froog 0.2.7__tar.gz → 0.2.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
froog-0.2.8/PKG-INFO ADDED
@@ -0,0 +1,151 @@
1
+ Metadata-Version: 2.1
2
+ Name: froog
3
+ Version: 0.2.8
4
+ Summary: a beautifully simplistic ml framework
5
+ Author: Kevin Buhler
6
+ License: MIT
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Requires-Python: >=3.8
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE
12
+
13
+ # froog <img src="https://github.com/kevbuh/froog/actions/workflows/test.yml/badge.svg" alt="unit test badge" > <img src="https://static.pepy.tech/badge/froog" alt="num downloads badge">
14
+ <div align="center" >
15
+ <img src="https://raw.githubusercontent.com/kevbuh/froog/main/assets/froog.png" alt="froog the frog" height="200">
16
+ <br/>
17
+ froog: fast real-time optimization of gradients
18
+ <br/>
19
+ a beautifully compact machine-learning library
20
+ <br/>
21
+ <a href="https://github.com/kevbuh/froog">homepage</a> | <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a> | <a href="https://pypi.org/project/froog/">pip</a>
22
+ <br/>
23
+ <br/>
24
+ </div>
25
+
26
+ <!-- froog is a SUPER SIMPLE machine learning framework with the goal of creating tools with AI, easily and efficiently. -->
27
+
28
+ ```froog``` is an easy-to-read machine-learning library.
29
+
30
+ <!-- froog's driving philosophy is demanding simplicity in a world of complexity. -->
31
+
32
+ <!-- Tensorflow and PyTorch are insanely complex with enormous codebases and are meant for expert development. -->
33
+
34
+ ```froog``` is meant for those looking to get into machine learning, who want to understand how the underlying machine learning framework's code works before they are ultra-optimized (which all modern ml libraries are).
35
+
36
+ ```froog``` encapsulates everything from <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">linear regression</a> to <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">convolutional neural networks </a>
37
+
38
+ all of this in under 1000 lines.
39
+
40
+ # Installation
41
+ ```bash
42
+ pip install froog
43
+ ```
44
+
45
+ More information on downloading ```froog``` in the <a href="https://github.com/kevbuh/froog/blob/main/docs/install.md">installation</a> docs.
46
+
47
+
48
+ # Features
49
+ - <a href="https://github.com/kevbuh/froog/blob/main/froog/tensor.py">Custom Tensors</a>
50
+ - Backpropagation
51
+ - Automatic Differentiation (autograd)
52
+ - Forward and backward passes
53
+ - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops.py">ML Operations</a>
54
+ - 2D Convolutions (im2col)
55
+ - Numerical gradient checking
56
+ - Acceleration methods (Adam)
57
+ - Avg & Max pooling
58
+ - <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">EfficientNet</a> inference
59
+ - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">GPU Support</a>
60
+ - and a bunch <a href="https://github.com/kevbuh/froog/tree/main/froog">more</a>
61
+
62
+ # Sneak Peek
63
+ ```python
64
+ from froog.tensor import Tensor
65
+ from froog.nn import Linear
66
+ import froog.optim as optim
67
+
68
+ class mnistMLP:
69
+ def __init__(self):
70
+ self.l1 = Tensor(Linear(784, 128))
71
+ self.l2 = Tensor(Linear(128, 10))
72
+
73
+ def forward(self, x):
74
+ return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
75
+
76
+ model = mnistMLP()
77
+ optim = optim.SGD([model.l1, model.l2], lr=0.001)
78
+ ```
79
+
80
+ # Overview
81
+
82
+ The most fundamental concept in all of ```froog``` and machine learning is the Tensor. A <a href="https://en.wikipedia.org/wiki/Tensor_(machine_learning)">tensor</a> is simply a matrix of matrices (more accurately a multi-dimensional array).
83
+
84
+ You can create a Tensor in ```froog``` by:
85
+ ```python
86
+ import numpy as np
87
+ from froog.tensor import Tensor
88
+
89
+ my_tensor = Tensor([1,2,3])
90
+ ```
91
+
92
+ Notice how we had to import numpy. If you want to create a Tensor manually make sure that it is a Numpy array!
93
+
94
+ Learn more about ```froog``` Tensors <a href="https://github.com/kevbuh/froog/blob/main/docs/tensors.md">here</a>.
95
+
96
+ ### Actually creating something
97
+
98
+ Okay cool, so now you know that ```froog```'s main datatype is a Tensor and uses NumPy in the background. How do I actually build a model?
99
+
100
+ We wanted to make it as simple as possible for you to do so.
101
+
102
+ Here's an example of how to create an MNIST multi-layer perceptron (MLP)
103
+
104
+ ```python
105
+ from froog.tensor import Tensor
106
+ import froog.optim as optim
107
+ from froog.nn import Linear
108
+
109
+ class mnistMLP:
110
+ def __init__(self):
111
+ self.l1 = Tensor(Linear(784, 128))
112
+ self.l2 = Tensor(Linear(128, 10))
113
+
114
+ def forward(self, x):
115
+ return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
116
+
117
+ model = mnistMLP()
118
+ optim = optim.SGD([model.l1, model.l2], lr=0.001)
119
+ ```
120
+
121
+ You can also create a convolutional neural net by
122
+
123
+ ```python
124
+ class SimpleConvNet:
125
+ def __init__(self):
126
+ conv_size = 5
127
+ channels = 17
128
+ self.c1 = Tensor(Linear(channels,1,conv_size,conv_size)) # (num_filters, color_channels, kernel_h, kernel_w)
129
+ self.l1 = Tensor(Linear((28-conv_size+1)**2*channels, 128)) # (28-conv+1)(28-conv+1) since kernel isn't padded
130
+ self.l2 = Tensor(Linear(128, 10)) # MNIST output is 10 classes
131
+
132
+ def forward(self, x):
133
+ x.data = x.data.reshape((-1, 1, 28, 28)) # get however many number of imgs in batch
134
+ x = x.conv2d(self.c1).relu() # pass through conv first
135
+ x = x.reshape(shape=(x.shape[0], -1))
136
+ return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
137
+ ```
138
+
139
+ # Contributing
140
+ <!-- THERES LOT OF STUFF TO WORK ON! VISIT THE <a href="https://github.com/kevbuh/froog/blob/main/docs/bounties.md">BOUNTY SHOP</a> -->
141
+
142
+ Pull requests will be merged if they:
143
+ * increase simplicity
144
+ * increase functionality
145
+ * increase efficiency
146
+
147
+ More info on <a href="https://github.com/kevbuh/froog/blob/main/docs/contributing.md">contributing</a>
148
+
149
+ # Documentation
150
+
151
+ Need more information about how ```froog``` works? Visit the <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a>.
froog-0.2.8/README.md ADDED
@@ -0,0 +1,139 @@
1
+ # froog <img src="https://github.com/kevbuh/froog/actions/workflows/test.yml/badge.svg" alt="unit test badge" > <img src="https://static.pepy.tech/badge/froog" alt="num downloads badge">
2
+ <div align="center" >
3
+ <img src="https://raw.githubusercontent.com/kevbuh/froog/main/assets/froog.png" alt="froog the frog" height="200">
4
+ <br/>
5
+ froog: fast real-time optimization of gradients
6
+ <br/>
7
+ a beautifully compact machine-learning library
8
+ <br/>
9
+ <a href="https://github.com/kevbuh/froog">homepage</a> | <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a> | <a href="https://pypi.org/project/froog/">pip</a>
10
+ <br/>
11
+ <br/>
12
+ </div>
13
+
14
+ <!-- froog is a SUPER SIMPLE machine learning framework with the goal of creating tools with AI, easily and efficiently. -->
15
+
16
+ ```froog``` is an easy-to-read machine-learning library.
17
+
18
+ <!-- froog's driving philosophy is demanding simplicity in a world of complexity. -->
19
+
20
+ <!-- Tensorflow and PyTorch are insanely complex with enormous codebases and are meant for expert development. -->
21
+
22
+ ```froog``` is meant for those looking to get into machine learning, who want to understand how the underlying machine learning framework's code works before they are ultra-optimized (which all modern ml libraries are).
23
+
24
+ ```froog``` encapsulates everything from <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">linear regression</a> to <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">convolutional neural networks </a>
25
+
26
+ all of this in under 1000 lines.
27
+
28
+ # Installation
29
+ ```bash
30
+ pip install froog
31
+ ```
32
+
33
+ More information on downloading ```froog``` in the <a href="https://github.com/kevbuh/froog/blob/main/docs/install.md">installation</a> docs.
34
+
35
+
36
+ # Features
37
+ - <a href="https://github.com/kevbuh/froog/blob/main/froog/tensor.py">Custom Tensors</a>
38
+ - Backpropagation
39
+ - Automatic Differentiation (autograd)
40
+ - Forward and backward passes
41
+ - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops.py">ML Operations</a>
42
+ - 2D Convolutions (im2col)
43
+ - Numerical gradient checking
44
+ - Acceleration methods (Adam)
45
+ - Avg & Max pooling
46
+ - <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">EfficientNet</a> inference
47
+ - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">GPU Support</a>
48
+ - and a bunch <a href="https://github.com/kevbuh/froog/tree/main/froog">more</a>
49
+
50
+ # Sneak Peek
51
+ ```python
52
+ from froog.tensor import Tensor
53
+ from froog.nn import Linear
54
+ import froog.optim as optim
55
+
56
+ class mnistMLP:
57
+ def __init__(self):
58
+ self.l1 = Tensor(Linear(784, 128))
59
+ self.l2 = Tensor(Linear(128, 10))
60
+
61
+ def forward(self, x):
62
+ return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
63
+
64
+ model = mnistMLP()
65
+ optim = optim.SGD([model.l1, model.l2], lr=0.001)
66
+ ```
67
+
68
+ # Overview
69
+
70
+ The most fundamental concept in all of ```froog``` and machine learning is the Tensor. A <a href="https://en.wikipedia.org/wiki/Tensor_(machine_learning)">tensor</a> is simply a matrix of matrices (more accurately a multi-dimensional array).
71
+
72
+ You can create a Tensor in ```froog``` by:
73
+ ```python
74
+ import numpy as np
75
+ from froog.tensor import Tensor
76
+
77
+ my_tensor = Tensor([1,2,3])
78
+ ```
79
+
80
+ Notice how we had to import numpy. If you want to create a Tensor manually make sure that it is a Numpy array!
81
+
82
+ Learn more about ```froog``` Tensors <a href="https://github.com/kevbuh/froog/blob/main/docs/tensors.md">here</a>.
83
+
84
+ ### Actually creating something
85
+
86
+ Okay cool, so now you know that ```froog```'s main datatype is a Tensor and uses NumPy in the background. How do I actually build a model?
87
+
88
+ We wanted to make it as simple as possible for you to do so.
89
+
90
+ Here's an example of how to create an MNIST multi-layer perceptron (MLP)
91
+
92
+ ```python
93
+ from froog.tensor import Tensor
94
+ import froog.optim as optim
95
+ from froog.nn import Linear
96
+
97
+ class mnistMLP:
98
+ def __init__(self):
99
+ self.l1 = Tensor(Linear(784, 128))
100
+ self.l2 = Tensor(Linear(128, 10))
101
+
102
+ def forward(self, x):
103
+ return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
104
+
105
+ model = mnistMLP()
106
+ optim = optim.SGD([model.l1, model.l2], lr=0.001)
107
+ ```
108
+
109
+ You can also create a convolutional neural net by
110
+
111
+ ```python
112
+ class SimpleConvNet:
113
+ def __init__(self):
114
+ conv_size = 5
115
+ channels = 17
116
+ self.c1 = Tensor(Linear(channels,1,conv_size,conv_size)) # (num_filters, color_channels, kernel_h, kernel_w)
117
+ self.l1 = Tensor(Linear((28-conv_size+1)**2*channels, 128)) # (28-conv+1)(28-conv+1) since kernel isn't padded
118
+ self.l2 = Tensor(Linear(128, 10)) # MNIST output is 10 classes
119
+
120
+ def forward(self, x):
121
+ x.data = x.data.reshape((-1, 1, 28, 28)) # get however many number of imgs in batch
122
+ x = x.conv2d(self.c1).relu() # pass through conv first
123
+ x = x.reshape(shape=(x.shape[0], -1))
124
+ return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
125
+ ```
126
+
127
+ # Contributing
128
+ <!-- THERES LOT OF STUFF TO WORK ON! VISIT THE <a href="https://github.com/kevbuh/froog/blob/main/docs/bounties.md">BOUNTY SHOP</a> -->
129
+
130
+ Pull requests will be merged if they:
131
+ * increase simplicity
132
+ * increase functionality
133
+ * increase efficiency
134
+
135
+ More info on <a href="https://github.com/kevbuh/froog/blob/main/docs/contributing.md">contributing</a>
136
+
137
+ # Documentation
138
+
139
+ Need more information about how ```froog``` works? Visit the <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a>.
@@ -0,0 +1,151 @@
1
+ Metadata-Version: 2.1
2
+ Name: froog
3
+ Version: 0.2.8
4
+ Summary: a beautifully simplistic ml framework
5
+ Author: Kevin Buhler
6
+ License: MIT
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Requires-Python: >=3.8
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE
12
+
13
+ # froog <img src="https://github.com/kevbuh/froog/actions/workflows/test.yml/badge.svg" alt="unit test badge" > <img src="https://static.pepy.tech/badge/froog" alt="num downloads badge">
14
+ <div align="center" >
15
+ <img src="https://raw.githubusercontent.com/kevbuh/froog/main/assets/froog.png" alt="froog the frog" height="200">
16
+ <br/>
17
+ froog: fast real-time optimization of gradients
18
+ <br/>
19
+ a beautifully compact machine-learning library
20
+ <br/>
21
+ <a href="https://github.com/kevbuh/froog">homepage</a> | <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a> | <a href="https://pypi.org/project/froog/">pip</a>
22
+ <br/>
23
+ <br/>
24
+ </div>
25
+
26
+ <!-- froog is a SUPER SIMPLE machine learning framework with the goal of creating tools with AI, easily and efficiently. -->
27
+
28
+ ```froog``` is an easy-to-read machine-learning library.
29
+
30
+ <!-- froog's driving philosophy is demanding simplicity in a world of complexity. -->
31
+
32
+ <!-- Tensorflow and PyTorch are insanely complex with enormous codebases and are meant for expert development. -->
33
+
34
+ ```froog``` is meant for those looking to get into machine learning, who want to understand how the underlying machine learning framework's code works before they are ultra-optimized (which all modern ml libraries are).
35
+
36
+ ```froog``` encapsulates everything from <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">linear regression</a> to <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">convolutional neural networks </a>
37
+
38
+ all of this in under 1000 lines.
39
+
40
+ # Installation
41
+ ```bash
42
+ pip install froog
43
+ ```
44
+
45
+ More information on downloading ```froog``` in the <a href="https://github.com/kevbuh/froog/blob/main/docs/install.md">installation</a> docs.
46
+
47
+
48
+ # Features
49
+ - <a href="https://github.com/kevbuh/froog/blob/main/froog/tensor.py">Custom Tensors</a>
50
+ - Backpropagation
51
+ - Automatic Differentiation (autograd)
52
+ - Forward and backward passes
53
+ - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops.py">ML Operations</a>
54
+ - 2D Convolutions (im2col)
55
+ - Numerical gradient checking
56
+ - Acceleration methods (Adam)
57
+ - Avg & Max pooling
58
+ - <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">EfficientNet</a> inference
59
+ - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">GPU Support</a>
60
+ - and a bunch <a href="https://github.com/kevbuh/froog/tree/main/froog">more</a>
61
+
62
+ # Sneak Peek
63
+ ```python
64
+ from froog.tensor import Tensor
65
+ from froog.nn import Linear
66
+ import froog.optim as optim
67
+
68
+ class mnistMLP:
69
+ def __init__(self):
70
+ self.l1 = Tensor(Linear(784, 128))
71
+ self.l2 = Tensor(Linear(128, 10))
72
+
73
+ def forward(self, x):
74
+ return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
75
+
76
+ model = mnistMLP()
77
+ optim = optim.SGD([model.l1, model.l2], lr=0.001)
78
+ ```
79
+
80
+ # Overview
81
+
82
+ The most fundamental concept in all of ```froog``` and machine learning is the Tensor. A <a href="https://en.wikipedia.org/wiki/Tensor_(machine_learning)">tensor</a> is simply a matrix of matrices (more accurately a multi-dimensional array).
83
+
84
+ You can create a Tensor in ```froog``` by:
85
+ ```python
86
+ import numpy as np
87
+ from froog.tensor import Tensor
88
+
89
+ my_tensor = Tensor([1,2,3])
90
+ ```
91
+
92
+ Notice how we had to import numpy. If you want to create a Tensor manually make sure that it is a Numpy array!
93
+
94
+ Learn more about ```froog``` Tensors <a href="https://github.com/kevbuh/froog/blob/main/docs/tensors.md">here</a>.
95
+
96
+ ### Actually creating something
97
+
98
+ Okay cool, so now you know that ```froog```'s main datatype is a Tensor and uses NumPy in the background. How do I actually build a model?
99
+
100
+ We wanted to make it as simple as possible for you to do so.
101
+
102
+ Here's an example of how to create an MNIST multi-layer perceptron (MLP)
103
+
104
+ ```python
105
+ from froog.tensor import Tensor
106
+ import froog.optim as optim
107
+ from froog.nn import Linear
108
+
109
+ class mnistMLP:
110
+ def __init__(self):
111
+ self.l1 = Tensor(Linear(784, 128))
112
+ self.l2 = Tensor(Linear(128, 10))
113
+
114
+ def forward(self, x):
115
+ return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
116
+
117
+ model = mnistMLP()
118
+ optim = optim.SGD([model.l1, model.l2], lr=0.001)
119
+ ```
120
+
121
+ You can also create a convolutional neural net by
122
+
123
+ ```python
124
+ class SimpleConvNet:
125
+ def __init__(self):
126
+ conv_size = 5
127
+ channels = 17
128
+ self.c1 = Tensor(Linear(channels,1,conv_size,conv_size)) # (num_filters, color_channels, kernel_h, kernel_w)
129
+ self.l1 = Tensor(Linear((28-conv_size+1)**2*channels, 128)) # (28-conv+1)(28-conv+1) since kernel isn't padded
130
+ self.l2 = Tensor(Linear(128, 10)) # MNIST output is 10 classes
131
+
132
+ def forward(self, x):
133
+ x.data = x.data.reshape((-1, 1, 28, 28)) # get however many number of imgs in batch
134
+ x = x.conv2d(self.c1).relu() # pass through conv first
135
+ x = x.reshape(shape=(x.shape[0], -1))
136
+ return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
137
+ ```
138
+
139
+ # Contributing
140
+ <!-- THERES LOT OF STUFF TO WORK ON! VISIT THE <a href="https://github.com/kevbuh/froog/blob/main/docs/bounties.md">BOUNTY SHOP</a> -->
141
+
142
+ Pull requests will be merged if they:
143
+ * increase simplicity
144
+ * increase functionality
145
+ * increase efficiency
146
+
147
+ More info on <a href="https://github.com/kevbuh/froog/blob/main/docs/contributing.md">contributing</a>
148
+
149
+ # Documentation
150
+
151
+ Need more information about how ```froog``` works? Visit the <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a>.
@@ -10,7 +10,7 @@ with open(os.path.join(directory, 'README.md'), encoding='utf-8') as f:
10
10
  long_description = f.read()
11
11
 
12
12
  setup(name='froog',
13
- version='0.2.7',
13
+ version='0.2.8',
14
14
  description='a beautifully simplistic ml framework',
15
15
  author='Kevin Buhler',
16
16
  license='MIT',
froog-0.2.7/PKG-INFO DELETED
@@ -1,78 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: froog
3
- Version: 0.2.7
4
- Summary: a beautifully simplistic ml framework
5
- Author: Kevin Buhler
6
- License: MIT
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: License :: OSI Approved :: MIT License
9
- Requires-Python: >=3.8
10
- Description-Content-Type: text/markdown
11
- License-File: LICENSE
12
-
13
- # froog <img src="https://github.com/kevbuh/froog/actions/workflows/test.yml/badge.svg" alt="unit test badge" > <img src="https://static.pepy.tech/badge/froog" alt="num downloads badge">
14
- <div align="center" >
15
- <img src="https://raw.githubusercontent.com/kevbuh/froog/main/assets/froog.png" alt="froog the frog" height="200">
16
- <br/>
17
- froog: fast real-time optimization of gradients
18
- <br/>
19
- a beautifully compact machine-learning library
20
- <br/>
21
- <a href="https://github.com/kevbuh/froog">homepage</a> | <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a> | <a href="https://pypi.org/project/froog/">pip</a>
22
- <br/>
23
- <br/>
24
- </div>
25
-
26
- froog is a SUPER SIMPLE machine learning framework with the goal of creating tools with AI --> easily and efficiently.
27
-
28
- froog encapsulates everything from <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">linear regression</a> to <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">convolutional neural networks </a>
29
-
30
- all of this in under 1000 lines.
31
- <!-- in the <a href="https://github.com/kevbuh/froog/tree/main/tadpole">tadpole folder</a>. -->
32
-
33
- # Installation
34
- ```bash
35
- pip install froog
36
- ```
37
-
38
- ### Overview of Features
39
- - <a href="https://github.com/kevbuh/froog/blob/main/froog/tensor.py">Custom Tensors</a>
40
- - Backpropagation
41
- - Automatic Differentiation (autograd)
42
- - Forward and backward passes
43
- - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops.py">ML Operations</a>
44
- - 2D Convolutions (im2col)
45
- - Numerical gradient checking
46
- - Acceleration methods (Adam)
47
- - Avg & Max pooling
48
- - <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">EfficientNet</a> inference
49
- - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">GPU Support</a>
50
- - and a bunch <a href="https://github.com/kevbuh/froog/tree/main/froog">more</a>
51
-
52
- ### Sneak Peek
53
- ```python
54
- from froog.tensor import Tensor
55
- from froog.nn import Linear
56
- import froog.optim as optim
57
-
58
- class mnistMLP:
59
- def __init__(self):
60
- self.l1 = Tensor(Linear(784, 128))
61
- self.l2 = Tensor(Linear(128, 10))
62
-
63
- def forward(self, x):
64
- return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
65
-
66
- model = mnistMLP()
67
- optim = optim.SGD([model.l1, model.l2], lr=0.001)
68
- ```
69
-
70
- # Bounties
71
- THERES LOT OF STUFF TO WORK ON! VISIT THE <a href="https://github.com/kevbuh/froog/blob/main/docs/bounties.md">BOUNTY SHOP</a>
72
-
73
- Pull requests will be merged if they:
74
- * increase simplicity
75
- * increase functionality
76
- * increase efficiency
77
-
78
- more info on <a href="https://github.com/kevbuh/froog/blob/main/docs/contributing.md">contributing</a>
froog-0.2.7/README.md DELETED
@@ -1,66 +0,0 @@
1
- # froog <img src="https://github.com/kevbuh/froog/actions/workflows/test.yml/badge.svg" alt="unit test badge" > <img src="https://static.pepy.tech/badge/froog" alt="num downloads badge">
2
- <div align="center" >
3
- <img src="https://raw.githubusercontent.com/kevbuh/froog/main/assets/froog.png" alt="froog the frog" height="200">
4
- <br/>
5
- froog: fast real-time optimization of gradients
6
- <br/>
7
- a beautifully compact machine-learning library
8
- <br/>
9
- <a href="https://github.com/kevbuh/froog">homepage</a> | <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a> | <a href="https://pypi.org/project/froog/">pip</a>
10
- <br/>
11
- <br/>
12
- </div>
13
-
14
- froog is a SUPER SIMPLE machine learning framework with the goal of creating tools with AI --> easily and efficiently.
15
-
16
- froog encapsulates everything from <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">linear regression</a> to <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">convolutional neural networks </a>
17
-
18
- all of this in under 1000 lines.
19
- <!-- in the <a href="https://github.com/kevbuh/froog/tree/main/tadpole">tadpole folder</a>. -->
20
-
21
- # Installation
22
- ```bash
23
- pip install froog
24
- ```
25
-
26
- ### Overview of Features
27
- - <a href="https://github.com/kevbuh/froog/blob/main/froog/tensor.py">Custom Tensors</a>
28
- - Backpropagation
29
- - Automatic Differentiation (autograd)
30
- - Forward and backward passes
31
- - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops.py">ML Operations</a>
32
- - 2D Convolutions (im2col)
33
- - Numerical gradient checking
34
- - Acceleration methods (Adam)
35
- - Avg & Max pooling
36
- - <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">EfficientNet</a> inference
37
- - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">GPU Support</a>
38
- - and a bunch <a href="https://github.com/kevbuh/froog/tree/main/froog">more</a>
39
-
40
- ### Sneak Peek
41
- ```python
42
- from froog.tensor import Tensor
43
- from froog.nn import Linear
44
- import froog.optim as optim
45
-
46
- class mnistMLP:
47
- def __init__(self):
48
- self.l1 = Tensor(Linear(784, 128))
49
- self.l2 = Tensor(Linear(128, 10))
50
-
51
- def forward(self, x):
52
- return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
53
-
54
- model = mnistMLP()
55
- optim = optim.SGD([model.l1, model.l2], lr=0.001)
56
- ```
57
-
58
- # Bounties
59
- THERES LOT OF STUFF TO WORK ON! VISIT THE <a href="https://github.com/kevbuh/froog/blob/main/docs/bounties.md">BOUNTY SHOP</a>
60
-
61
- Pull requests will be merged if they:
62
- * increase simplicity
63
- * increase functionality
64
- * increase efficiency
65
-
66
- more info on <a href="https://github.com/kevbuh/froog/blob/main/docs/contributing.md">contributing</a>
@@ -1,78 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: froog
3
- Version: 0.2.7
4
- Summary: a beautifully simplistic ml framework
5
- Author: Kevin Buhler
6
- License: MIT
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: License :: OSI Approved :: MIT License
9
- Requires-Python: >=3.8
10
- Description-Content-Type: text/markdown
11
- License-File: LICENSE
12
-
13
- # froog <img src="https://github.com/kevbuh/froog/actions/workflows/test.yml/badge.svg" alt="unit test badge" > <img src="https://static.pepy.tech/badge/froog" alt="num downloads badge">
14
- <div align="center" >
15
- <img src="https://raw.githubusercontent.com/kevbuh/froog/main/assets/froog.png" alt="froog the frog" height="200">
16
- <br/>
17
- froog: fast real-time optimization of gradients
18
- <br/>
19
- a beautifully compact machine-learning library
20
- <br/>
21
- <a href="https://github.com/kevbuh/froog">homepage</a> | <a href="https://github.com/kevbuh/froog/tree/main/docs">documentation</a> | <a href="https://pypi.org/project/froog/">pip</a>
22
- <br/>
23
- <br/>
24
- </div>
25
-
26
- froog is a SUPER SIMPLE machine learning framework with the goal of creating tools with AI --> easily and efficiently.
27
-
28
- froog encapsulates everything from <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">linear regression</a> to <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">convolutional neural networks </a>
29
-
30
- all of this in under 1000 lines.
31
- <!-- in the <a href="https://github.com/kevbuh/froog/tree/main/tadpole">tadpole folder</a>. -->
32
-
33
- # Installation
34
- ```bash
35
- pip install froog
36
- ```
37
-
38
- ### Overview of Features
39
- - <a href="https://github.com/kevbuh/froog/blob/main/froog/tensor.py">Custom Tensors</a>
40
- - Backpropagation
41
- - Automatic Differentiation (autograd)
42
- - Forward and backward passes
43
- - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops.py">ML Operations</a>
44
- - 2D Convolutions (im2col)
45
- - Numerical gradient checking
46
- - Acceleration methods (Adam)
47
- - Avg & Max pooling
48
- - <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">EfficientNet</a> inference
49
- - <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">GPU Support</a>
50
- - and a bunch <a href="https://github.com/kevbuh/froog/tree/main/froog">more</a>
51
-
52
- ### Sneak Peek
53
- ```python
54
- from froog.tensor import Tensor
55
- from froog.nn import Linear
56
- import froog.optim as optim
57
-
58
- class mnistMLP:
59
- def __init__(self):
60
- self.l1 = Tensor(Linear(784, 128))
61
- self.l2 = Tensor(Linear(128, 10))
62
-
63
- def forward(self, x):
64
- return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
65
-
66
- model = mnistMLP()
67
- optim = optim.SGD([model.l1, model.l2], lr=0.001)
68
- ```
69
-
70
- # Bounties
71
- THERES LOT OF STUFF TO WORK ON! VISIT THE <a href="https://github.com/kevbuh/froog/blob/main/docs/bounties.md">BOUNTY SHOP</a>
72
-
73
- Pull requests will be merged if they:
74
- * increase simplicity
75
- * increase functionality
76
- * increase efficiency
77
-
78
- more info on <a href="https://github.com/kevbuh/froog/blob/main/docs/contributing.md">contributing</a>
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes