freealg 0.7.7__tar.gz → 0.7.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. {freealg-0.7.7 → freealg-0.7.8}/PKG-INFO +1 -1
  2. freealg-0.7.8/freealg/__version__.py +1 -0
  3. freealg-0.7.8/freealg/_algebraic_form/_homotopy.py +280 -0
  4. freealg-0.7.8/freealg/_algebraic_form/_moments.py +450 -0
  5. {freealg-0.7.7 → freealg-0.7.8}/freealg/_algebraic_form/algebraic_form.py +11 -19
  6. {freealg-0.7.7 → freealg-0.7.8}/freealg.egg-info/PKG-INFO +1 -1
  7. {freealg-0.7.7 → freealg-0.7.8}/freealg.egg-info/SOURCES.txt +1 -0
  8. freealg-0.7.7/freealg/__version__.py +0 -1
  9. freealg-0.7.7/freealg/_algebraic_form/_homotopy.py +0 -138
  10. {freealg-0.7.7 → freealg-0.7.8}/AUTHORS.txt +0 -0
  11. {freealg-0.7.7 → freealg-0.7.8}/CHANGELOG.rst +0 -0
  12. {freealg-0.7.7 → freealg-0.7.8}/LICENSE.txt +0 -0
  13. {freealg-0.7.7 → freealg-0.7.8}/MANIFEST.in +0 -0
  14. {freealg-0.7.7 → freealg-0.7.8}/README.rst +0 -0
  15. {freealg-0.7.7 → freealg-0.7.8}/freealg/__init__.py +0 -0
  16. {freealg-0.7.7 → freealg-0.7.8}/freealg/_algebraic_form/__init__.py +0 -0
  17. {freealg-0.7.7 → freealg-0.7.8}/freealg/_algebraic_form/_constraints.py +0 -0
  18. {freealg-0.7.7 → freealg-0.7.8}/freealg/_algebraic_form/_continuation_algebraic.py +0 -0
  19. {freealg-0.7.7 → freealg-0.7.8}/freealg/_algebraic_form/_decompress.py +0 -0
  20. {freealg-0.7.7 → freealg-0.7.8}/freealg/_algebraic_form/_decompress2.py +0 -0
  21. {freealg-0.7.7 → freealg-0.7.8}/freealg/_algebraic_form/_discriminant.py +0 -0
  22. {freealg-0.7.7 → freealg-0.7.8}/freealg/_algebraic_form/_edge.py +0 -0
  23. {freealg-0.7.7 → freealg-0.7.8}/freealg/_algebraic_form/_sheets_util.py +0 -0
  24. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/__init__.py +0 -0
  25. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_chebyshev.py +0 -0
  26. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_damp.py +0 -0
  27. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_decompress.py +0 -0
  28. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_density_util.py +0 -0
  29. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_jacobi.py +0 -0
  30. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_linalg.py +0 -0
  31. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_pade.py +0 -0
  32. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_plot_util.py +0 -0
  33. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_sample.py +0 -0
  34. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_series.py +0 -0
  35. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/_support.py +0 -0
  36. {freealg-0.7.7 → freealg-0.7.8}/freealg/_free_form/free_form.py +0 -0
  37. {freealg-0.7.7 → freealg-0.7.8}/freealg/_geometric_form/__init__.py +0 -0
  38. {freealg-0.7.7 → freealg-0.7.8}/freealg/_geometric_form/_continuation_genus0.py +0 -0
  39. {freealg-0.7.7 → freealg-0.7.8}/freealg/_geometric_form/_continuation_genus1.py +0 -0
  40. {freealg-0.7.7 → freealg-0.7.8}/freealg/_geometric_form/_elliptic_functions.py +0 -0
  41. {freealg-0.7.7 → freealg-0.7.8}/freealg/_geometric_form/_sphere_maps.py +0 -0
  42. {freealg-0.7.7 → freealg-0.7.8}/freealg/_geometric_form/_torus_maps.py +0 -0
  43. {freealg-0.7.7 → freealg-0.7.8}/freealg/_geometric_form/geometric_form.py +0 -0
  44. {freealg-0.7.7 → freealg-0.7.8}/freealg/_util.py +0 -0
  45. {freealg-0.7.7 → freealg-0.7.8}/freealg/distributions/__init__.py +0 -0
  46. {freealg-0.7.7 → freealg-0.7.8}/freealg/distributions/_chiral_block.py +0 -0
  47. {freealg-0.7.7 → freealg-0.7.8}/freealg/distributions/_deformed_marchenko_pastur.py +0 -0
  48. {freealg-0.7.7 → freealg-0.7.8}/freealg/distributions/_deformed_wigner.py +0 -0
  49. {freealg-0.7.7 → freealg-0.7.8}/freealg/distributions/_kesten_mckay.py +0 -0
  50. {freealg-0.7.7 → freealg-0.7.8}/freealg/distributions/_marchenko_pastur.py +0 -0
  51. {freealg-0.7.7 → freealg-0.7.8}/freealg/distributions/_meixner.py +0 -0
  52. {freealg-0.7.7 → freealg-0.7.8}/freealg/distributions/_wachter.py +0 -0
  53. {freealg-0.7.7 → freealg-0.7.8}/freealg/distributions/_wigner.py +0 -0
  54. {freealg-0.7.7 → freealg-0.7.8}/freealg/visualization/__init__.py +0 -0
  55. {freealg-0.7.7 → freealg-0.7.8}/freealg/visualization/_glue_util.py +0 -0
  56. {freealg-0.7.7 → freealg-0.7.8}/freealg/visualization/_rgb_hsv.py +0 -0
  57. {freealg-0.7.7 → freealg-0.7.8}/freealg.egg-info/dependency_links.txt +0 -0
  58. {freealg-0.7.7 → freealg-0.7.8}/freealg.egg-info/not-zip-safe +0 -0
  59. {freealg-0.7.7 → freealg-0.7.8}/freealg.egg-info/requires.txt +0 -0
  60. {freealg-0.7.7 → freealg-0.7.8}/freealg.egg-info/top_level.txt +0 -0
  61. {freealg-0.7.7 → freealg-0.7.8}/pyproject.toml +0 -0
  62. {freealg-0.7.7 → freealg-0.7.8}/requirements.txt +0 -0
  63. {freealg-0.7.7 → freealg-0.7.8}/setup.cfg +0 -0
  64. {freealg-0.7.7 → freealg-0.7.8}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: freealg
3
- Version: 0.7.7
3
+ Version: 0.7.8
4
4
  Summary: Free probability for large matrices
5
5
  Home-page: https://github.com/ameli/freealg
6
6
  Download-URL: https://github.com/ameli/freealg/archive/main.zip
@@ -0,0 +1 @@
1
+ __version__ = "0.7.8"
@@ -0,0 +1,280 @@
1
+ # =======
2
+ # Imports
3
+ # =======
4
+
5
+ import numpy
6
+ from ._moments import AlgebraicStieltjesMoments
7
+
8
+ __all__ = ['stieltjes_poly']
9
+
10
+
11
+ # =====================
12
+ # select root
13
+ # =====================
14
+
15
+ def select_root(roots, z, target):
16
+ """
17
+ Select the root among Herglotz candidates at a given z closest to a
18
+ given target
19
+
20
+ Parameters
21
+ ----------
22
+ roots : array_like of complex
23
+ Candidate roots for m at the given z.
24
+ z : complex
25
+ Evaluation point. The Stieltjes/Herglotz branch satisfies
26
+ sign(Im(m)) = sign(Im(z)) away from the real axis.
27
+ target : complex
28
+ Previous continuation value used to enforce continuity, or
29
+ target value.
30
+
31
+ Returns
32
+ -------
33
+ w : complex
34
+ Selected root corresponding to the Stieltjes branch.
35
+ """
36
+
37
+ z = complex(z)
38
+ roots = numpy.asarray(roots, dtype=numpy.complex128).ravel()
39
+
40
+ if roots.size == 0:
41
+ raise ValueError("roots must contain at least one candidate root.")
42
+
43
+ desired_sign = numpy.sign(z.imag)
44
+
45
+ # Apply a soft Herglotz sign filter: prefer roots with Im(w) having the
46
+ # same sign as Im(z), allowing tiny numerical violations near the axis.
47
+ imag_roots = numpy.imag(roots)
48
+
49
+ good = roots[numpy.sign(imag_roots) == desired_sign]
50
+ if good.size == 0:
51
+ good = roots[(imag_roots * desired_sign) > -1e-12]
52
+
53
+ candidates = good if good.size > 0 else roots
54
+ idx = int(numpy.argmin(numpy.abs(candidates - target)))
55
+ return candidates[idx]
56
+
57
+
58
+ # ==============
59
+ # stieltjes poly
60
+ # ==============
61
+
62
+ class StieltjesPoly(object):
63
+ """
64
+ Stieltjes-branch evaluator for an algebraic equation P(z, m) = 0.
65
+
66
+ This class represents the Stieltjes-branch solution m(z) of an algebraic
67
+ equation defined by a polynomial relation
68
+
69
+ P(z, m) = 0,
70
+
71
+ where P is a polynomial in z and m with monomial-basis coefficients.
72
+ The coefficient matrix ``a`` is fixed at construction time, and all
73
+ quantities depending only on ``a`` are precomputed. Evaluation at a
74
+ complex point ``z`` is performed via :meth:`evaluate`. The instance is
75
+ also callable; :meth:`__call__` supports scalar or vector inputs and
76
+ applies :meth:`evaluate` elementwise.
77
+
78
+ The Stieltjes branch is selected by initializing in the appropriate
79
+ half-plane using an asymptotic Stieltjes estimate and then performing
80
+ homotopy continuation along a straight-line path in the complex plane.
81
+
82
+ Parameters
83
+ ----------
84
+ a : ndarray, shape (L, K)
85
+ Coefficient matrix defining P(z, m) in the monomial basis. For fixed
86
+ z, the coefficients of the polynomial in m are assembled from powers
87
+ of z.
88
+ eps : float or None, optional
89
+ If Im(z) == 0, use z + i*eps as the boundary evaluation point.
90
+ If None and Im(z) == 0, eps is set to 1e-8 * max(1, |z|).
91
+ height : float, default = 2.0
92
+ Imaginary height used for the starting point z0 in the same
93
+ half-plane as the evaluation point.
94
+ steps : int, default = 100
95
+ Number of continuation steps along the homotopy path.
96
+ order : int, default = 15
97
+ Number of moments in Stieltjes estimate
98
+
99
+ Methods
100
+ -------
101
+ evaluate(z)
102
+ Evaluate the Stieltjes-branch solution m(z) at a single complex point.
103
+
104
+ __call__(z)
105
+ If ``z`` is scalar, returns ``evaluate(z, ...)``.
106
+ If ``z`` is array-like, returns an array of the same shape, where each
107
+ entry is computed by calling ``evaluate`` on the corresponding element.
108
+
109
+ Notes
110
+ -----
111
+ If an input ``z`` value is real (Im(z) == 0), the evaluation is interpreted
112
+ as a boundary value by replacing that element with z + i*eps. If ``eps`` is
113
+ None, eps is chosen per element as 1e-8 * max(1, |z|).
114
+ """
115
+
116
+ def __init__(self, a, eps=None, height=2.0, steps=100, order=15):
117
+ a = numpy.asarray(a)
118
+ if a.ndim != 2:
119
+ raise ValueError("a must be a 2D array.")
120
+
121
+ self.a = a
122
+ self.a_l, _ = a.shape
123
+ self.eps = eps
124
+ self.height = height
125
+ self.steps = steps
126
+ self.order = order
127
+
128
+ # Objects depending only on a
129
+ self.mom = AlgebraicStieltjesMoments(a)
130
+ self._zpows_exp = numpy.arange(self.a_l)
131
+ self.rad = 1.0 + self.height * self.mom.radius(self.order)
132
+
133
+ def _poly_coeffs_m(self, z_val):
134
+ z_powers = z_val ** self._zpows_exp
135
+ return (z_powers @ self.a)[::-1]
136
+
137
+ def _poly_roots(self, z_val):
138
+ coeffs = numpy.asarray(self._poly_coeffs_m(z_val),
139
+ dtype=numpy.complex128)
140
+ return numpy.roots(coeffs)
141
+
142
+ def evaluate(self, z, eps=None, height=2.0, steps=100, order=15):
143
+ """
144
+ Evaluate the Stieltjes-branch solution m(z) at a single point.
145
+
146
+ Parameters are as in the original function, except ``a`` is fixed at
147
+ construction time.
148
+ """
149
+ z = complex(z)
150
+
151
+ if steps < 1:
152
+ raise ValueError("steps must be a positive integer.")
153
+
154
+ # Boundary-value interpretation on the real axis
155
+ if z.imag == 0.0:
156
+ if self.eps is None:
157
+ eps_loc = 1e-8 * max(1.0, abs(z))
158
+ else:
159
+ eps_loc = float(self.eps)
160
+ z_eval = z + 1j * eps_loc
161
+ else:
162
+ z_eval = z
163
+
164
+ half_sign = numpy.sign(z_eval.imag)
165
+ if half_sign == 0.0:
166
+ half_sign = 1.0
167
+
168
+ # If z is outside radius of convergence, no homotopy
169
+ # necessary
170
+ if numpy.abs(z) > self.rad:
171
+ target = self.mom.stieltjes(z, self.order)
172
+ return select_root(self._poly_roots(z), z, target)
173
+
174
+ z0 = 1j * float(half_sign) * self.rad
175
+ target = self.mom.stieltjes(z0, self.order)
176
+
177
+ # Initialize at z0
178
+ w_prev = select_root(self._poly_roots(z0), z0, target)
179
+
180
+ # Straight-line homotopy continuation
181
+ for tau in numpy.linspace(0.0, 1.0, int(self.steps) + 1)[1:]:
182
+ z_tau = z0 + tau * (z_eval - z0)
183
+ w_prev = select_root(self._poly_roots(z_tau), z_tau, w_prev)
184
+
185
+ return w_prev
186
+
187
+ def __call__(self, z):
188
+ # Scalar fast-path
189
+ if numpy.isscalar(z):
190
+ return self.evaluate(z)
191
+
192
+ # Array-like: evaluate elementwise, preserving shape
193
+ z_arr = numpy.asarray(z)
194
+ out = numpy.empty(z_arr.shape, dtype=numpy.complex128)
195
+
196
+ # Iterate over indices so we can pass Python scalars into evaluate()
197
+ for idx in numpy.ndindex(z_arr.shape):
198
+ out[idx] = self.evaluate(z_arr[idx])
199
+
200
+ return out
201
+
202
+
203
+ # def stieltjes_poly(z, a, eps=None, height=2., steps=100, order=15):
204
+ # """
205
+ # Evaluate the Stieltjes-branch solution m(z) of an algebraic equation.
206
+
207
+ # The coefficients `a` define a polynomial relation
208
+ # P(z, m) = 0,
209
+ # where P is a polynomial in z and m with monomial-basis coefficients
210
+ # arranged so that for fixed z, the coefficients of the polynomial in m
211
+ # can be assembled from powers of z.
212
+
213
+ # Parameters
214
+ # ----------
215
+ # z : complex
216
+ # Evaluation point. Must be a single value.
217
+ # a : ndarray, shape (L, K)
218
+ # Coefficient matrix defining P(z, m) in the monomial basis.
219
+ # eps : float or None, optional
220
+ # If Im(z) == 0, use z + i*eps as the boundary evaluation point.
221
+ # If None and Im(z) == 0, eps is set to 1e-8 * max(1, |z|).
222
+ # height : float, default = 2.0
223
+ # Imaginary height used for the starting point z0 in the same
224
+ # half-plane as the evaluation point.
225
+ # steps : int, default = 100
226
+ # Number of continuation steps along the homotopy path.
227
+ # order : int, default = 15
228
+ # Number of moments in Stieltjes estimate
229
+
230
+ # Returns
231
+ # -------
232
+ # w : complex
233
+ # Value of the Stieltjes-branch solution m(z) (or m(z+i*eps) if z is
234
+ # real).
235
+ # """
236
+
237
+ # z = complex(z)
238
+ # a = numpy.asarray(a)
239
+
240
+ # if a.ndim != 2:
241
+ # raise ValueError('a must be a 2D array.')
242
+
243
+ # if steps < 1:
244
+ # raise ValueError("steps must be a positive integer.")
245
+
246
+ # a_l, _ = a.shape
247
+ # mom = AlgebraicStieltjesMoments(a)
248
+
249
+ # def poly_coeffs_m(z_val):
250
+ # z_powers = z_val ** numpy.arange(a_l)
251
+ # return (z_powers @ a)[::-1]
252
+
253
+ # def poly_roots(z_val):
254
+ # coeffs = numpy.asarray(poly_coeffs_m(z_val), dtype=numpy.complex128)
255
+ # return numpy.roots(coeffs)
256
+
257
+ # # If user asked for a real-axis value, interpret as boundary value from C+.
258
+ # if z.imag == 0.0:
259
+ # if eps is None:
260
+ # eps = 1e-8 * max(1.0, abs(z))
261
+ # z_eval = z + 1j * float(eps)
262
+ # else:
263
+ # z_eval = z
264
+
265
+ # half_sign = numpy.sign(z_eval.imag)
266
+ # if half_sign == 0.0:
267
+ # half_sign = 1.0
268
+
269
+ # z0 = 1j * float(half_sign) * (1. + height * mom.radius(order))
270
+ # target = mom.stieltjes(z0, order)
271
+
272
+ # # Initialize at z0 via asymptotic / Im-sign selection.
273
+ # w_prev = select_root(poly_roots(z0), z0, target)
274
+
275
+ # # Straight-line homotopy from z0 to z_eval.
276
+ # for tau in numpy.linspace(0.0, 1.0, int(steps) + 1)[1:]:
277
+ # z_tau = z0 + tau * (z_eval - z0)
278
+ # w_prev = select_root(poly_roots(z_tau), z_tau, w_prev)
279
+
280
+ # return w_prev
@@ -0,0 +1,450 @@
1
+ import numpy
2
+
3
+
4
+ # =========
5
+ # Moments
6
+ # =========
7
+
8
+ class MomentsESD(object):
9
+ """
10
+ Moments :math:`\\mu_n(t)` generated from eigenvalues, under
11
+ free decompression, where
12
+
13
+ .. math::
14
+
15
+ m_n = \\mu_n(0) = \\mathbb{E}[\\lambda^n],
16
+
17
+ and :math:`\\lambda` denotes an eigenvalue sample.
18
+
19
+ Parameters
20
+ ----------
21
+
22
+ eig : array_like
23
+ 1D array of eigenvalues (or samples). Internally it is converted to a
24
+ floating-point :class:`numpy.ndarray`.
25
+
26
+ Attributes
27
+ ----------
28
+
29
+ eig : numpy.ndarray
30
+ Eigenvalue samples.
31
+
32
+ Methods
33
+ -------
34
+
35
+ m
36
+ Compute the raw moment :math:`m_n = \\mathbb{E}[\\lambda^n]`.
37
+
38
+ coeffs
39
+ Compute the coefficient vector :math:`a_n`.
40
+
41
+ __call__
42
+ Evaluate :math:`\\mu_n(t)` for a given :math:`n` and :math:`t`.
43
+
44
+ Notes
45
+ -----
46
+
47
+ The recursion memoizes:
48
+
49
+ * Moments ``_m[n] = m_n``.
50
+ * Coefficients ``_a[n] = a_n`` where ``a_n`` has length ``n`` and contains
51
+ :math:`(a_{n,0}, \\dots, a_{n,n-1})`.
52
+
53
+ The coefficient row :math:`a_n` is computed using an intermediate quantity
54
+ :math:`R_{n,k}` formed via discrete convolutions of previous rows.
55
+
56
+ Examples
57
+ --------
58
+
59
+ .. code-block:: python
60
+
61
+ >>> import numpy as np
62
+ >>> eig = np.array([1.0, 2.0, 3.0])
63
+ >>> mu = Moments(eig)
64
+ >>> mu(3, t=0.0) # equals m_3
65
+ 12.0
66
+ >>> mu(3, t=0.1)
67
+ 14.203...
68
+ """
69
+
70
+ # ====
71
+ # init
72
+ # ====
73
+
74
+ def __init__(self, eig):
75
+ """
76
+ Initialization.
77
+ """
78
+
79
+ self.eig = numpy.asarray(eig, dtype=float)
80
+
81
+ # Memoized moments m_n
82
+ self._m = {0: 1.0}
83
+
84
+ # Memoized coefficients a[n] = array of length n
85
+ # (a_{n,0},...,a_{n,n-1})
86
+ self._a = {0: numpy.array([1.0])}
87
+
88
+ # ----------
89
+ # moments
90
+ # ----------
91
+
92
+ def m(self, n):
93
+ """
94
+ Compute raw moment :math:`m_n`.
95
+
96
+ Parameters
97
+ ----------
98
+
99
+ n : int
100
+ Order of the moment.
101
+
102
+ Returns
103
+ -------
104
+
105
+ m_n : float
106
+ The raw moment :math:`m_n = \\mathbb{E}[\\lambda^n]`, estimated by
107
+ the sample mean of ``eig**n``.
108
+ """
109
+
110
+ if n not in self._m:
111
+ self._m[n] = numpy.mean(self.eig ** n)
112
+ return self._m[n]
113
+
114
+ # -------------
115
+ # coefficients
116
+ # -------------
117
+
118
+ def coeffs(self, n):
119
+ """
120
+ Get coefficients :math:`a_n` for :math:`\\mu_n(t)`.
121
+
122
+ Parameters
123
+ ----------
124
+
125
+ n : int
126
+ Order of :math:`\\mu_n(t)`.
127
+
128
+ Returns
129
+ -------
130
+
131
+ a_n : numpy.ndarray
132
+ Array of shape ``(n,)`` containing :math:`(a_{n,0}, \\dots, a_{n,n-1})`.
133
+ """
134
+
135
+ if n in self._a:
136
+ return self._a[n]
137
+
138
+ # Ensure previous rows exist
139
+ for r in range(1, n):
140
+ if r not in self._a:
141
+ self._compute_row(r)
142
+
143
+ self._compute_row(n)
144
+ return self._a[n]
145
+
146
+ def _compute_row(self, n):
147
+ """
148
+ Compute and memoize the coefficient row :math:`a_n`.
149
+
150
+ Parameters
151
+ ----------
152
+
153
+ n : int
154
+ Row index to compute.
155
+
156
+ Notes
157
+ -----
158
+
159
+ For :math:`n=1`, the row is
160
+
161
+ .. math::
162
+
163
+ a_{1,0} = m_1.
164
+
165
+ For :math:`n \\ge 2`, let :math:`R_n` be a length ``n-1`` array defined
166
+ by convolution of previous rows:
167
+
168
+ .. math::
169
+
170
+ R_n = \\sum_{i=1}^{n-1} (a_i * a_{n-i})\\big|_{0:(n-2)}.
171
+
172
+ Then for :math:`k = 0, \\dots, n-2`,
173
+
174
+ .. math::
175
+
176
+ a_{n,k} = \\frac{1 + k/2}{(n-1-k)} R_{n,k},
177
+
178
+ and the last coefficient is chosen so that :math:`\\mu_n(0)=m_n`:
179
+
180
+ .. math::
181
+
182
+ a_{n,n-1} = m_n - \\sum_{k=0}^{n-2} a_{n,k}.
183
+ """
184
+
185
+ if n in self._a:
186
+ return
187
+
188
+ if n == 1:
189
+ self._a[1] = numpy.array([self.m(1)])
190
+ return
191
+
192
+ # Ensure all smaller rows exist
193
+ for r in range(1, n):
194
+ if r not in self._a:
195
+ self._compute_row(r)
196
+
197
+ a_n = numpy.zeros(n, dtype=float)
198
+
199
+ # Compute R_{n,k} via convolutions:
200
+ # R_n = sum_{i=1}^{n-1} convolve(a[i], a[n-i]) truncated to length n-1
201
+ R = numpy.zeros(n - 1, dtype=float)
202
+ for i in range(1, n):
203
+ conv = numpy.convolve(self._a[i], self._a[n - i])
204
+ R += conv[: n - 1]
205
+
206
+ k = numpy.arange(n - 1, dtype=float)
207
+ factors = (1.0 + 0.5 * k) / (n - 1 - k)
208
+ a_n[: n - 1] = factors * R
209
+
210
+ # k = n-1 from the initial condition mu_n(0) = m_n
211
+ a_n[n - 1] = self.m(n) - a_n[: n - 1].sum()
212
+
213
+ self._a[n] = a_n
214
+
215
+ # ----------
216
+ # evaluate
217
+ # ----------
218
+
219
+ def __call__(self, n, t=0.0):
220
+ """
221
+ Evaluate :math:`\\mu_n(t)`.
222
+
223
+ Parameters
224
+ ----------
225
+
226
+ n : int
227
+ Order of :math:`\\mu_n(t)`.
228
+
229
+ t : float, default=0.0
230
+ Deformation parameter.
231
+
232
+ Returns
233
+ -------
234
+
235
+ mu_n : float
236
+ The value of :math:`\\mu_n(t)`.
237
+
238
+ Notes
239
+ -----
240
+
241
+ This function evaluates
242
+
243
+ .. math::
244
+
245
+ \\mu_n(t) = \\sum_{k=0}^{n-1} a_{n,k} \\, e^{k t}.
246
+
247
+ For ``n == 0``, it returns ``1.0``.
248
+ """
249
+
250
+ if n == 0:
251
+ return 1.0
252
+
253
+ a_n = self.coeffs(n)
254
+ k = numpy.arange(n, dtype=float)
255
+ return numpy.dot(a_n, numpy.exp(k * t))
256
+
257
+ # ===========================
258
+ # Algebraic Stieltjes Moments
259
+ # ===========================
260
+
261
+
262
+ class AlgebraicStieltjesMoments(object):
263
+ """
264
+ Given coefficients a[i,j] for P(z,m)=sum_{i,j} a[i,j] z^i m^j,
265
+ compute the large-|z| branch
266
+ m(z) = sum_{k>=0} mu_series[k] / z^{k+1}.
267
+
268
+ Convention here: choose mu0 (the leading coefficient) by solving the
269
+ leading-diagonal equation and (by default) picking the root closest
270
+ to -1, i.e. m(z) ~ -1/z.
271
+
272
+ The returned 'moments(N)' are normalized density moments:
273
+ mu_density[k] = mu_series[k] / mu_series[0]
274
+ so mu_density[0] = 1.
275
+ """
276
+
277
+ def __init__(self, a, mu0=None):
278
+ self.a = numpy.asarray(a)
279
+ # Ensure valid
280
+ self.a[-1, 0] = 0.0
281
+ if self.a.ndim != 2:
282
+ raise ValueError("a must be a 2D NumPy array with a[i,j]=a_{ij}.")
283
+
284
+ self.I = self.a.shape[0] - 1
285
+ self.J = self.a.shape[1] - 1
286
+
287
+ nz = numpy.argwhere(self.a != 0)
288
+ if nz.size == 0:
289
+ raise ValueError("All coefficients are zero.")
290
+
291
+ # r = max(i-j) over nonzero terms
292
+ self.r = int(numpy.max(nz[:, 0] - nz[:, 1]))
293
+
294
+ # Group coefficients by diagonal offset s = r - (i-j) >= 0
295
+ # diag[s] is list of (j, a_ij) for which i-j = r-s
296
+ self.diag = {}
297
+ for i, j in nz:
298
+ i = int(i)
299
+ j = int(j)
300
+ coeff = self.a[i, j]
301
+ s = self.r - (i - j)
302
+ if s >= 0:
303
+ self.diag.setdefault(int(s), []).append((j, coeff))
304
+
305
+ # Choose mu0 (series leading coefficient). This should be
306
+ # -1 for m(z) ~ -1/z, but it may only hold approximately.
307
+ if mu0 is None:
308
+ self.mu0 = self._solve_mu0()
309
+ else:
310
+ self.mu0 = mu0
311
+
312
+ # Precompute mu0^p up to p=J
313
+ self.mu0pow = [1]
314
+ for _ in range(self.J):
315
+ self.mu0pow.append(self.mu0pow[-1] * self.mu0)
316
+
317
+ # Linear coefficient A0 = sum_{i-j=r} j a_ij mu0^{j-1}
318
+ self.A0 = 0
319
+ for j, coeff in self.diag.get(0, []):
320
+ if j > 0:
321
+ self.A0 += j * coeff * self.mu0pow[j - 1]
322
+ if self.A0 == 0:
323
+ raise ValueError("A0 is zero for this mu0; the sequential recursion is degenerate.")
324
+
325
+ # Stored series moments mu_series[0..]
326
+ self._mu = [self.mu0]
327
+
328
+ # Convolution table c[j][n] = coefficient of w^n in (S(w))^j,
329
+ # where S(w) = sum_{t>=0} mu_series[t] w^t and m(z)=w S(w), w=1/z.
330
+ #
331
+ # We store c as lists growing in n: c[j][n] for j=0..J.
332
+ self._c = [[0] for _ in range(self.J + 1)]
333
+ self._c[0][0] = 1
334
+ for j in range(1, self.J + 1):
335
+ self._c[j][0] = self.mu0pow[j]
336
+
337
+ def _solve_mu0(self):
338
+ # Leading diagonal polynomial L(m) = sum_{i-j=r} a_ij m^j.
339
+ # That means i = j + r, so coefficient is a[j+r, j] if in bounds.
340
+ coeffs = numpy.zeros(self.J + 1, dtype=numpy.complex128)
341
+ for j in range(self.J + 1):
342
+ i = j + self.r
343
+ if 0 <= i <= self.I:
344
+ coeffs[j] = self.a[i, j]
345
+
346
+ if not numpy.any(coeffs != 0):
347
+ raise ValueError("Leading diagonal polynomial is identically zero; cannot determine mu0.")
348
+
349
+ deg = int(numpy.max(numpy.nonzero(coeffs)[0]))
350
+ roots = numpy.roots(coeffs[:deg + 1][::-1]) # descending powers for numpy.roots
351
+
352
+ # Targetting mu0 = -1 for ~ -1/z asymptotics
353
+ mu0 = roots[numpy.argmin(numpy.abs(roots + 1))]
354
+
355
+ if abs(mu0.imag) < 1e-12:
356
+ mu0 = mu0.real
357
+ return mu0
358
+
359
+ def _ensure(self, N):
360
+ # Compute mu_series up to index N (inclusive)
361
+ while len(self._mu) <= N:
362
+ k = len(self._mu) # compute mu_k
363
+
364
+ # Compute f[j] = coefficient of w^k in (S_trunc(w))^j,
365
+ # where S_trunc uses mu_0..mu_{k-1} only (i.e. mu_k treated as 0).
366
+ # Key fact: in the true c[j,k], mu_k can only appear linearly as j*mu_k*mu0^{j-1}.
367
+ f = [0] * (self.J + 1)
368
+ f[0] = 0
369
+ for j in range(1, self.J + 1):
370
+ ssum = 0
371
+ # sum_{t=1..k-1} mu_t * c[j-1, k-t]
372
+ for t in range(1, k):
373
+ ssum += self._mu[t] * self._c[j - 1][k - t]
374
+ # recurrence: c[j,k] = mu0*c[j-1,k] + sum_{t=1..k-1} mu_t*c[j-1,k-t] + mu_k*c[j-1,0]
375
+ # with mu_k=0 for f, and c[j-1,k]=f[j-1]
376
+ f[j] = self.mu0 * f[j - 1] + ssum
377
+
378
+ # Build the linear equation for mu_k:
379
+ # A0*mu_k + rest = 0
380
+ rest = 0
381
+
382
+ # s=0 diagonal contributes coeff*(f[j]) (the mu_k-free part)
383
+ for j, coeff in self.diag.get(0, []):
384
+ if j == 0:
385
+ # only affects k=0, but we never come here with k=0
386
+ continue
387
+ rest += coeff * f[j]
388
+
389
+ # lower diagonals s=1..k contribute coeff*c[j,k-s] (already known since k-s < k)
390
+ for s in range(1, k + 1):
391
+ entries = self.diag.get(s)
392
+ if not entries:
393
+ continue
394
+ n = k - s
395
+ for j, coeff in entries:
396
+ if j == 0:
397
+ if n == 0:
398
+ rest += coeff
399
+ else:
400
+ rest += coeff * self._c[j][n]
401
+
402
+ mu_k = -rest / self.A0
403
+ self._mu.append(mu_k)
404
+
405
+ # Now append the new column k to c using the full convolution recurrence:
406
+ # c[j,k] = sum_{t=0..k} mu_t * c[j-1,k-t]
407
+ for j in range(self.J + 1):
408
+ self._c[j].append(0)
409
+
410
+ self._c[0][k] = 0
411
+ for j in range(1, self.J + 1):
412
+ val = 0
413
+ for t in range(0, k + 1):
414
+ val += self._mu[t] * self._c[j - 1][k - t]
415
+ self._c[j][k] = val
416
+
417
+ # --- API ---
418
+
419
+ def __call__(self, k):
420
+ self._ensure(k)
421
+ return self._mu[k] / self._mu[0]
422
+
423
+ def moments(self, N):
424
+ # normalized density moments so moment 0 is 1
425
+ self._ensure(N)
426
+ mu0 = self._mu[0]
427
+ return numpy.array([self._mu[k] / mu0 for k in range(N + 1)])
428
+
429
+ def radius(self, N):
430
+ # Estimate the radius of convergence of the Stieltjes
431
+ # series
432
+ if N < 3:
433
+ raise RuntimeError("Order is too small, choose a larger value of N")
434
+ self._ensure(N)
435
+ return max([numpy.abs(self._mu[j] / self._mu[j-1]) for j in range(2,N+1)])
436
+
437
+ def stieltjes(self, z, N):
438
+ # Estimate Stieltjes transform (root) using moment
439
+ # expansion
440
+ z = numpy.asarray(z)
441
+ mu = self.moments(N)
442
+ return -numpy.sum(z[..., numpy.newaxis]**(-numpy.arange(N+1)-1) * mu,
443
+ axis=-1)
444
+
445
+ def target_pt(self, N=15):
446
+ # Obtain an estimate of the Stieltjes transform at a
447
+ # single point z where the estimate is likely reliable
448
+ z = 1j + 2j * self.radius(N)
449
+ return z, self.stieltjes(z, N)
450
+
@@ -20,8 +20,9 @@ from ._continuation_algebraic import sample_z_joukowski, \
20
20
  from ._edge import evolve_edges, merge_edges
21
21
  from ._decompress import decompress_newton
22
22
  from ._decompress2 import decompress_coeffs
23
- from ._homotopy import stieltjes_poly
23
+ from ._homotopy import StieltjesPoly
24
24
  from ._discriminant import compute_singular_points
25
+ from ._moments import MomentsESD
25
26
  from .._free_form._support import supp
26
27
  from .._free_form._plot_util import plot_density
27
28
 
@@ -144,6 +145,7 @@ class AlgebraicForm(object):
144
145
  self.A = None
145
146
  self.eig = None
146
147
  self.stieltjes = None
148
+ self.moments = None
147
149
  self.support = support
148
150
  self.delta = delta # Offset above real axis to apply Plemelj formula
149
151
 
@@ -178,6 +180,7 @@ class AlgebraicForm(object):
178
180
  # Use empirical Stieltjes function
179
181
  self.stieltjes = lambda z: \
180
182
  numpy.mean(1.0/(self.eig-z[:, numpy.newaxis]), axis=-1)
183
+ self.moments = MomentsESD(self.eig)
181
184
 
182
185
  # Support
183
186
  if support is None:
@@ -291,6 +294,7 @@ class AlgebraicForm(object):
291
294
  status['res_99_9'] = float(res_99_9)
292
295
  status['fit_metrics'] = fit_metrics
293
296
  self.status = status
297
+ self.stieltjes = StieltjesPoly(self.a_coeffs)
294
298
 
295
299
  if verbose:
296
300
  print(f'fit residual max : {res_max:>0.4e}')
@@ -395,13 +399,7 @@ class AlgebraicForm(object):
395
399
  x = self._generate_grid(1.25)
396
400
 
397
401
  # Preallocate density to zero
398
- rho = numpy.zeros_like(x)
399
-
400
- for idx, x_i in enumerate(x):
401
- m_i = stieltjes_poly(x_i, self.a_coeffs)
402
- rho[idx] = m_i.imag
403
-
404
- rho = rho / numpy.pi
402
+ rho = self.stieltjes(x).imag / numpy.pi
405
403
 
406
404
  # if self.method == 'jacobi':
407
405
  # rho[mask] = jacobi_density(x[mask], self.psi, self.support,
@@ -669,12 +667,9 @@ class AlgebraicForm(object):
669
667
  # Decompression ratio equal to e^{t}.
670
668
  alpha = numpy.atleast_1d(size) / self.n
671
669
 
672
- def m_fn(z):
673
- return stieltjes_poly(z, self.a_coeffs)
674
-
675
670
  # Lower and upper bound on new support
676
- hilb_lb = (1.0 / m_fn(self.lam_m + self.delta * 1j).item()).real
677
- hilb_ub = (1.0 / m_fn(self.lam_p + self.delta * 1j).item()).real
671
+ hilb_lb = (1.0 / self.stieltjes(self.lam_m + self.delta * 1j).item()).real
672
+ hilb_ub = (1.0 / self.stieltjes(self.lam_p + self.delta * 1j).item()).real
678
673
  lb = self.lam_m - (numpy.max(alpha) - 1) * hilb_lb
679
674
  ub = self.lam_p - (numpy.max(alpha) - 1) * hilb_ub
680
675
 
@@ -695,9 +690,7 @@ class AlgebraicForm(object):
695
690
  z_query = x + 1j * self.delta
696
691
 
697
692
  # Initial condition at t=0 (physical branch)
698
- # w0_list = self.stieltjes(z_query)
699
- stieltjes = numpy.vectorize(m_fn)
700
- w0_list = stieltjes(z_query)
693
+ w0_list = self.stieltjes(z_query)
701
694
 
702
695
  # Times
703
696
  t = numpy.log(alpha)
@@ -727,9 +720,8 @@ class AlgebraicForm(object):
727
720
  for i in range(alpha.size):
728
721
  coeffs_i = decompress_coeffs(self.a_coeffs,
729
722
  numpy.log(alpha[i]))
730
- for j, x_j in enumerate(x):
731
- m_j = stieltjes_poly(x_j, coeffs_i)
732
- rho[i, j] = m_j.imag
723
+ stieltjes_i = StieltjesPoly(coeffs_i)
724
+ rho[i, :] = stieltjes_i.imag
733
725
 
734
726
  rho = rho / numpy.pi
735
727
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: freealg
3
- Version: 0.7.7
3
+ Version: 0.7.8
4
4
  Summary: Free probability for large matrices
5
5
  Home-page: https://github.com/ameli/freealg
6
6
  Download-URL: https://github.com/ameli/freealg/archive/main.zip
@@ -24,6 +24,7 @@ freealg/_algebraic_form/_decompress2.py
24
24
  freealg/_algebraic_form/_discriminant.py
25
25
  freealg/_algebraic_form/_edge.py
26
26
  freealg/_algebraic_form/_homotopy.py
27
+ freealg/_algebraic_form/_moments.py
27
28
  freealg/_algebraic_form/_sheets_util.py
28
29
  freealg/_algebraic_form/algebraic_form.py
29
30
  freealg/_free_form/__init__.py
@@ -1 +0,0 @@
1
- __version__ = "0.7.7"
@@ -1,138 +0,0 @@
1
- # =======
2
- # Imports
3
- # =======
4
-
5
- import numpy
6
-
7
- __all__ = ['stieltjes_poly']
8
-
9
-
10
- # =====================
11
- # stieltjes select root
12
- # =====================
13
-
14
- def stieltjes_select_root(roots, z, w_prev=None):
15
- """
16
- Select the Stieltjes-branch root among candidates at a given z.
17
-
18
- Parameters
19
- ----------
20
- roots : array_like of complex
21
- Candidate roots for m at the given z.
22
- z : complex
23
- Evaluation point. The Stieltjes/Herglotz branch satisfies
24
- sign(Im(m)) = sign(Im(z)) away from the real axis.
25
- w_prev : complex or None, optional
26
- Previous continuation value used to enforce continuity. If None,
27
- the asymptotic target -1/z is used.
28
-
29
- Returns
30
- -------
31
- w : complex
32
- Selected root corresponding to the Stieltjes branch.
33
- """
34
-
35
- z = complex(z)
36
- roots = numpy.asarray(roots, dtype=numpy.complex128).ravel()
37
-
38
- if roots.size == 0:
39
- raise ValueError("roots must contain at least one candidate root.")
40
-
41
- desired_sign = numpy.sign(z.imag)
42
-
43
- if w_prev is None:
44
- target = -1.0 / z
45
- else:
46
- target = complex(w_prev)
47
-
48
- # Apply a soft Herglotz sign filter: prefer roots with Im(w) having the
49
- # same sign as Im(z), allowing tiny numerical violations near the axis.
50
- imag_roots = numpy.imag(roots)
51
-
52
- good = roots[numpy.sign(imag_roots) == desired_sign]
53
- if good.size == 0:
54
- good = roots[(imag_roots * desired_sign) > -1e-12]
55
-
56
- candidates = good if good.size > 0 else roots
57
- idx = int(numpy.argmin(numpy.abs(candidates - target)))
58
- return candidates[idx]
59
-
60
-
61
- # ==============
62
- # stieltjes poly
63
- # ==============
64
-
65
- def stieltjes_poly(z, a, eps=None, height=1e+4, steps=100):
66
- """
67
- Evaluate the Stieltjes-branch solution m(z) of an algebraic equation.
68
-
69
- The coefficients `a` define a polynomial relation
70
- P(z, m) = 0,
71
- where P is a polynomial in z and m with monomial-basis coefficients
72
- arranged so that for fixed z, the coefficients of the polynomial in m
73
- can be assembled from powers of z.
74
-
75
- Parameters
76
- ----------
77
- z : complex
78
- Evaluation point. Must be a single value.
79
- a : ndarray, shape (L, K)
80
- Coefficient matrix defining P(z, m) in the monomial basis.
81
- eps : float or None, optional
82
- If Im(z) == 0, use z + i*eps as the boundary evaluation point.
83
- If None and Im(z) == 0, eps is set to 1e-8 * max(1, |z|).
84
- height : float, optional
85
- Imaginary height used for the starting point z0 in the same
86
- half-plane as the evaluation point.
87
- steps : int, optional
88
- Number of continuation steps along the homotopy path.
89
-
90
- Returns
91
- -------
92
- w : complex
93
- Value of the Stieltjes-branch solution m(z) (or m(z+i*eps) if z is
94
- real).
95
- """
96
-
97
- z = complex(z)
98
- a = numpy.asarray(a)
99
-
100
- if a.ndim != 2:
101
- raise ValueError('a must be a 2D array.')
102
-
103
- if steps < 1:
104
- raise ValueError("steps must be a positive integer.")
105
-
106
- a_l, _ = a.shape
107
-
108
- def poly_coeffs_m(z_val):
109
- z_powers = z_val ** numpy.arange(a_l)
110
- return (z_powers @ a)[::-1]
111
-
112
- def poly_roots(z_val):
113
- coeffs = numpy.asarray(poly_coeffs_m(z_val), dtype=numpy.complex128)
114
- return numpy.roots(coeffs)
115
-
116
- # If user asked for a real-axis value, interpret as boundary value from C+.
117
- if z.imag == 0.0:
118
- if eps is None:
119
- eps = 1e-8 * max(1.0, abs(z))
120
- z_eval = z + 1j * float(eps)
121
- else:
122
- z_eval = z
123
-
124
- half_sign = numpy.sign(z_eval.imag)
125
- if half_sign == 0.0:
126
- half_sign = 1.0
127
-
128
- z0 = 1j * float(half_sign) * float(height)
129
-
130
- # Initialize at z0 via asymptotic / Im-sign selection.
131
- w_prev = stieltjes_select_root(poly_roots(z0), z0, w_prev=None)
132
-
133
- # Straight-line homotopy from z0 to z_eval.
134
- for tau in numpy.linspace(0.0, 1.0, int(steps) + 1)[1:]:
135
- z_tau = z0 + tau * (z_eval - z0)
136
- w_prev = stieltjes_select_root(poly_roots(z_tau), z_tau, w_prev=w_prev)
137
-
138
- return w_prev
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes