/kevbuh/froog/main/assets/froog.png" alt="froog the frog" height="200">
|
20
|
+
<br/>
|
21
|
+
froog: fast real-time optimization of gradients
|
22
|
+
<br/>
|
23
|
+
a beautifully compact tensor library
|
24
|
+
<br/>
|
25
|
+
<a href="https://github.com/kevbuh/froog">homepage</a> | <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a> | <a href="https://pypi.org/project/froog/">pip</a>
|
26
|
+
<br/>
|
27
|
+
<br/>
|
28
|
+
</div>
|
29
|
+
|
30
|
+
```froog``` is an easy-to-read tensor library (<a href="https://www.pepy.tech/projects/froog">11k pip installs!</a>) meant for those looking to get into machine learning and who want to understand how the underlying machine learning framework's code works before they are ultra-optimized (which all modern ml libraries are).
|
31
|
+
|
32
|
+
```froog``` encapsulates everything from <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">linear regression</a> to <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">convolutional neural networks </a> in under 1000 lines.
|
33
|
+
|
34
|
+
# Installation
|
35
|
+
```bash
|
36
|
+
pip install froog
|
37
|
+
```
|
38
|
+
|
39
|
+
More information on downloading ```froog``` in the <a href="https://github.com/kevbuh/froog/blob/main/docs/install.md">installation</a> docs.
|
40
|
+
|
41
|
+
# Features
|
42
|
+
- <a href="https://github.com/kevbuh/froog/blob/main/froog/tensor.py">Custom Tensors</a>
|
43
|
+
- Backpropagation
|
44
|
+
- Automatic Differentiation (autograd)
|
45
|
+
- Forward and backward passes
|
46
|
+
- <a href="https://github.com/kevbuh/froog/blob/main/froog/ops.py">ML Operations</a>
|
47
|
+
- 2D Convolutions (im2col)
|
48
|
+
- Numerical gradient checking
|
49
|
+
- Acceleration methods (Adam)
|
50
|
+
- Avg & Max pooling
|
51
|
+
- <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">EfficientNet</a> inference
|
52
|
+
- <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">GPU Support</a>
|
53
|
+
- and a bunch <a href="https://github.com/kevbuh/froog/tree/main/froog">more</a>
|
54
|
+
|
55
|
+
# Sneak Peek
|
56
|
+
|
57
|
+
Here's how you set up a simple multilayer perceptron for classification on MNIST. Looks pretty similar to pytorch, right?
|
58
|
+
|
59
|
+
```python
|
60
|
+
from froog.tensor import Tensor
|
61
|
+
from froog.nn import Linear
|
62
|
+
import froog.optim as optim
|
63
|
+
|
64
|
+
class mnistMLP:
|
65
|
+
def __init__(self):
|
66
|
+
self.l1 = Tensor(Linear(784, 128)) # layer 1
|
67
|
+
self.l2 = Tensor(Linear(128, 10)) # layer 2
|
68
|
+
|
69
|
+
def forward(self, x):
|
70
|
+
# forward pass through both layers and softmax for output probabilities
|
71
|
+
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
|
72
|
+
|
73
|
+
model = mnistMLP() # create model
|
74
|
+
optim = optim.SGD([model.l1, model.l2], lr=0.001) # stochastic gradient descent optimizer
|
75
|
+
```
|
76
|
+
|
77
|
+
# Overview
|
78
|
+
|
79
|
+
The most fundamental concept in all of ```froog``` and machine learning frameworks is the <a href="https://github.com/kevbuh/froog/blob/977b09caf32f21904768b08b2772139596604603/froog/tensor.py#L47">Tensor</a>. A <a href="https://en.wikipedia.org/wiki/Tensor_(machine_learning)">tensor</a> is simply a matrix of matrices (more accurately a multi-dimensional array).
|
80
|
+
|
81
|
+
You can create a Tensor in ```froog``` with:
|
82
|
+
```python
|
83
|
+
import numpy as np
|
84
|
+
from froog.tensor import Tensor
|
85
|
+
my_tensor = Tensor([1,2,3])
|
86
|
+
```
|
87
|
+
|
88
|
+
Notice how we had to import numpy. If you want to create a Tensor manually, make sure that it is a Numpy array!
|
89
|
+
|
90
|
+
<!-- Learn more about ```froog``` Tensors <a href="https://github.com/kevbuh/froog/blob/main/docs/tensors.md">here</a>. -->
|
91
|
+
|
92
|
+
# Tensors
|
93
|
+
|
94
|
+
Tensors are the fundamental datatype in froog, and one of the two main classes.
|
95
|
+
|
96
|
+
- ```def __init__(self, data)```:
|
97
|
+
|
98
|
+
- Tensor takes in one param, which is the data. Since froog has a numpy backend, the input data into tensors has to be a numpy array.
|
99
|
+
|
100
|
+
- Tensor has a ```self.data``` state that it holds. this contains the data inside of the tensor.
|
101
|
+
|
102
|
+
- In addition, it has ```self.grad```. this is to hold what the gradients of the tensor is.
|
103
|
+
|
104
|
+
- Lastly, it has ```self._ctx```. theser are the internal vairables used for autograd graph construction. put more simply, this is where the backward gradient computations are saved.
|
105
|
+
|
106
|
+
*Properties*
|
107
|
+
|
108
|
+
- ```shape(self)```: this returns the tensor shape
|
109
|
+
|
110
|
+
*Methods*
|
111
|
+
- ``def zeros(*shape)```: this returns a tensor full of zeros with any shape that you pass in. Defaults to np.float32
|
112
|
+
|
113
|
+
- ```def ones(*shape)```: this returns a tensor full of ones with any shape that you pass in. Defaults to np.float32
|
114
|
+
|
115
|
+
- ```def randn(*shape):```: this returns a randomly initialized Tensor of *shape
|
116
|
+
|
117
|
+
*Froog gradient calculations*
|
118
|
+
|
119
|
+
- ```froog``` computes gradients automatically through a process called automatic differentiation. it has a variable ```_ctx```, which stores the chain of operations. it will take the current operation, lets say a dot product, and go to the dot product definition in ```froog/ops.py```, which contains a backward pass specfically for dot products. all methods, from add to 2x2 maxpools, have this backward pass implemented.
|
120
|
+
|
121
|
+
*Functions*
|
122
|
+
|
123
|
+
The other base class in froog is the class ```Function```. It keeps track of input tensors and tensors that need to be saved for backward passes
|
124
|
+
|
125
|
+
- ```def __init__(self, *tensors)```: takes in an argument of tensors, which are then saved.
|
126
|
+
|
127
|
+
- ```def save_for_backward(self, *x)```: saves Tensors that are necessary to compute for the computation of gradients in the backward pass.
|
128
|
+
|
129
|
+
- ```def apply(self, arg, *x)```: This is what makes everything work. The apply() method takes care of the forward pass, applying the operation to the inputs.
|
130
|
+
|
131
|
+
*Register*
|
132
|
+
|
133
|
+
```def register(name, fxn)```: this function allows you to add a method to a Tensor. This allows you to chain any operations, e.g. x.dot(w).relu(), where w is a tensor
|
134
|
+
|
135
|
+
# Creating a model
|
136
|
+
|
137
|
+
Okay cool, so now you know that ```froog```'s main datatype is a Tensor and uses NumPy in the background. How do I actually build a model?
|
138
|
+
|
139
|
+
Here's an example of how to create an MNIST multi-layer perceptron (MLP). We wanted to make it as simple as possible for you to do so so it resembles very basic python concepts like classes. There's really only two methods you need to define:
|
140
|
+
1. ```__init__``` that defines layers of the model (here we use ```Linear```)
|
141
|
+
2. ```forward``` which defines how the input should flow through your model. We use a simple dot product with a ```Linear``` layer with a <a href="https://en.wikipedia.org/wiki/Rectifier_(neural_networks)">```ReLU```</a> activation.
|
142
|
+
|
143
|
+
In order to create an instance of the ```mnistMLP``` model, do the same as you would in python: ```model = mnistMLP()``` .
|
144
|
+
|
145
|
+
We support a few different optimizers, <a href="https://github.com/kevbuh/froog/blob/main/froog/optim.py">here</a> which include:
|
146
|
+
- <a href="https://en.wikipedia.org/wiki/Stochastic_gradient_descent">Stochastic Gradient Descent (SGD)</a>
|
147
|
+
- <a href="https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam">Adaptive Moment Estimation (Adam)</a>
|
148
|
+
- <a href="https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp">Root Mean Square Propagation (RMSProp)</a>
|
149
|
+
|
150
|
+
```python
|
151
|
+
from froog.tensor import Tensor
|
152
|
+
import froog.optim as optim
|
153
|
+
from froog.nn import Linear
|
154
|
+
|
155
|
+
class mnistMLP:
|
156
|
+
def __init__(self):
|
157
|
+
self.l1 = Tensor(Linear(784, 128))
|
158
|
+
self.l2 = Tensor(Linear(128, 10))
|
159
|
+
|
160
|
+
def forward(self, x):
|
161
|
+
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
|
162
|
+
|
163
|
+
model = mnistMLP()
|
164
|
+
optim = optim.SGD([model.l1, model.l2], lr=0.001)
|
165
|
+
```
|
166
|
+
|
167
|
+
You can also create a convolutional neural net by
|
168
|
+
|
169
|
+
```python
|
170
|
+
class SimpleConvNet:
|
171
|
+
def __init__(self):
|
172
|
+
conv_size = 5
|
173
|
+
channels = 17
|
174
|
+
self.c1 = Tensor(Linear(channels,1,conv_size,conv_size)) # (num_filters, color_channels, kernel_h, kernel_w)
|
175
|
+
self.l1 = Tensor(Linear((28-conv_size+1)**2*channels, 128)) # (28-conv+1)(28-conv+1) since kernel isn't padded
|
176
|
+
self.l2 = Tensor(Linear(128, 10)) # MNIST output is 10 classes
|
177
|
+
|
178
|
+
def forward(self, x):
|
179
|
+
x.data = x.data.reshape((-1, 1, 28, 28)) # get however many number of imgs in batch
|
180
|
+
x = x.conv2d(self.c1).relu() # pass through conv first
|
181
|
+
x = x.reshape(shape=(x.shape[0], -1))
|
182
|
+
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
|
183
|
+
```
|
184
|
+
|
185
|
+
So there are two quick examples to get you up and running. You might have noticed some operations like ```reshape``` and were wondering what else you can do with ```froog```. We have many more operations that you can apply on tensors:
|
186
|
+
- ```.add()```
|
187
|
+
- ```.sub()```
|
188
|
+
- ```.mul()```
|
189
|
+
- ```.sum()```
|
190
|
+
- ```.pow()```
|
191
|
+
- ```.dot()```
|
192
|
+
- ```.relu()```
|
193
|
+
- ```.sigmoid()```
|
194
|
+
- ```.reshape()```
|
195
|
+
- ```.pad2d()```
|
196
|
+
- ```.logsoftmax()```
|
197
|
+
- ```.conv2d()```
|
198
|
+
- ```.im2col2dconv()```
|
199
|
+
- ```.max_pool2d()```
|
200
|
+
- ```.avg_pool2d()```
|
201
|
+
|
202
|
+
## GPU Support
|
203
|
+
|
204
|
+
Have a GPU and need a speedup? You're in good luck because we have GPU support from for our operations defined in <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">```ops_gpu.py```</a>. In order to do this we have a backend built on <a href="https://en.wikipedia.org/wiki/OpenGL">OpenGL</a> that invokes kernel functions that work on the GPU.
|
205
|
+
|
206
|
+
Here's how you can send data to the GPU during a forward pass and bring it back to the CPU.
|
207
|
+
|
208
|
+
```python
|
209
|
+
# ...
|
210
|
+
GPU = os.getenv("GPU", None) is not None
|
211
|
+
if GPU:
|
212
|
+
out = model.forward(Tensor(img).to_gpu()).cpu()
|
213
|
+
```
|
214
|
+
|
215
|
+
## EfficientNet in froog!
|
216
|
+
|
217
|
+
We have a really cool finished implementation of EfficientNet built entirely in ```froog```!
|
218
|
+
|
219
|
+
In order to run EfficientNet inference:
|
220
|
+
|
221
|
+
```bash
|
222
|
+
VIZ=1 python models/efficientnet.py <https://put_your_image_url_here>
|
223
|
+
```
|
224
|
+
|
225
|
+
I would recommend checking out the <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">code</a>, it's highly documented and pretty cool. Here's some of the documentation
|
226
|
+
```
|
227
|
+
Paper : https://arxiv.org/abs/1905.11946
|
228
|
+
PyTorch version : https://github.com/lukemelas/EfficientNet-PyTorch/blob/master/efficientnet_pytorch/model.py
|
229
|
+
|
230
|
+
ConvNets are commonly developed at a fixed resource cost, and then scaled up in order to achieve better accuracy when more resources are made available
|
231
|
+
The scaling method was found by performing a grid search to find the relationship between different scaling dimensions of the baseline network under a fixed resource constraint
|
232
|
+
"SE" stands for "Squeeze-and-Excitation." Introduced by the "Squeeze-and-Excitation Networks" paper by Jie Hu, Li Shen, and Gang Sun (CVPR 2018).
|
233
|
+
|
234
|
+
Environment Variables:
|
235
|
+
VIZ=1 --> plots processed image and output probabilities
|
236
|
+
|
237
|
+
How to Run:
|
238
|
+
'VIZ=1 python models/efficientnet.py https://your_image_url'
|
239
|
+
|
240
|
+
EfficientNet Hyper-Parameters and Weights:
|
241
|
+
url_map = {
|
242
|
+
'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth',
|
243
|
+
'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth',
|
244
|
+
'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth',
|
245
|
+
'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth',
|
246
|
+
'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth',
|
247
|
+
'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth',
|
248
|
+
'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth',
|
249
|
+
'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth',
|
250
|
+
}
|
251
|
+
|
252
|
+
params_dict = {
|
253
|
+
# Coefficients: width,depth,res,dropout
|
254
|
+
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
|
255
|
+
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
|
256
|
+
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
|
257
|
+
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
|
258
|
+
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
|
259
|
+
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
|
260
|
+
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
|
261
|
+
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
|
262
|
+
'efficientnet-b8': (2.2, 3.6, 672, 0.5),
|
263
|
+
'efficientnet-l2': (4.3, 5.3, 800, 0.5),
|
264
|
+
}
|
265
|
+
|
266
|
+
blocks_args = [
|
267
|
+
'r1_k3_s11_e1_i32_o16_se0.25',
|
268
|
+
'r2_k3_s22_e6_i16_o24_se0.25',
|
269
|
+
'r2_k5_s22_e6_i24_o40_se0.25',
|
270
|
+
'r3_k3_s22_e6_i40_o80_se0.25',
|
271
|
+
'r3_k5_s11_e6_i80_o112_se0.25',
|
272
|
+
'r4_k5_s22_e6_i112_o192_se0.25',
|
273
|
+
'r1_k3_s11_e6_i192_o320_se0.25',
|
274
|
+
]
|
275
|
+
```
|
276
|
+
|
277
|
+
## Linear regression
|
278
|
+
|
279
|
+
Doing linear regression in froog is pretty easy, check out the entire <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">code</a>.
|
280
|
+
|
281
|
+
```bash
|
282
|
+
VIZ=1 python3 linear_regression.py
|
283
|
+
```
|
284
|
+
|
285
|
+
# Contributing
|
286
|
+
<!-- THERES LOT OF STUFF TO WORK ON! VISIT THE <a href="https://github.com/kevbuh/froog/blob/main/docs/bounties.md">BOUNTY SHOP</a> -->
|
287
|
+
|
288
|
+
Pull requests will be merged if they:
|
289
|
+
* increase simplicity
|
290
|
+
* increase functionality
|
291
|
+
* increase efficiency
|
292
|
+
|
293
|
+
More info on <a href="https://github.com/kevbuh/froog/blob/main/docs/contributing.md">contributing</a>.
|
294
|
+
|
295
|
+
# Documentation
|
296
|
+
|
297
|
+
Need more information about how ```froog``` works? Visit the <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a>.
|
298
|
+
|
299
|
+
# Interested in more?
|
300
|
+
|
301
|
+
If you thought ```froog``` was cool, check out the inspirations for this project: pytorch, tinygrad, and https://github.com/karpathy/micrograd/blob/master/micrograd/engine.py
|
froog-0.3.0/README.md
ADDED
@@ -0,0 +1,285 @@
|
|
1
|
+
# froog <img src="https://github.com/kevbuh/froog/actions/workflows/test.yml/badge.svg" alt="unit test badge" > <img src="https://static.pepy.tech/badge/froog" alt="num downloads badge">
|
2
|
+
<div align="center" >
|
3
|
+
<img src="https://raw.githubusercontent.com/kevbuh/froog/main/assets/froog.png" alt="froog the frog" height="200">
|
4
|
+
<br/>
|
5
|
+
froog: fast real-time optimization of gradients
|
6
|
+
<br/>
|
7
|
+
a beautifully compact tensor library
|
8
|
+
<br/>
|
9
|
+
<a href="https://github.com/kevbuh/froog">homepage</a> | <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a> | <a href="https://pypi.org/project/froog/">pip</a>
|
10
|
+
<br/>
|
11
|
+
<br/>
|
12
|
+
</div>
|
13
|
+
|
14
|
+
```froog``` is an easy-to-read tensor library (<a href="https://www.pepy.tech/projects/froog">11k pip installs!</a>) meant for those looking to get into machine learning and who want to understand how the underlying machine learning framework's code works before they are ultra-optimized (which all modern ml libraries are).
|
15
|
+
|
16
|
+
```froog``` encapsulates everything from <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">linear regression</a> to <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">convolutional neural networks </a> in under 1000 lines.
|
17
|
+
|
18
|
+
# Installation
|
19
|
+
```bash
|
20
|
+
pip install froog
|
21
|
+
```
|
22
|
+
|
23
|
+
More information on downloading ```froog``` in the <a href="https://github.com/kevbuh/froog/blob/main/docs/install.md">installation</a> docs.
|
24
|
+
|
25
|
+
# Features
|
26
|
+
- <a href="https://github.com/kevbuh/froog/blob/main/froog/tensor.py">Custom Tensors</a>
|
27
|
+
- Backpropagation
|
28
|
+
- Automatic Differentiation (autograd)
|
29
|
+
- Forward and backward passes
|
30
|
+
- <a href="https://github.com/kevbuh/froog/blob/main/froog/ops.py">ML Operations</a>
|
31
|
+
- 2D Convolutions (im2col)
|
32
|
+
- Numerical gradient checking
|
33
|
+
- Acceleration methods (Adam)
|
34
|
+
- Avg & Max pooling
|
35
|
+
- <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">EfficientNet</a> inference
|
36
|
+
- <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">GPU Support</a>
|
37
|
+
- and a bunch <a href="https://github.com/kevbuh/froog/tree/main/froog">more</a>
|
38
|
+
|
39
|
+
# Sneak Peek
|
40
|
+
|
41
|
+
Here's how you set up a simple multilayer perceptron for classification on MNIST. Looks pretty similar to pytorch, right?
|
42
|
+
|
43
|
+
```python
|
44
|
+
from froog.tensor import Tensor
|
45
|
+
from froog.nn import Linear
|
46
|
+
import froog.optim as optim
|
47
|
+
|
48
|
+
class mnistMLP:
|
49
|
+
def __init__(self):
|
50
|
+
self.l1 = Tensor(Linear(784, 128)) # layer 1
|
51
|
+
self.l2 = Tensor(Linear(128, 10)) # layer 2
|
52
|
+
|
53
|
+
def forward(self, x):
|
54
|
+
# forward pass through both layers and softmax for output probabilities
|
55
|
+
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
|
56
|
+
|
57
|
+
model = mnistMLP() # create model
|
58
|
+
optim = optim.SGD([model.l1, model.l2], lr=0.001) # stochastic gradient descent optimizer
|
59
|
+
```
|
60
|
+
|
61
|
+
# Overview
|
62
|
+
|
63
|
+
The most fundamental concept in all of ```froog``` and machine learning frameworks is the <a href="https://github.com/kevbuh/froog/blob/977b09caf32f21904768b08b2772139596604603/froog/tensor.py#L47">Tensor</a>. A <a href="https://en.wikipedia.org/wiki/Tensor_(machine_learning)">tensor</a> is simply a matrix of matrices (more accurately a multi-dimensional array).
|
64
|
+
|
65
|
+
You can create a Tensor in ```froog``` with:
|
66
|
+
```python
|
67
|
+
import numpy as np
|
68
|
+
from froog.tensor import Tensor
|
69
|
+
my_tensor = Tensor([1,2,3])
|
70
|
+
```
|
71
|
+
|
72
|
+
Notice how we had to import numpy. If you want to create a Tensor manually, make sure that it is a Numpy array!
|
73
|
+
|
74
|
+
<!-- Learn more about ```froog``` Tensors <a href="https://github.com/kevbuh/froog/blob/main/docs/tensors.md">here</a>. -->
|
75
|
+
|
76
|
+
# Tensors
|
77
|
+
|
78
|
+
Tensors are the fundamental datatype in froog, and one of the two main classes.
|
79
|
+
|
80
|
+
- ```def __init__(self, data)```:
|
81
|
+
|
82
|
+
- Tensor takes in one param, which is the data. Since froog has a numpy backend, the input data into tensors has to be a numpy array.
|
83
|
+
|
84
|
+
- Tensor has a ```self.data``` state that it holds. this contains the data inside of the tensor.
|
85
|
+
|
86
|
+
- In addition, it has ```self.grad```. this is to hold what the gradients of the tensor is.
|
87
|
+
|
88
|
+
- Lastly, it has ```self._ctx```. theser are the internal vairables used for autograd graph construction. put more simply, this is where the backward gradient computations are saved.
|
89
|
+
|
90
|
+
*Properties*
|
91
|
+
|
92
|
+
- ```shape(self)```: this returns the tensor shape
|
93
|
+
|
94
|
+
*Methods*
|
95
|
+
- ``def zeros(*shape)```: this returns a tensor full of zeros with any shape that you pass in. Defaults to np.float32
|
96
|
+
|
97
|
+
- ```def ones(*shape)```: this returns a tensor full of ones with any shape that you pass in. Defaults to np.float32
|
98
|
+
|
99
|
+
- ```def randn(*shape):```: this returns a randomly initialized Tensor of *shape
|
100
|
+
|
101
|
+
*Froog gradient calculations*
|
102
|
+
|
103
|
+
- ```froog``` computes gradients automatically through a process called automatic differentiation. it has a variable ```_ctx```, which stores the chain of operations. it will take the current operation, lets say a dot product, and go to the dot product definition in ```froog/ops.py```, which contains a backward pass specfically for dot products. all methods, from add to 2x2 maxpools, have this backward pass implemented.
|
104
|
+
|
105
|
+
*Functions*
|
106
|
+
|
107
|
+
The other base class in froog is the class ```Function```. It keeps track of input tensors and tensors that need to be saved for backward passes
|
108
|
+
|
109
|
+
- ```def __init__(self, *tensors)```: takes in an argument of tensors, which are then saved.
|
110
|
+
|
111
|
+
- ```def save_for_backward(self, *x)```: saves Tensors that are necessary to compute for the computation of gradients in the backward pass.
|
112
|
+
|
113
|
+
- ```def apply(self, arg, *x)```: This is what makes everything work. The apply() method takes care of the forward pass, applying the operation to the inputs.
|
114
|
+
|
115
|
+
*Register*
|
116
|
+
|
117
|
+
```def register(name, fxn)```: this function allows you to add a method to a Tensor. This allows you to chain any operations, e.g. x.dot(w).relu(), where w is a tensor
|
118
|
+
|
119
|
+
# Creating a model
|
120
|
+
|
121
|
+
Okay cool, so now you know that ```froog```'s main datatype is a Tensor and uses NumPy in the background. How do I actually build a model?
|
122
|
+
|
123
|
+
Here's an example of how to create an MNIST multi-layer perceptron (MLP). We wanted to make it as simple as possible for you to do so so it resembles very basic python concepts like classes. There's really only two methods you need to define:
|
124
|
+
1. ```__init__``` that defines layers of the model (here we use ```Linear```)
|
125
|
+
2. ```forward``` which defines how the input should flow through your model. We use a simple dot product with a ```Linear``` layer with a <a href="https://en.wikipedia.org/wiki/Rectifier_(neural_networks)">```ReLU```</a> activation.
|
126
|
+
|
127
|
+
In order to create an instance of the ```mnistMLP``` model, do the same as you would in python: ```model = mnistMLP()``` .
|
128
|
+
|
129
|
+
We support a few different optimizers, <a href="https://github.com/kevbuh/froog/blob/main/froog/optim.py">here</a> which include:
|
130
|
+
- <a href="https://en.wikipedia.org/wiki/Stochastic_gradient_descent">Stochastic Gradient Descent (SGD)</a>
|
131
|
+
- <a href="https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam">Adaptive Moment Estimation (Adam)</a>
|
132
|
+
- <a href="https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp">Root Mean Square Propagation (RMSProp)</a>
|
133
|
+
|
134
|
+
```python
|
135
|
+
from froog.tensor import Tensor
|
136
|
+
import froog.optim as optim
|
137
|
+
from froog.nn import Linear
|
138
|
+
|
139
|
+
class mnistMLP:
|
140
|
+
def __init__(self):
|
141
|
+
self.l1 = Tensor(Linear(784, 128))
|
142
|
+
self.l2 = Tensor(Linear(128, 10))
|
143
|
+
|
144
|
+
def forward(self, x):
|
145
|
+
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
|
146
|
+
|
147
|
+
model = mnistMLP()
|
148
|
+
optim = optim.SGD([model.l1, model.l2], lr=0.001)
|
149
|
+
```
|
150
|
+
|
151
|
+
You can also create a convolutional neural net by
|
152
|
+
|
153
|
+
```python
|
154
|
+
class SimpleConvNet:
|
155
|
+
def __init__(self):
|
156
|
+
conv_size = 5
|
157
|
+
channels = 17
|
158
|
+
self.c1 = Tensor(Linear(channels,1,conv_size,conv_size)) # (num_filters, color_channels, kernel_h, kernel_w)
|
159
|
+
self.l1 = Tensor(Linear((28-conv_size+1)**2*channels, 128)) # (28-conv+1)(28-conv+1) since kernel isn't padded
|
160
|
+
self.l2 = Tensor(Linear(128, 10)) # MNIST output is 10 classes
|
161
|
+
|
162
|
+
def forward(self, x):
|
163
|
+
x.data = x.data.reshape((-1, 1, 28, 28)) # get however many number of imgs in batch
|
164
|
+
x = x.conv2d(self.c1).relu() # pass through conv first
|
165
|
+
x = x.reshape(shape=(x.shape[0], -1))
|
166
|
+
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
|
167
|
+
```
|
168
|
+
|
169
|
+
So there are two quick examples to get you up and running. You might have noticed some operations like ```reshape``` and were wondering what else you can do with ```froog```. We have many more operations that you can apply on tensors:
|
170
|
+
- ```.add()```
|
171
|
+
- ```.sub()```
|
172
|
+
- ```.mul()```
|
173
|
+
- ```.sum()```
|
174
|
+
- ```.pow()```
|
175
|
+
- ```.dot()```
|
176
|
+
- ```.relu()```
|
177
|
+
- ```.sigmoid()```
|
178
|
+
- ```.reshape()```
|
179
|
+
- ```.pad2d()```
|
180
|
+
- ```.logsoftmax()```
|
181
|
+
- ```.conv2d()```
|
182
|
+
- ```.im2col2dconv()```
|
183
|
+
- ```.max_pool2d()```
|
184
|
+
- ```.avg_pool2d()```
|
185
|
+
|
186
|
+
## GPU Support
|
187
|
+
|
188
|
+
Have a GPU and need a speedup? You're in good luck because we have GPU support from for our operations defined in <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">```ops_gpu.py```</a>. In order to do this we have a backend built on <a href="https://en.wikipedia.org/wiki/OpenGL">OpenGL</a> that invokes kernel functions that work on the GPU.
|
189
|
+
|
190
|
+
Here's how you can send data to the GPU during a forward pass and bring it back to the CPU.
|
191
|
+
|
192
|
+
```python
|
193
|
+
# ...
|
194
|
+
GPU = os.getenv("GPU", None) is not None
|
195
|
+
if GPU:
|
196
|
+
out = model.forward(Tensor(img).to_gpu()).cpu()
|
197
|
+
```
|
198
|
+
|
199
|
+
## EfficientNet in froog!
|
200
|
+
|
201
|
+
We have a really cool finished implementation of EfficientNet built entirely in ```froog```!
|
202
|
+
|
203
|
+
In order to run EfficientNet inference:
|
204
|
+
|
205
|
+
```bash
|
206
|
+
VIZ=1 python models/efficientnet.py <https://put_your_image_url_here>
|
207
|
+
```
|
208
|
+
|
209
|
+
I would recommend checking out the <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">code</a>, it's highly documented and pretty cool. Here's some of the documentation
|
210
|
+
```
|
211
|
+
Paper : https://arxiv.org/abs/1905.11946
|
212
|
+
PyTorch version : https://github.com/lukemelas/EfficientNet-PyTorch/blob/master/efficientnet_pytorch/model.py
|
213
|
+
|
214
|
+
ConvNets are commonly developed at a fixed resource cost, and then scaled up in order to achieve better accuracy when more resources are made available
|
215
|
+
The scaling method was found by performing a grid search to find the relationship between different scaling dimensions of the baseline network under a fixed resource constraint
|
216
|
+
"SE" stands for "Squeeze-and-Excitation." Introduced by the "Squeeze-and-Excitation Networks" paper by Jie Hu, Li Shen, and Gang Sun (CVPR 2018).
|
217
|
+
|
218
|
+
Environment Variables:
|
219
|
+
VIZ=1 --> plots processed image and output probabilities
|
220
|
+
|
221
|
+
How to Run:
|
222
|
+
'VIZ=1 python models/efficientnet.py https://your_image_url'
|
223
|
+
|
224
|
+
EfficientNet Hyper-Parameters and Weights:
|
225
|
+
url_map = {
|
226
|
+
'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth',
|
227
|
+
'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth',
|
228
|
+
'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth',
|
229
|
+
'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth',
|
230
|
+
'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth',
|
231
|
+
'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth',
|
232
|
+
'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth',
|
233
|
+
'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth',
|
234
|
+
}
|
235
|
+
|
236
|
+
params_dict = {
|
237
|
+
# Coefficients: width,depth,res,dropout
|
238
|
+
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
|
239
|
+
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
|
240
|
+
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
|
241
|
+
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
|
242
|
+
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
|
243
|
+
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
|
244
|
+
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
|
245
|
+
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
|
246
|
+
'efficientnet-b8': (2.2, 3.6, 672, 0.5),
|
247
|
+
'efficientnet-l2': (4.3, 5.3, 800, 0.5),
|
248
|
+
}
|
249
|
+
|
250
|
+
blocks_args = [
|
251
|
+
'r1_k3_s11_e1_i32_o16_se0.25',
|
252
|
+
'r2_k3_s22_e6_i16_o24_se0.25',
|
253
|
+
'r2_k5_s22_e6_i24_o40_se0.25',
|
254
|
+
'r3_k3_s22_e6_i40_o80_se0.25',
|
255
|
+
'r3_k5_s11_e6_i80_o112_se0.25',
|
256
|
+
'r4_k5_s22_e6_i112_o192_se0.25',
|
257
|
+
'r1_k3_s11_e6_i192_o320_se0.25',
|
258
|
+
]
|
259
|
+
```
|
260
|
+
|
261
|
+
## Linear regression
|
262
|
+
|
263
|
+
Doing linear regression in froog is pretty easy, check out the entire <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">code</a>.
|
264
|
+
|
265
|
+
```bash
|
266
|
+
VIZ=1 python3 linear_regression.py
|
267
|
+
```
|
268
|
+
|
269
|
+
# Contributing
|
270
|
+
<!-- THERES LOT OF STUFF TO WORK ON! VISIT THE <a href="https://github.com/kevbuh/froog/blob/main/docs/bounties.md">BOUNTY SHOP</a> -->
|
271
|
+
|
272
|
+
Pull requests will be merged if they:
|
273
|
+
* increase simplicity
|
274
|
+
* increase functionality
|
275
|
+
* increase efficiency
|
276
|
+
|
277
|
+
More info on <a href="https://github.com/kevbuh/froog/blob/main/docs/contributing.md">contributing</a>.
|
278
|
+
|
279
|
+
# Documentation
|
280
|
+
|
281
|
+
Need more information about how ```froog``` works? Visit the <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a>.
|
282
|
+
|
283
|
+
# Interested in more?
|
284
|
+
|
285
|
+
If you thought ```froog``` was cool, check out the inspirations for this project: pytorch, tinygrad, and https://github.com/karpathy/micrograd/blob/master/micrograd/engine.py
|
@@ -10,10 +10,9 @@
|
|
10
10
|
# inspired by tinygrad
|
11
11
|
# inspired by https://github.com/karpathy/micrograd/blob/master/micrograd/engine.py
|
12
12
|
|
13
|
-
from functools import partialmethod
|
14
|
-
from inspect import signature
|
15
|
-
import numpy as np
|
16
13
|
import os
|
14
|
+
import numpy as np
|
15
|
+
from inspect import signature
|
17
16
|
|
18
17
|
try:
|
19
18
|
import pyopencl as cl
|
@@ -8,29 +8,31 @@
|
|
8
8
|
|
9
9
|
import numpy as np
|
10
10
|
from functools import lru_cache
|
11
|
+
import pathlib, hashlib, os, tempfile, urllib
|
11
12
|
|
12
13
|
def fetch(url):
|
13
|
-
|
14
|
-
fp =
|
15
|
-
if
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
return
|
14
|
+
if url.startswith(("/", ".")): return pathlib.Path(url)
|
15
|
+
else: fp = pathlib.Path("_cache_dir") / "froog" / "downloads" / (hashlib.md5(url.encode('utf-8')).hexdigest())
|
16
|
+
if not fp.is_file():
|
17
|
+
with urllib.request.urlopen(url, timeout=10) as r:
|
18
|
+
assert r.status == 200
|
19
|
+
total_length = int(r.headers.get('content-length', 0))
|
20
|
+
(path := fp.parent).mkdir(parents=True, exist_ok=True)
|
21
|
+
with tempfile.NamedTemporaryFile(dir=path, delete=False) as f:
|
22
|
+
while chunk := r.read(16384): f.write(chunk)
|
23
|
+
f.close()
|
24
|
+
if (file_size:=os.stat(f.name).st_size) < total_length: raise RuntimeError(f"fetch size incomplete, {file_size} < {total_length}")
|
25
|
+
pathlib.Path(f.name).rename(fp)
|
26
|
+
return fp
|
26
27
|
|
27
28
|
def fetch_mnist():
|
28
29
|
import gzip
|
29
|
-
parse = lambda
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
30
|
+
parse = lambda file: np.frombuffer(gzip.open(file).read(), dtype=np.uint8).copy()
|
31
|
+
BASE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"
|
32
|
+
X_train = parse(fetch(f"{BASE_URL}train-images-idx3-ubyte.gz"))[0x10:].reshape((-1, 28*28)).astype(np.float32)
|
33
|
+
Y_train = parse(fetch(f"{BASE_URL}train-labels-idx1-ubyte.gz"))[8:].astype(np.int8)
|
34
|
+
X_test = parse(fetch(f"{BASE_URL}t10k-images-idx3-ubyte.gz"))[0x10:].reshape((-1, 28*28)).astype(np.float32)
|
35
|
+
Y_test = parse(fetch(f"{BASE_URL}t10k-labels-idx1-ubyte.gz"))[8:].astype(np.int8)
|
34
36
|
return X_train, Y_train, X_test, Y_test
|
35
37
|
|
36
38
|
def mask_like(like, mask_inx, mask_value=1.0):
|